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I. INTRODUCTION

Landau’s Fermi liquid theory provides a robust and accu-
rate description of the leading low-temperature, long-
wavelength behavior of a wide range of systems of interact-
ing fermions in two and three spatial dimensions. In
Landau’s original work1 it was assumed that the temperature
�T� and momentum �q� corrections to the leading Fermi liq-
uid behavior were analytic functions of �T /TF�2 and �q /kF�2,
with the Fermi momentum kF set by the interparticle spacing
and the Fermi temperature TF�vFkF with vF a typical mea-
sured electron velocity. However, subsequent work revealed
that in dimensions d=2 and d=3 the leading temperature and
momentum dependences of measurable quantities including
the specific heat and spin susceptibility are in fact nonana-
lytic functions of T2 and q2. The nonanalyticities have been
studied in detail for Galilean-invariant systems �spherical
Fermi surface or circular Fermi line� �see Ref. 2 for a list of
references�. In this paper we extend the analysis to a more
general class of systems, still described by Fermi liquid
theory but with a Fermi surface of arbitrary shape.

The extension is of interest in order to allow comparisons
to systems such as Sr2RuO4 �Ref. 3� and quasi-one-
dimensional organic conductors,4 in which lattice effects are
important. The extension also provides further insight into a
fundamental theoretical issue: a crucial finding of the previ-
ous analysis2,5 was that for two-dimensional systems the
nonanalytical term in the specific heat coefficient �C�T� /T
�T arises solely from “backscattering” processes at any
strength of the fermion-fermion interaction. For the spin sus-
ceptibility, the situation is more complex: in addition to the
backscattering contributions to ��s�T��T and ��s�q��q
there are contributions of third and higher order in the inter-
action which involve nonbackscattering processes.6 If the in-
teraction is not too strong, the backscattering terms domi-
nate.

Unlike scattering at a general angle, the kinematics of
backscattering is effectively one dimensional and depends
sensitively on the shape of the Fermi surface. We shall show
that the crucial parameter is the Fermi surface curvature and
that for two-dimensional �2D� systems in which the Fermi
surface possesses an inflection point, the power laws change

from ��T ,q�� to ��T ,q�1/2� or ��T ,q�2/3� according to whether
the inflection point is or is not along a reflection symmetry
axis of the material. Similar effects occur in three-
dimensional systems, but the effects will be weaker as the
singularities there are only logarithmic.

The importance of the Fermi surface geometry was previ-
ously noted by Fratini and Guinea, who showed that the
presence of inflection points changes the power law for the
spin susceptibility �s�T�.7 However, we believe that their cal-
culation treated the kinematics of the backscattering incor-
rectly; as a result, they found that, in 2D, the presence of the
inflection point changes the temperature dependence only by
a logarithm, from �s�T��T to �s�T��T ln T, instead of the
T�1/2,1/3� found here.

The paper is organized as follows. Section II introduces
the model and defines notation. In Sec. III, we demonstrate
the physical origin of the results via a calculation of the
long-range dynamical correlations of a Fermi liquid. Section
IV presents results for the specific heat of a multiband sys-
tem. In Sec. V we calculate the nonanalyticities in the mo-
mentum and temperature dependence of �. Section VI shows
how new power laws emerge for Fermi surfaces with inflec-
tion points and why one-dimensionality affects the powers.
Section VII presents estimates of the size of the nonanalytic
terms in Sr2RuO4. Section VIII is a conclusion.

II. MODEL

We study fermions moving in two dimensions in a peri-
odic potential. As discussed at length in Ref. 2, because we
are concerned with the low-T properties of a Fermi liquid,
we may adopt a quasiparticle picture. Lifetime effects are not
important, and the quasiparticle weight �z� factors may be
absorbed in interaction constants. We may therefore consider
several bands, labeled by band index a, of quasiparticles
moving with �renormalized� dispersion �k

a. The Fermi sur-
faces are defined by the condition �k

a =�; an example is
shown in Fig. 1. We parametrize the position at the Fermi
surface by a coordinate sa. For vectors k near a particular
Fermi surface point kF we will write
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�k
a − � = vF

a�sa��k� +
k�

2

2k0�sa�
� , �1�

with vF�sa�= ���k
a /�k� the Fermi velocity at the point �sa� and

the components of k parallel and perpendicular to the Fermi
velocity �Fermi surface normal� given by

k� = �k − kF� · v̂F�sa� , �2�

k� = �k − kF� � v̂F�sa� . �3�

k0
−1�sa� is the curvature of the Fermi surface at the point sa.

For a circular Fermi surface, k0=kF independent of s, but in
general k0�kF and both depend on s.

It is sometimes convenient to use the variables �k and �k,
where �k is the angle determining the direction of the Fermi
velocity vF�k�=��k /�k relative to some fixed axis. Equation
�1� shows that the Jacobean of the transformation is

d2k =
k0�k�
vF�k�

d�kd�k. �4�

In a non-Galilean-invariant system the Fermi surface may
contain inflection points at which the curvature of a particu-
lar band vanishes—i.e., k0→	. If the inflection point does
not lie on an axis of reflection symmetry of the Brillouin
zone, the dispersion of this band �measured in terms of the
difference of the momentum from an inflection point� is

�k − � = vF�k� +
k�

3

k1
2 � . �5�

However, if the inflection point lies on a symmetry axis, then
only even powers in k� may occur and

�k − � = vF�k� +
k�

4

k2
3 � . �6�

Here k1 and k2 are coefficients expected in general to be
�kF.

The fermions interact. We assume that the T→0, long-
wavelength properties are described by the Fermi liquid
theory, so that at low energies the interactions may be pa-
rametrized by the fully reducible Fermi surface to Fermi sur-
face scattering amplitude 
�,�,
��k , p ;k , p�. Note that in this
scattering amplitude the frequencies are set to zero first and
then the momenta are taken to the Fermi surface. For par-
ticles near the Fermi surface, �k�, �p��kF, and 
 depends on
the angle � between k and p, on the band indices a �for k�
and b �for p�, and on the spin indices. Backscattering corre-
sponds to �=�. It is often useful to decompose 
�,�;
,�

ab ���
into charge and spin components


�,�;
,�
ab ��� = 
ab,c��
��� + 
ab,s��
���. �7�

It is also instructive to make contact with second-order
perturbation theory for a model in which the particles are
subject to a spin-independent interaction

Hint = 	
q

U�q��q�−q, �8�

with charge density operator

�q = 	
p�

cp+q,�
† cp,�. �9�

The leading perturbative result is then


c = U�0� −
U�2kF�

2
, 
s = −

U�2kF�
2

. �10�

If the interaction is local and only one band is relevant—
i.e., U�q�=U—then 
c=−
s=U /2 and


�,�;
,�
ab ��� = U���
��� − �����
� . �11�

Below we also introduce the nonantisymmetrized vertex

�,�,
,�

abcd �q�, for which we also do not assume a priori that the
pairs of fermionic momenta have the same band indices. For
the case of Eq. �11�, 
�,�,
,�

abcd �q�=U��
���.

III. PHYSICAL ORIGIN OF NONANALYTICITIES: ROLE
OF CURVATURE

Previous studies of the isotropic case demonstrated2,5 that
the nonanalyticities in the specific heat and spin susceptibil-
ity arise from the long-spatial-range dynamical correlations
characteristic of Fermi liquids. These are of two types. One
involves slow �����vFq� long-wavelength fluctuations and
is expressed mathematically in terms of the long-wavelength
limit of the polarizibility, ��LW
 limq→0��q ,��−��q ,0�

FIG. 1. Fermi surface of Sr2RuO4 computed from tight-binding
parameters deduced from quantum oscillation measurements �Ref.
3�, with a few “parallel tangents” points indicated by letters A, B, C,
and D and the Brillouin zone points M = �� ,0� and X= �� ,�� also
noted.
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���� /q. The 1/q behavior of polarizibility gives rise to a
long-range correlation between fermions which decays as
��� /r at distances 1�rkF�EF / ���. The other involves pro-
cesses with momentum transfer q�2kF and is expressed
mathematically in terms of the polarizibility ��
��q ,��
−��2kF ,���� /�2kF−q �for ����2kF−q�. The 1/�2kF−q
behavior of �� gives rise to an oscillation with a slowly
decaying envelope, cos�2kFr−� /4���� /�r, again at distances
1�rkF�EF / ��� and again leading to singular behavior. We
now compute these processes in the multiband model defined
above and then show how they affect thermodynamic vari-
ables.

Consider the long-wavelength process first. The nonana-
lyticity comes from a particle-hole pair excitation in which
both particle and hole are in the same band and have mo-
menta in the vicinity of Fermi surface points sa

* satisfying
v�F�sa

*� ·q� =0. Choosing one of these points as the origin of
coordinates and expanding near it, we have

��sa
*

aa 
 �sa
*

aa�q,�� − �sa
*

aa�q,0�

= T	
n
� dk�dk�

�2��2

1

i�n − vF�sa
*��k� +

�k� − q/2�2

2k0�sa
*� �

� 
 1

i�n + i�n − vF�sa
*��k� +

�k� + q/2�2

2k0�sa
*� �

−
1

i�n − vF�sa
*��k� +

�k� + q/2�2

2k0�sa
*� �� . �12�

Performing the integral over k� and the Matsubara sum as
usual yields

��sa
*

aa =� dk�

2�

1

2�vF�sa
*�

i�

i� −
vF�sa

*�k�q

k0�sa
*�

. �13�

We see that for the part of �� which is even in � the integral
is indeed dominated by k���k0�sa

*� /vF�sa
*�, so the approxi-

mation of expanding near this point is justified. Integrating
over k� and summing over all Fermi points sa

* satisfying
v�F�sa

*� ·q� =0 we obtain the nonanalytic long-wavelength con-
tribution with the coefficient determined by the local Fermi
velocity and local curvature:

��LW
aa �q,�� =

���
q �	

sa
*

k0�sa
*�

4�vF
2�sa

*�� . �14�

For a circular Fermi surface, two points satisfy v�F�sa
*� ·q� =0,

k0=kF, and Eq. �14� reduces to the familiar result
kF��� / �2�vF

2q�. If the curvature vanishes, then use of Eq. �5�
or �6� in Eq. �12� yields a ��LW��� /q�1/2,1/3, respectively.

We next consider the “2kF” process. Here the situation is
a little different. The singularities in general come from pro-
cesses connecting two Fermi points with parallel tangents—
for example the points A ,B, or A ,C, shown in Fig. 1. The
importance of parallel tangents points has been noted in
other contexts; see Ref. 8. For a given vector q we denote as
Q the closest vector which is parallel to q and connects two
“parallel tangents” points. Symmetry ensures that the leading
dependence of ��Q

ab�q̃ ,��=�ab�Q+ q̃ ,��−�ab�Q ,0� in-
volves only the component q̃� = �q−Q� ·Q / �Q�. Labeling the
initial and final of the two Fermi points connected by Q as
s1,2 and noting that for systems with inversion symmetry the
points come in pairs symmetric under interchange of the
band indices we have

��Q
ab�q̃,�� = T	

n
� dk�dk�

�2��2

1

i�n − vF�s1��k� +
k�

2

2k0�s1�
�
 1

i�n + i�n − vF�s2��k� + q̃� +
k�

2

2k0�s2�
� −

1

i�n − vF�s2��k� +
k�

2

2k0�s2�
��

+ �1 ↔ 2� . �15�

Here the sign of vF and k0 becomes important. For two points “on the same side” of the Fermi surface �e.g., points A and B
in Fig. 1� the two velocities and the two curvatures have the same sign �a change of k� either increases or decreases both
energies�, the integrations proceed as in the analysis of Eq. �12�, and the different position of the q means that to the order of
interest there is no singular nonanalytical term. On the other hand, if the two velocities have opposite sign �e.g., points A, C
in Fig. 1�, then after integrating over k� and k� we obtain �for ��0�

��Q
ab�q̃,�� =

�kavg

�4vF1vF2�
T 	

�n�0 or �n�−�

sgn��n�

�2i�n

vavg
+

i�

vF2
− q̃�

+ �1 ↔ 2� . �16�

Here vF1=vF�s1�, vF2=vF�s2�, and
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1

kavg
=

1

2
� 1

k0�s1�
+

1

k0�s2�
� , �17�

1

vavg
=

1

2
� 1

�vF1�
+

1

�vF2�� . �18�

Completing the evaluation yields

��Q
ab�q̃,�� =

�kavg

4���vF1� + �vF2��

���q̃� +
i�

�vF1�
+�q̃� −

i�

�vF1�
+ 1 ↔ 2� .

�19�

The singular ��� /�q̃ behavior of the dynamic ��Q
ab�q̃ ,��

only holds when q̃� �0 and is obtained by expanding Eq.
�19� in � / q̃�. On the contrary, the singular behavior of the
static �Q

ab�q̃ ,����q̃� holds at q̃� �0. The dynamic part of
��Q

ab�q̃ ,�� behaves as �2 / �q̃��3/2 at q̃� �0.

IV. SPECIFIC HEAT

This section treats the nonanalyticity in the specific heat.
The Galilean-invariant case studied previously is simple
enough that the corrections can be evaluated, with no ap-
proximations beyond the usual ones of Fermi liquid theory;
see Ref. 2. The evaluation confirms that in two dimensions
the nonanalytical contributions to the specific heat involve
only the backscattering amplitude 
���. �In work prior to
that reported in Ref. 2 this conclusion was reached by ap-
proximate calculations in which it was assumed that the
nonanalytical contributions were governed by the back-
scattering amplitude only, and then the assumption was
shown a fortiori to be consistent.� In the non-Galilean-
invariant case of interest here, a complete analysis along the
lines of Ref. 2 is not possible. We will follow earlier work
and assume that the effects arise only from backscattering
processes and then show that the assumption is self-
consistent. We specialize for ease of writing to a momentum-
independent vertex 
abcd, but keep the band indices. For a
two-dimensional system the diagram which gives the
nonanalytic term in the thermodynamic potential � is shown
in Fig. 2. We may write the resulting diagram schematically
as

� = −
1

2 	
abcd

� �dqd���
abcd�2�ab�q,���cd�q,�� .

�20�

Now, singularities leading to nonanalytical terms may arise
for q→0, in which case we must consider only the intraband
contribution to �, and q→Q, where Q is one of the parallel
tangents vectors mentioned in the previous section, in which
case the band indices of polarizabilities may be different. Let
us consider first the small-q singularities. We have

�LW = −
1

2	
ab
� �dqd���
aabb�2�LW

aa �q,���LW
bb �q,�� .

�21�

Substituting, from Eq. �14�, ��LW
ii �q ,�� instead of

�LW
ii �q ,�� �i=a ,b� and assuming that for any given q two

points sa
* satisfy vF�sa

*�q=0 and that the velocities at these
two points have equal values vF�sa

*�=vF
a���, we obtain

�LW = −
1

2
T	

�
� qdqd�

�2��2

�	
ab

�
aabb�2�2

q2

k0
a���k0

b���
�2��2�vF

a����2�vF
b����2 . �22�

The integral over q is logarithmic and is cut by �; the ana-
lytical continuation and integral of frequencies may then be
performed and we obtain

��C

T
�

LW
= −

3��3�
4�3 T	

ab
� d�

2�

�
aabb�2k0
a���k0

b���
�vF

a����2�vF
b����2 .

�23�

We now turn to the parallel tangents part of the calcula-
tion, finding �q=Q+ q̃�

Γ Γ

k

p

p

p-q

k+q

FIG. 2. One of the two second-order diagrams for the free en-
ergy, which give the nonanalytic contribution to the specific heat
�from Ref. 2�. Here 
 is the �unsymmetrized� fully renormalized
Fermi surface to Fermi surface scattering amplitude.
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�Q = −
1

2	
ab
� �dq̃d���
abba�2�Q

ab�Q + q̃,���ba�Q + q,�� .

�24�

Note that the symmetry of the vertex means that �
abba�2

= �
aabb�2. Again substituting ��Q�q̃ ,�� instead of �ab�Q
+ q̃ ,�� and evaluating the integrals explicitly we find9 that to
obtain the nonanalytical behavior it is sufficient to expand
��Q�q̃ ,�� for ���� q̃. Using dq�= �k0

a���+k0
b����d�, we ob-

tain

�Q = −
1

2	
ab

�
abba�2T	
�
� dq̃�d�

�2��2

�2

�2��2�vF
a����2�vF

b����2

�
kavg����k0

a��� + k0
b����

�q̃��
. �25�

Now noting that kavg���=k0
a���k0

b��� / �k0
a���+k0

b����, we see
that �Q and �LW give identical contributions despite the ap-
parently different kinematics. Adding the two contributions,
we obtain

�C

T
= −

3��3�
2�3 T	

ab
� d�

2�

�
aabb�2k0
a���k0

b���
�vF

a����2�vF
b����2 . �26�

Note that the integrals over the Fermi surface contain k0
a���

=k0
b��� rather than the product of two k0 factors at different

points along the Fermi surface �same for the Fermi veloci-
ties�. This is a direct consequence of the fact that only back-
scattering contributes to Eqs. �40� and �41�. For a one-band
model with an isotropic Fermi surface, Eq. �26� reduces to
the result in Ref. 5. For a generic interaction, the calculation
goes through as before with 
aabb replaced the components
of the fully renormalized, symmetrized Fermi surface to
Fermi surface backscattering amplitude so that

�C

T
= −

3��3�
2�3 T	

ab
� d�

2�

�
ab,c���2 + 3
ab,s���2�k0
a���k0

b���
�vF

a����2�vF
b����2 .

�27�

V. SUSCEPTIBILITY

A. Overview

This section presents calculations of the nonanalytical
momentum and temperature dependence of the spin suscep-
tibility of a two-dimensional non-Galilean-invariant Fermi
liquid system with a Fermi surface without inflection points.
In contrast to the specific heat, there are two classes of con-
tributions to the nonanalyticities in the susceptibility.6 One is
of second order in the fullly renormalized interaction ampli-
tudes, involves only the backscattering, and is treated here.
The other, which we do not study here, is of third and higher
orders and involves averages of the interaction function over
a wide range of angles �analogously to similar contributions
to the specific heat of a three-dimensional Fermi liquid2�.
The former process is dominant at weak coupling and in-
volves an integral of the square of the curvature over the

Fermi arc. The latter process has a less singular dependence
on the curvature.

Even to the order at which we work, many diagrams con-
tribute �see Fig. 3�; we evaluate one in detail to illustrate the
basic ideas behind the calculation and then simply present
the result for the sum of all diagrams. Consider for definite-
ness the “vertex correction” diagram—diagram 3 in Fig. 3.
The analytical expression corresponding to this diagram is
�we use a condensed notation in which �dk� stands for an
integral over momentum, normalized by �2��2, and a sum
over the corresponding Matsubara frequency�

���q,0� = − 4	
ab
� �dk��dl�Ga�k + q�Ga�k��k

ab�l�Ga�k + l

+ q�Ga�k + l� �28�

and � is the product of the interaction vertices and internal
polarization bubble:

�k
ab�l� =� �dp��
aabb����2Gb�p + l/2�Gb�p − l/2� , �29�

where � is the angle between k and p, and we have used the
fact that k and p are near the Fermi surface. A complete
calculation in the Galilean-invariant case shows that, just as
for the specific heat, the nonanalytical momentum depen-
dence of the susceptibility arises from the regions of small l
and l�2kF. We consider these in turn.

FIG. 3. Relevant second-order diagrams for the spin and charge
susceptibilities �ferm Ref. 5�. The last two diagrams are nonzero
only for the charge susceptibility.
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B. Small l

Here we choose a particular point k on the Fermi surface
and integrate over �k and the corresponding frequency. We
parametrize the position on the Fermi surface by the angle �
between vk and q and use Eq. �4�. We adopt coordinates l�

and l� denoting directions parallel and perpendicular to
vF

a�k�=vF
a��k�v̂k and obtain

��LW�q� = −
4

2�
	
ab
� d�kk0

a

2��vF
a�2 � dl�dl�

�2��2 T

�	
�n

i�n

�vF
a · q�2�k

ab�l�,l�,�n�
 1

i�n

vF
a − v̂k · q − l�

+
1

i�n

vF
a + v̂k · q − l�

−
2

i�n

vF
a − v̂k · q − l�� , �30�

where we define k0
a=k0

a��k� and vF
a =vF

a��k�. We may similarly
evaluate �, proceeding from Eq. �29�. Choosing as origin the

point p=−k, defining coordinates p� and p� antiparallel and
perpendicular to vk, and integrating over p� and the corre-
sponding loop frequency gives

�k
ab�l�,l�,�� =


aabb���2

2��vF
b�2 � dp�

2�

i�

i�n

vF
b + l� −

p�l�

k0
b

. �31�

Viewed as a function of l� the second line in Eq. �30�
decays rapidly ��l�

3� at large l� and has poles only in the half
plane sgn Iml� =sgn �n. Evaluation of the l� integral by con-
tour methods �closing the contour in the half plane sgn l� =
−sgn �n� shows that nonanalyticities can only arise from sin-
gularities of �. Reference to Eq. �31� shows that these can
only arise from momenta p satisfying vp ·vk�0. In the
Galilean-invariant case the integral could be evaluated ex-
actly; the resulting nonanalytical terms were found to be de-
termined by a very small region around p=−k—i.e., around
�=� in Eq. �29�. Here we assume that this is the case and
show a fortiori that the assumption is consistent.

Performing the integral over l� yields

��LW�q� = − 4i	
ab

�
aabb����2

�2��2 � d�kk0
a

2��vF
avF

b�2T	
�n

� dl�dp�

�2��2 � �n

vF
a · q

�2

sgn �

�
 1

2i�n

vavg
− v̂k · q −

l�p�

k0
b

+
1

2i�n

vavg
+ v̂k · q −

l�p�

k0
b

−
2

2i�n

vavg
−

l�p�

k0
b � , �32�

with vavg defined in Eq. �18�. Performing the sum over frequency and rescaling each of l� , p� by �k0
b yields

��LW�q� = − 	
ab

�
aabb����2

8�3 � d�kk0
ak0

b

2��vF
avF

b�2�
−�

� dl�dp�

2�2��2 � vavg
3

�vF
a�2 +

vavg
3

�vF
b�2�

�
��l�,p�; v̂ · q� + ��l�,p�;− v̂ · q� − 2��l�,p�;0�

�v̂k · q�2 + ¯ , �33�

with

��x,y ;z� = �xy − z�2 ln�xy − z� . �34�

Equation �33� is based on an expansion for small l� , p�.
The integrals over these quantities are cut off by other phys-
ics above a cutoff scale � which we have written as a hard
cutoff. The ellipsis denotes other terms arising from physics
at and beyond the cutoff scale, which lead to additional,
regular contributions to �� involving positive, even powers
of q. Evaluation of Eq. �33� yields �details are given in Ap-
pendix A�

��LW�q� = − 	
ab

�
aabb����2�q�
96�3 � d�kk0

ak0
b

2��vF
a�2�vF

b�2� vavg
3

�vF
a�2

+
vavg

3

�vF
b�2��v̂k · q̂� + ¯ , �35�

where vk=vF��k�, k0=k0��k�, v̂k · q̂=cos��k−�q�, and �q is the
angle between the direction of q and the direction of �=0;
the ellipsis again denotes analytical terms. We see that the
nonanalytical term is explicitly independent of the cutoff,
confirming the consistency of our analysis. An alternative
evaluation of ��LW�q� is presented in Appendix B.
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For a circular Fermi surface, k0=kF, vF is a constant, and
Eq. �35� reduces to the previously known result.5 However,
the previously published computations �Ref. 5� are arranged
in a way which apparently does not invoke the curvature at
all. In Appendix C we show that the previous method �Ref.
5� does in fact involve the curvature and leads to results
equivalent to those presented here.

C. 2kF processes

To evaluate the contribution of 2kF processes we could

proceed from Eq. �28� but expanding ��l� in l̃= l−Q, where
we define Q=2kFq̂. As before the products of G produce an
expression with all poles in the same half plane. Exploiting
the nonanalyticity of ��Q+ q̃ ,�� we obtain an expression
which has a nonanalytic part which evaluates to the same
expression as Eq. �35�. Instead of presenting the details of
this calculation, we present an alternative approach due to
Belitz, Kirkpatrick, and Vojta,10 in which one partitions the
diagram into two “triads,” using the explicit form of �k:

���q� = − 4	
ab
� �dl��dk1��dk2�
aabb���2�Ga�k1

+ q�Ga�k1�Ga�k1 + l���Gb�k2 + q�Gb�k2�Gb�k2 + l�� ,

�36�

where � is the angle between k1 and k2. Choosing a particu-
lar point on the Fermi surface and evaluating the integral
over �k1

and the associated frequency yields �l� is the com-
ponent of l parallel to the direction chosen for k1�

�� = − 4� k0��1�d�1

2��vF
a�2 �dl��dk2�T	

�n

�n

�vF
a · q�

�
 1

� i�n

vF
a − l�� −

1

i�n

vF
a − v̂k · q − l���
aabb��1��2�Gb�k2

+ q�Gb�k2�Gb�k2 + l�� . �37�

As in the previous calculation, singular contributions can
only come from regions where k2 is directed oppositely to k1.
Choosing as the origin of k2 the point diametrically opposite
k1, introducing parallel and perpendicular components as be-
fore, and integrating over k2�, the associated frequency, and
over l�, we get

�� = 	
ab

4i� k0
a��1�d�1

2��vF
a�2�vF

b�2


2���
�2��2 T	

�n

� dk�dl�

�2��2

�� �2 sgn �

��vF
a · q��vF

b · q���
 1

2i�n

vavg
− v̂k · q −

l�k�

k0
b

+
1

2i�n

vavg
+ v̂k · q −

l�k�

k0
b

−
2

2i�n

vavg
−

l�k�

k0
b � . �38�

Equation �38� is seen to be of precisely the same form as Eq.

�32� and gives the same result; the only difference is the
dependence on orbital index. Integrating over frequency and
combining the results from small q and 2kF contributions
gives an answer whose orbital dependent part depends on the
velocities via the combination

va�vb�3 + �va�3vb + 2�va�2�vb�2

�va + vb�3 �v̂k · q� = vavgv̂k · q .

�39�

D. Final result

Collecting the small-q and 2kF contributions from all dia-
grams in Fig. 3 and reexpressing the result in terms of the
spin component of backscattering, 
ab,s���, we find, for the
spin susceptibility,

��s�q�

= 	
ab

vavg�q�
6�3 �

0

2� k0
a��k�k0

b��k�d�k

2��vF
a��k��2�vF

b��k��2 �
ab,s����2�v̂k · q̂� .

�40�

At q=0 and T�0, we have

��s�T� = 	
ab

T

�3�
0

2� d�kk0
a��k�k0

b��k�
2��va�2�vb�2 �
ab,s����2. �41�

For an isotropic Fermi surface and one band, this again re-
duces to the result in Ref. 5. To make contact with previous
work, which considered a weak interaction, 
ab,s��� has to
be replaced by −U�2kF� /2. Higher-order powers of 
 do
contribute to �q� and T terms in �s, in distinction to C�T� /T,
and at strong coupling, the nonanalytic terms in the spin
susceptibility are not expressed entirely via 
s

2���.6 the terms
of order 
3 have a less singular dependence on the curvature.
At weak and moderate coupling, though, Eqs. �40� and �41�
should be sufficient. Finally, for the charge susceptibility
�c�q ,T� nonanalytic contributions from individual diagrams
are all canceled out: the full �c�q ,T� is an analytic function
of both arguments.

VI. FERMI SURFACES WITH INFLECTION POINTS

We see from Eqs. �40� and �41� that as long as k0 is finite
all along the Fermi surface, the anisotropy of the Fermi sur-
face affects the prefactors for �q� and T terms, but does not
change the functional forms of the nonanalytic terms in the
specific heat and spin susceptibility. New physics, however,
emerges when the Fermi surface develops inflection points at
which k0��k� diverges. Inflection points are a generic feature
of realistic Fermi surfaces of two-dimensional materials. In
this section we show how inflection points emerge and then
indicate the modifications they make to the results presented
above.

A. Inflection points in commonly occurring models

We first note that many quasi-one-dimensional organic
materials have a band dispersion described by
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Horganic = − 2ta��kx� − kF� − 2t� cos�kyb� , �42�

with �t��� t, lattice constants a ,b not too different, and a
third-dimensional coupling weaker than t� by an order of
magnitude. In this case k0=2t� cos�kyb�+O�t�2 / t� obviously
vanishes at kyb� ±� /2. Thus inflection points are generic to
quasi-one-dimensional materials.

We now consider the fully two-dimensional t-t� model,
with quasiparticle dispersion

�k = − 2t�cos kx + cos ky� + 4t� cos kx cos ky − � . �43�

We assume that t and t� are positive and � is negative; t
should be larger than 2t� for stability.

Consider now the Fermi surface crossing along the
�0,0�→ �� ,0� direction �if it exists�. The crossing occurs at

− �2t − 4t��cos�kx� = � + 2t . �44�

The velocity is along x and the curvature may be read off by
expanding to second order in ky, giving

k0�x̂� =
1

2t − 4t� cos�kx�
, �45�

which is manifestly positive.
On the other hand, at the Fermi surface crossing along the

diagonal kx=ky we find

k0�x̂ + ŷ� =
1

2t cos�kx� − 4t�
, �46�

which is positive at small kx but changes sign as the Fermi
surface approaches the point �� /2 ,� /2�. We therefore con-
clude that for chemical potentials in the appropriate range
inflection points must exist because the curvature has oppo-
site sign at two points on the Fermi surface.

B. Spin susceptibility and specific heat

We now analyze how the inflection points affect the
nonanalytic terms in the spin susceptibility and specific heat.
For simplicity, we restrict to ourselves one-band systems.
Quite generally, near each of the inflection points k0��� be-
haves as

k0��� � �� − �0�−1. �47�

At �=�0, the curvature diverges; i.e., there is no quadratic
term in the expansion of the quasiparticle energy in devia-
tions from the Fermi surface. In the generic case, the disper-
sion is then

�k = vF��0�k� + Ak�
3 , �48�

where, as before, the directions k� and k� are along and
transverse to the direction of the Fermi velocity at �=�0. For
a special situation when �0 coincides with a reflection sym-
metry axis for �k—i.e., when vF��0� is directed along the
Brillouin zone diagonal in t-t� dispersion—the expansion of
�k in the direction transverse to the zone diagonal holds in
even powers of k�; i.e., at �=�0,

�k = vF��0�k� + Bk�
4 . �49�

In both cases, a formal integration over � in Eqs. �40� and
�41� yields divergences. The divergences are indeed artificial
and are cut by either A or B terms in the dispersion. The
effect on ���q ,T� and �C�T� /T can be easily estimated if we
note that the angle integrals diverge as �d�k0

2�����d� / ��
−�0�2. In a generic case, described by Eq. �48�, 1 / ��−�0� has
to be replaced by 1/ ���−�0�+Ak�,typ�. The angle integral
then yields 1/k�,typ. It follows from Eq. �48� that k�,typ
��k�,typ�1/3. It also follows from our consideration above that
typical values of k� are of order �q�. Combining the pieces,
we find that the integral diverges as �q�1/3, or

���q� � 
2����q�2/3. �50�

Similarly, at finite T we obtain

���T� � 
2����T�2/3, �51�

while the specific heat

�C�T�/T � 
2����T�2/3. �52�

For special inflection points along the symmetry direction,
an analogous consideration shows that the angle integral
yields 1 / �k�,typ�2. At the same time, it follows from Eq. �49�
that k�,typ��k�,typ�1/4��q�1/4. Then the angle integral di-
verges as �q�1/2 and

���q� � 
2����q�1/2, �53�

while

���T� � 
2����T�1/2 �54�

and

�C�T�/T � 
2����T�1/2. �55�

The results, Eqs. �50�–�55�, differ from the results by Fratini
and Guinea.7 They obtained ��T��T ln T for a generic in-
flection point and ��T��T3/4 ln T for a special inflection
point. In our calculations, a similar T ln2 T behavior for a
generic case would result if the nonanalytic terms arose from
vertices 
��� with arbitrary � rather than �=�. Then, e.g.,
the coefficient for the �q� term in the spin susceptibility
would be given by a double integral
�d�1�k0��1���d�2�k0��2��. Each integral diverges logarithmi-
cally, and the correction would then scale as T ln2 T. The
emergence of the anomalous power of temperature or mo-
menta for a generic inflection point in our calculations is the
direct consequence of the one-dimensionality of the relevant
interaction. We see therefore that the anisotropy of the Fermi
surface is an ideal tool to probe the fundamental 1D nature of
the nonanalyticities in a Fermi liquid.

VII. APPLICATION TO Sr2RuO4

A crucial and so far unresolved question related to the
results reported here and in previous papers is the observabil-
ity of the effects. Evidence for the T3 ln T nonanalyticities
expected in three-dimensional materials has been observed in
the specific heat of 3He �Ref. 11� �indeed this observation
played a crucial role in stimulating the theoretical literature�
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and similar effects have been noted in the specific heat of the
heavy fermion material UPt3 �Ref. 12�. More recently, a
linear-in-T behavior has been observed in the specific heat of
fluid monolayers of 3He adsorbed on graphite,13 but to our
knowledge no evidence for nonanalytic terms in the suscep-
tibility has been reported.

We consider here Sr2RuO4, a highly anisotropic layered
compound for which detailed information about the shape of
the Fermi surface, the quasiparticle mass enhancements, the
susceptibility, and optical conductivity is available.3,14,15

These data imply3 that the material is “strongly correlated” in
the sense that Fermi velocities and susceptibilities are sub-
stantially renormalized from the predictions of band theory.
The data also suggest that the dynamical self-energy is at
most weakly momentum dependent, because the shapes of
the Fermi surface deviate only slightly from those found in
band structure calculations, implying that the self-energy has
a much stronger frequency dependence than momentum de-
pendence. We extract the Fermi surface shape and Fermi
velocities from quantum oscillation data3 and cross-check
with photoemission data where available. We use available
susceptibility3 and optical data15 to estimate the interaction
functions.

It is also useful to consider the leading low-T behavior of
the specific heat coefficient, which in a Fermi liquid is given
in terms of fundamental constants and a sum over bands of
the average of the inverse of the Fermi velocity as

C

T
=

2�2

3 	
�

I�, �56�

with

I� = � d�

4�2

kF,�����1 + � dkF���
kF���d�

�2

�vF,�����
. �57�

For Galilean-invariant fermions, it is customary to use the
relation �we use units where �=1� vF=kF /m to define a band
mass

m� = 2�I�, �58�

so C /T= �� /3�	�m�. To obtain the specific heat in conven-
tional units �mJ/mol K2� one must multiply by kB

2 and by the
Avogardo number.

We begin with the results for the Fermi surface shape and
Fermi velocities. In Sr2RuO4, the relevant electrons are the
three t2g symmetry Ru d orbitals and there are accordingly
three bands at the Fermi surface, conventionally labeled as
� ,� ,
. The Fermi surface shape, shown in Fig. 1 is well
described by the two-dimensional tight binding model

�
�kx,ky� = − 2t1
�cos�kx� + cos�ky�� − 4t2
�cos�kx�cos�ky��

− �0
, �59�

��,� = − �t1� + t2���cos�kx� + cos�ky�� − �0xz

± ��t1� − t2���cos�kx� − cos�ky��2 + 16t3�
2 sin �kx�2 sin �ky�2

�60�

�couplings in the third dimension are an order of magnitude
smaller�.

A detailed quantum oscillation study has been performed
by Bergemann and collaborators.3 These authors present in
Table 4 of their work a tight-binding parametrization which
reproduces the shape of the Fermi surface. They also present
results for the mass enhancements in each Fermi surface
sheet, which may be converted into experimental estimates
for I�. The shape, of course, does not depend on the magni-
tudes of the tight-binding parameters. We accordingly rescale
these in order to obtain velocities �more precisely, integrals
I�� corresponding to the data reported by Bergemann et al.3

�see Table I�.
A few remarks about the velocities and masses are in

order. First, the calculated 
-band properties depend very
sensitively on how close the 
 �xy�-derived band approaches
the van Hove points �� ,0�, �0,��. Published band
calculations16–18 show wide variations in the position of the
the singularity relative to the Fermi level. Second, the mass
derived from the specific heat involves both the velocity and
the geometrical properties of the Fermi surface. The mass for
the � band is small because of its small size, even though its
velocity is relatively small. Third, and most important, the
curvature of the � ,� bands depends very sensitively on the
parameters t2� , t3�; the velocities also depend somewhat on
these parameters. A recent angle-resolved photoemission
experiment14 reports that the � band Fermi velocity at the
zone face crossing point is v�=1.02 eV Å; the parametriza-
tion used here gives an essentially identical value.

We now turn to the Landau interaction function. A com-
plete experimental determination is not available, but consid-
erable partial information exists. Bergemann and
co-workers3 have determined, for each band, the spin polar-
ization induced by a uniform external magnetic field, so the “
L=0” spin channel Landau parameters may be estimated.
Optical conductivity data15 provide some information on the
L=1 spin-symmetric channel current response. General argu-
ments suggest that the charge compressibility is only weakly
renormalized in correlated oxide materials, allowing a rough

TABLE I. Tight-binding band parameters �in eV� which repro-
duce the shape and, approximately, the Fermi velocities of the three
bands at the Fermi surface of Sr2RuO4. Parameters are taken from
Table 4 of Ref. 3. and then renormalized to produce sheet-
dependent quasiparticle mass enhancements approximately consis-
tent with experiment. Last column: mass parameter computed using
Eqs. �57� and �60�.

Band �0 t1 t2 t3
m�

me

� 0.13 0.13 0.013 0.02 2.5

� 0.16 0.15 0.013 0.02 5.8


 0.012 0.079 0.032 0 16
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estimate of the L=0 charge channel interaction. We will use
this information to estimate the scattering amplitudes and
hence the nonanalytic terms in the susceptibilities. These es-
timates are certainly subject to large uncertainties, but give a
reasonable idea of the magnitude of the effects.

In the three-band material of present interest the interac-
tion function is a symmetric 3�3 matrix with components

a,b labeled by orbital or band indices, which should then be
decomposed into charge �symmetric� and spin �antisymm-
metric� components and into the angular harmonics appro-
priate to the tetragonal symmmetry of the material. We begin
with the isotropic L=0 spin channel. We assume �consistent
with the usual practice in transition metal oxides� that the
deviations from O�3� symmetry, while crucial for electronic
properties such as the band structure and conductivity, are
not crucial for the local interactions, which arise from the
physics of the spatially well localized d electrons. This im-
plies that the interactions are invariant under permutations of
orbitals, so that it is reasonable to assume that the two-
particle irreducible spin channel interaction takes the simple
Slater-Kanamori form with two parameters, which we write
as 
a,a
Uef f and 
a�b
Jef f. Thus the physical static sus-
ceptibilities are given by

� = ��0
−1 + 
�Uef f,Jef f��−1 �61�

and fix the parameters Uef f and Jef f by comparing measured
susceptibilities to the values predicted by the renormalized
tight-binding parameters.

Reference 3 presents �as mass enhancements� data for the
spin susceptibility of each band �obtained from the spin split-
ting of the Fermi surfaces�, finding ��,� /�0

�,��1.2,
��,� /�0

�,��1.3 and �
,
 /�0

,
�1.6. We estimate Uef f

�0.033 and Jef f =−0.008, where �0 is the susceptibility im-
plied by the Fermi surface and mass determined by the quan-
tum oscillation measurements. This implies that the dimen-
sionless Landau interaction parameters �in the limit � /k
→0� Aab

ab��a�b,

Aspin = 
− 0.053 0.040 0.10

0.04 − 0.13 0.17

0.10 0.17 − 0.40
� . �62�

The uncertainties in the off-diagonal components are
large, perhaps 50%, but because the interactions enter
squared, the contribution of the off-diagonal components is
not very significant. The dominant term is the 
-
 band in-
teraction, as expected because it has the largest mass and the
largest susceptibility enhancement, but that all of the other
contributions taken together make a non-negligible contribu-
tion to the interaction. Finally, we note that the spin channel
renormalizations are not large, so use of the second-order
result is not unreasonable.

We now turn to the charge channel, beginning with the
compressibility. There is no experimental information avail-
able. However, it is generally believed that for systems, such
as transition-metal oxides, with strong local interactions the
total charge susceptibility is not strongly renormalized, so
that the Landau parameter acts to undo the effects of the
mass enhancement. Further, if the J �orbital nondiagonal�

component of the interaction is not too small relative to the
U �orbital diagonal component�, then a residual interaction
acts to shift the levels such that the ratio of occupancies of
each of the three t2g orbitals remains constant under chemical
potential shifts. Taking as unrenormalized value the suscep-
tibilities folllowing from the tight-binding parameters given
in Ref. 3 we then obtain

AS,0 = − 
 0.40 0.034 0.026

0.034 0.8 0.026

0.026 0.026 0.80
� , �63�

with again considerable uncertainty in the off diagonal com-
ponents.

Finally, we turn to the current renormalization. The opti-
cal conductivity is commonly presented in the extended
Drude form

���� =

e2

�c
Dband

− i�
m*���

m
+ 
���

, �64�

where c is the mean interplane spacing and m* /m has the
meaning of an optical mass enhancement defined with re-
spect to a reference value determined by Dband. In a Fermi
liquid at low temperatures, 
��→0� is very small and �as-
suming tetragonal symmetry�

Dband
m

m*�0�

 D

= 	
�
� d�

4�2kF,�����1 + � dkF���
kF���d�

�2

�vF,�����

��1 +
F�

1S

2
� . �65�

Note that the numerical value of the mass enhancement
m* /m0 depends on the choice of reference value Dband but
that D is a physically meaningful quantity determined di-
rectly from the data.

The room-temperature conductivity of Sr2RuO4 has been
measured.15 These authors chose the value e2Dband /�c
�which they denote as �p

2 /4�� to correspond to �p
2 �8

�108 cm−2 and find m* /m��→0� �which they denote as ��
to be �3.5. This implies that D�0.13 eV, somewhat smaller
than the value 0.18 obtained from Eq. �65�, implying that the
average over all bands is F1S�−0.55. The temperature de-
pendence of D in Sr2RuO4 has not been measured, but it
seems reasonable that D should decrease as T decreases, im-
plying a further increase in the magnitude of F1S. Determin-
ing the temperature dependence of the optical mass is there-
fore an important issue.

Reference 3 presents, as masses, data for the cyclotron
resonance frequencies for the different Fermi surface sheets.
These masses should be essentially equivalent to the D val-
ues quoted above. Bergemann et al. emphasize that the fre-
quencies are subject to large errors and that the results should
be regarded as tentative. The quoted cyclotron masses corre-
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spond to D values about a factor of 2 larger than those im-
plied by the measured Fermi velocities and about a factor of
3 larger than the values inferred from the optical data. In
view of the stated large uncertainties in the measurement and
the qualitative incosistency with the optical data, we disre-
gard the cyclotron resonance measurements here.

Now, the crucial object for the specific heat is the back-
scattering amplitude. A negative F1S implies a positive back-
scattering amplitude, so as a rough approximation to the ef-
fects of the current channel Landau renormalization we add
the interaction corresponding to F1S=−0.6 to the diagonal
components of Eq. �63�.

The crucial points emerging from this analysis are that the
reducible interactions in the charge channel are of order
unity, whereas those in the spin channel are somewhat
smaller, implying a larger nonanalyticity in the specific heat
than in the susceptibility. Substituting the interaction ampli-
tudes into Eqs. �27� and �41� and performing the Fermi sur-
face averages then yields the following estimates:


�T� = 36 mJ/�mol K2��1 − 0.0015T �K�� , �66�

��T��Si/volume� = 1.5 � 10−4�1 − 0.00001T �K�� .

�67�

The small magnitude of the corrections �especially to the
spin susceptibiltiy� follows from the small prefactors in Eq.
�41� and the not too large Landau renormalizations. The size
of the effect is increased by the relatively small curvatures of
the � and, especially, � bands, and we note that substantial
increases in the coefficients occur if the mixing coefficients
t2� , t3� in Eq. �60� are reduced. We expect the results to be
valid above a �still not well determined� scale probably
�1–2 K at which the Fermi surface warping becomes im-
portant enough to make the material three dimensional, and
below the scale at which Fermi liquid theory breaks down,
and we see that temperatures of order 10 K lead to 20%
deviations in the value of the specific heat coefficient and to
1% changes in �.

Replacing Sr by Ca leads to a dramatic �factor of �100 in
Sr0.5Ca1.5RuO4� enhancement of the susceptibility. It seems
likely that this increase is not due to a decrease in the Fermi
velocities, but must be interpeted as a dramatic increase in
the spin Landau parameter, suggesting perhaps that the
nonanalytic T dependence of � might be more easily ob-
served in Ca-doped materials, although in this case disorder
effects would need to be considered.

VIII. CONCLUSIONS

In this paper, we studied nonanalytic terms in the spin
susceptibility and specific heat in 2D systems with aniso-
tropic, noncircular Fermi surfaces. For systems with circular
Fermi surfaces, the nonanalytic terms in �s�q ,T� and C�T� /T
are linear in max�q ,T�. We argued that the anisotropy of the
Fermi surface serves as a testing ground to verify the theo-
retical prediction that the nonanalytic terms originate from a
single 1D scattering amplitude which combines two 1D in-
teraction processes for particles at the Fermi surface in which

the transferred momenta are either 0 or 2kF and, simulta-
neously, the total moment is zero. We obtained explicit ex-
pressions for the nonanalytic momentum and temperature de-
pendences of the spin susceptibility and the specific heat in
systems with noncircular Fermi surfaces and demonstrated
that for the Fermi surfaces with inflection points, the nonana-
lytic temperature and momentum dependences are �s
�max�q2/3 ,T2/3� and C�T� /T�T2/3, in a generic case, and as
�s�max�q1/2 ,T1/2� and C�T� /T�T1/2 for the special cases
when the inflection points are located along symmetry axis
for the quasiparticle dispersion. We estimated the order of
magnitude of the effects in the quasi-two-dimensional mate-
rial Sr2RuO4.
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APPENDIX A: THE DETAILS OF THE EVALUATION OF
EQ. (35)

For simplicity, we neglect band index; i.e., set vk
a=vk

b

=vk and k0
a�k�=k0

b�k�=k0�k�. Using Eq. �34�, Eq. �33� is re-
expressed as

��LW�q� = −

2���
64�5 � d�kk0�k�

2�vk
3 �

−�

� �
−�

� dxdy

�2 ��xy

− ��2 ln �xy − ��2 + �xy + ��2 ln �xy + ��2

− 2x2y2 ln x2y2� , �A1�

where �= �vk ·q�k0�k� /vk. Rescaling x=����x̄, y=����ȳ, sub-
stituting into Eq. �A1�, and dropping irrelevant terms con-
fined to high energies, we obtain

��LW�q� = −

2���
64�5 � d�kk0�k����

2�vk
3 Z , �A2�

where

Z = �
−�

� �
−�

�

dx̄dȳ��x̄ȳ − ��2 ln �x̄ȳ − ��2 + �x̄ȳ + ��2 ln �x̄ȳ

+ ��2 − 2�x̄ȳ�2 ln �x̄ȳ�2� . �A3�

Introducing further x̄=�2r cos � /2 and ȳ=�2r sin � /2, we
rewrite Z as

Z = 2�
0

�

d �
0

�

dr��r sin � − 1�2 ln �r sin � − 1�2 + �r sin �

+ 1�2 ln �r sin � − 1�2 − 2r2 sin2 � ln r2 sin2 �� . �A4�

Subtracting the irrelevant large r contribution 6
+ln r2 sin2 � from the integrand in Eq. �A4�, we the univer-
sal part of Z in the form
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Z = 2�
0

�

d �
0

�

dr�r2 sin2 � ln�1 −
1

r2 sin2 �
�2

+ 2r sin � ln
 1 +
1

r sin �

1 −
1

r sin �
�

2

− 6 + ln
�r2 sin2 � − 1�2

r4 sin4 � � .

�A5�

One can make sure that the integral over r vanishes if we set
the upper limit at �=	. As the integrant depends on r only
via r sin �, the finite contribution to the integral comes from
� sin �=O�1�—i.e., from a narrow range of � either near
zero or near �. The contributions from these two regions are
equal. Resticting with the contribution from small �, ex-
panding sin ���, and introducing z=r� and t=��, we ob-
tain, from Eq. �A5�,

Z = 4�
0

	 dt

t
�

0

t

dz�z2 ln�1 −
1

z2�2

+ 2z ln
 1 +
1

z

1 −
1

z
�

2

− 6

+ ln� z2 − 1

z2 �2� . �A6�

Changing the order of the integration, we obtain, for the
universal part of Z,

Z = − 4�
0

	

dz ln z�z2 ln�1 −
1

z2�2

+ 2z ln
 1 +
1

z

1 −
1

z
�

2

− 6

+ ln� z2 − 1

z2 �2� =
4�2

3
. �A7�

Substituting this into Eq. �A2� and using the definition of �,
we reproduce �35�.

APPENDIX B: AN ALTERNATIVE EVALUATION OF
��LW„q…

In this appendix we present a complementary evaluation
of ��LW�q� using a somewhat different computational proce-
dure. We again restrict to one band. The point of departure is
Eqs. �28� and �29�, which we rewrite at T=0 as

��LW�q� = − 4� � � � d2kd2qd�d�

�2��6

�
2��l,��G0�k,��G0�k + l,� + ��G0�k + q

+ l,� + ��G0�k + q,�� . �B1�

We first integrate over internal momenta k and frequency
� in the fermionic propagator. Expanding the result in q2, we
obtain

��LW�q� � 
2q2�
0

	

d��� d2l� d�1

�
k0��1�
vF��1�

1

�i� − vFl cos �1�5��l,�� , �B2�

where �1 is the angle between l and k. Directing lx and ly
along and transverse to k and substituting the polarization
operator we obtain

��LW�q� � 
2q2�
0

	

d��m
2 � dlx� d�1

�
k0��1�
vF��1�

1

�i� − vF��1�lx�5 � dly� d�

�
k0��1 + ��
vF��1 + ��

1

i� − vF��1 + ���lx cos � + ly sin ��
�B3�

�� is the angle between two internal momenta p and k�. We
now integrate over ly and then over �. The full result for this
2D integral depends on particular forms of k0��� and vF���.
However, we only need from the integral over dlyd� the term
which is nonanalytic in the lower half-plane of lx �this will
allow us to avoid a degenerate pole at vFlx= i��. One can
easily verify that the nonanalyticity comes from the integra-
tion near �=� which yields, instead of the second line in Eq.
�B3�,

i
k0��1 − ��

2vF
2��1 − ��

ln�i� + vF��1 − ��lx� . �B4�

For the Fermi surfaces with inversion symmetry �which we
will only consider� k0��1−��=k0��1� and vF��1−��=vF��1�
�we recall that vF��� is the modulus of the Fermi velocity at
a particular ��. Substituting this result into �B3� and extend-
ing the integral over lx onto the lower half plane, we obtain
Eq. �35�.

We also verified that the same result could be obtained by
evaluating the singular part of ��l ,�� by explicitly expand-
ing near p=−k and expanding the dispersion �p=�−k+l to
second order in l. In this computation, one power of k0���
comes from expanding the dispersion, while the other comes
from the Jacobean of the transformation from d2k to d�kd�.

APPENDIX C: REEVALUATION OF ��LW„q… FOR AN
ISOTROPIC FERMI SURFACE

In this appendix, we reconsider a previously published5

evaluation of ��LW�q�. Although this evaluation leads to re-
sults identical to those we presented in the body of the paper
for a circular Fermi surface, it apparently does not invoke the
curvature explicitly. Here we deconstruct this analysis, show-
ing how the curvature actually enters even when Fermi sur-
face is circular.
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We begin with Eq. �B1�. The analysis presented in the
main body of the paper involves choosing a direction for l
and then performing the integral over k, which picked out
points with a definite relationship to l and involved the cur-
vature in a direct way, and finally integrating over l. On the
other hand, the “conventional” analysis involves first fixing
the direction of k, integrating over the magnitude of k and
over q, and then averaging over the direction of k. In this
method one expands �k, �k+l, �k+q, and �k+l+q in Eq. �B1� to
linear order in the deviations from the Fermi surface as �k
=vF�k−kF�, �k+l=�k+vFlx, etc. Because the Green functions
have been linearized, the curvature apparently does not enter,
in contrast to the previous derivation, where the dependence
of the Green function lines on curvature was essential.

Integrating over k and over the corresponding Matsubara
frequency and expanding the result in powers of q, we obtain
at T=0, neglecting regular terms,

��LW�q� � 
2q2�
0

	

d��� dlx
1

�i� − vFlx�5 � dly��l,�� .

�C1�

The key point is that the curvature dependence is hidden in
the polarizibility �, but in the circular Fermi surface limit
this dependence is hidden. To make the curvature depen-
dence manifest we use the fact that only backscattering con-
tributes and evaluate the polarization bubble ��l ,��
=�d2td��G0�t ,���G0�l+ t ,�+��� by expanding near t=−k.
Introducing t+k=p and assuming that p is small, we expand
the dispersions �t=�−kx+p and �t+l=�−kx+p+l to second order in
p:

�t = �−kx+p = − vF�px +
py

2

2k0
�, �t+l = �−kx+p+l = − vF�px + lx

+
�py + ly�2

2k0
� . �C2�

Substituting this expansion into the bubble and integrating
over py we obtain

��l,�� = i
�k0

2�2vF
2 ly

ln
Aly − �i� + vFlx�

− Aly − �i� + vFlx�
, �C3�

where k0A /vF�kF is the upper limit of the integral over py.
Integrating next ��l ,�� over ly, we find the same branch cut
singularity as in the “conventional” approach:

� dly��l,�� =
k0�

�vF
2 ln�i� + vFlx� . �C4�

Substituting this result into Eq. �B1� and using the fact that
d2k in Eq. �B1� can be reexpressed as �k0 /vF�d�kd�, we re-
produce Eq. �35� for a circular Fermi surface and also repro-
duce Eq. �4.18� in Ref. 5�a�, but with k0 /vF instead of m.

For completeness, we also show that ��2kF
�q� in systems

with a circular Fermi surface can also be obtained with and
without the curvature. A “conventional” computation5�a� ex-
presses ��2kF

�q� in terms of the curvature. An alternative
computational scheme involves the same “triad” method that
we used in the main text. In this scheme, the original expan-
sion near 2kF momentum transfer contains the curvature, but
it disappears from the answer at the latest stage. Performing
the same integrations over �k, the corresponding frequency
and ly as in the main text, we find �keeping 
=
����

��2kF
�q� � �k0� d�
2����

vF�q�

	

d��2

�� dlx

�lx − i��2�i� − vF�lx cos � +
k0

2
sin2 ���3/2 .

�C5�

For cos ��0, the two double poles are in different half-
planes of lx. Integrating over lx, we then obtain

��2kF
�q� � �k0�

�/2

�

d�
2����
vF�q�

	

�
d��2

�vFk0

2
sin2 � + i��1 − cos ���5/2 . �C6�

Since relevant ��vF�q�, the � integral is confined to �=�.
Expanding near � we obtain

�
�/2

� d�
2���

�vFk0

2
sin2 � + i��1 − cos ���5/2

� 
2����
0

	 dx

�vFk0

2
x2 − 2i��5/2 = −

U2���
3�2�vFk0

.

�C7�

Substituting this into �C6�, we find that k0 is canceled out and

��2kF�q� � 
2����
vF�q�

EF

d� → 
2����q� . �C8�

Restoring the prefactor, we reproduce the same result as in
the main text, but with mvF instead of k0.
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