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We examine some of the optical properties of a metamaterial consisting of thin layers of alternating metal
and dielectric. We can model this material as a homogeneous effective medium with anisotropic dielectric
permittivity. When the components of this permittivity have different signs, the behavior of the system be-
comes very interesting: the normally evanescent parts of a P-polarized incident field are now transmitted, and
there is a preferred direction of propagation. We show that a slab of this material can form an image with
subwavelength details, at a position which depends on the frequency of light used. The quality of the image is
affected by absorption and by the finite width of the layers; we go beyond the effective-medium approximation
to predict how thin the layers need to be in order to obtain subwavelength resolution.
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I. INTRODUCTION

An anisotropic material in which one of the components
of the dielectric permittivity tensor has a different sign to the
others has interesting properties. It supports the propagation
of modes which would normally be evanescent, and these
modes travel in a preferred direction. The propagation of
evanescent modes gives us hope that an image produced by
light traveling through a slab of such a material might retain
a sharp profile; also, because the preferred direction depends
on the ratio of the components of the permittivity tensor, it
can be controlled by varying the frequency of light used.

We first look at a way of producing a metamaterial with
the desired properties: by making a system of thin, alternat-
ing metal and dielectric layers. A system of this type was
proposed by Ramakrishna et al.1 as a form of “superlens;” it
improves on the original suggestion for a superlens,2 which
consists of just a single layer of metal, and has recently been
realized.3,4

We then look at the dispersion relation for our anisotropic
material, to see why modes which would be evanescent in
both the metal and the dielectric separately are able to propa-
gate in the combined system, and why there is a preferred
direction of propagation. The subwavelength details of the
source are transmitted through the system because they
couple to the surface plasmons5 that exist on the boundaries
between metal and dielectric; this mechanism is the basis for
the current interest in metallic structures for superresolution
imaging at optical frequencies.2–4,6,7

Next, we investigate the transmission properties of a slab
of this material, and apply our formulas to the case of a line
source. We show that we can expect to obtain a sharp image
as long as the amount of absorption is not too high.

Finally, we go beyond the effective-medium approxima-
tion to show the effect of the finite layer widths on the opti-
cal properties. We demonstrate that the “resolution” of the
slab is limited by the width of the layers; thinner sheets mean
that the description of the system using the effective medium
becomes increasingly accurate, and the image quality im-
proves.

II. LAYERED SYSTEMS

We concentrate on periodic layered systems of the form
shown in Fig. 1. We assume that each layer can be described
by homogeneous and isotropic permittivity and permeability
parameters. When the layers are sufficiently thin, we can
treat the whole system as a single anisotropic medium with
the dielectric permittivity9,10
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A helpful way to see this is through the characteristic matrix
formalism;8 this method, which is related to that used by
Rytov in the original derivation,9 is described in the Appen-
dix.

FIG. 1. System geometry. The layers are infinite in extent in the
xy plane.

PHYSICAL REVIEW B 74, 115116 �2006�

1098-0121/2006/74�11�/115116�8� ©2006 The American Physical Society115116-1

http://dx.doi.org/10.1103/PhysRevB.74.115116


The homogenized magnetic permeability is given by ex-
pressions analogous to �1� and �2�. When � is small, the
effective parameters are dominated by the first medium,
while for large �, they resemble those of the second medium.

Only the ratio of the thicknesses of the two layers appears
in the homogenized version, not the absolute value; however,
the characterization of the material using the effective-
medium parameters is more accurate when both d1 and d2 are
small.

For a layered metal-dielectric system, we can tune the
response either by altering the frequency or by changing the
ratio of layer thicknesses.11 This is demonstrated by Figs. 2
and 3, which show the real and imaginary parts of the effec-
tive permittivity for two different thickness ratios, for a sys-
tem composed of alternating layers of silver and silica. The
material data from which these plots are constructed have
been taken from the books by Palik12 and Nikogosyan.13 In
both graphs, there are two regions in which Re��x� and
Re��z� take opposite signs. In the first region, which includes
energies up to approximately 3.2 eV, Re��x� is negative; in
the second, which consists of a small range of energies
around 3.6 eV, Re��x� is positive.

By choosing a suitable value of �, we can make the real
parts of �z and �x take opposite signs over a range of frequen-
cies. We investigate the consequences of this in the next
section.

III. PERMITTIVITY WITH DIRECTION-DEPENDENT
SIGN

The unusual behavior of the layered materials can be un-
derstood by considering the dispersion relation between the
frequency � and the wave vector k. We assume that we are

dealing with nonmagnetic materials, so that the magnetic
permeability �=1. If the dielectric permittivity is aniso-
tropic, the interesting waves are those with transverse mag-
netic �TM� polarization. The dispersion relation for these
waves is
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We have taken ky to be zero, since the x and y directions are
equivalent. When �x and �z are both positive, the relationship
between kx and kz is similar to that in free space: for small kx,
kz is real, but when kx becomes large, kz becomes imaginary.
The propagation of the wave in the z direction is governed by
kz; when kz is imaginary, the wave is evanescent: it decays
exponentially with z.

However, when �x and �z have opposite signs, kz is real
for a much wider range of values of kx. Even the high spatial
frequency components with large kx, which would normally
be evanescent, now correspond to real values of kz, and
hence to propagating waves.

If we want to plot the dispersion relation, we have to
remember that the permittivity itself is frequency-dependent.
To get an idea of what the dispersion relation looks like, we
can use an idealized model: we imagine a metamaterial
whose layers are composed of equal thicknesses of a dielec-
tric, with positive, frequency-independent permittivity, and a
metal, with the simple plasmalike permittivity

�m��� = �m��� −
�p

2

�2 . �5�

For now, we assume that the materials are nonabsorbing. The
resulting dispersion relation is plotted in Fig. 4. We can iden-
tify two distinct bands from the figure. In the lower, �x is
negative, while �z is positive; the signs are reversed in the

FIG. 2. �Color online� The dielectric permittivity of the metama-
terial constructed from layers of silver and silica. This and the fol-
lowing graph show the real and imaginary parts of the in-plane and
perpendicular components of the permittivity for different layer
thickness ratios; in this case, �= 2

3 , which means that the layers of
silica are one and a half times as thick as the layers of metal.

FIG. 3. �Color online� The effective permittivity when �=1.5.
The silver layers are now thicker, and the amount of absorption has
increased: the imaginary parts of the permittivity are now larger.
However, the real parts are also correspondingly larger in
magnitude.
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upper band. In both cases, the contours of constant � are
hyperbolas. In the lower band, these hyperbolas are centered
on the kx axis, while in the upper, they are centered on the kz
axis.

In fact, there is also a third band at high frequencies, but
this is the least interesting regime and is not shown in Fig. 4:
both components of the permittivity are positive here.

The dispersion relation also provides the key to the pre-
ferred propagation direction. This is determined by the group
velocity. A constant-frequency section of the dispersion rela-
tion �cut across the first band� is plotted in Fig. 5. The hy-
perbolic form of the curve means that for large �kx�, it tends
to the following straight line:

kz =�−
�x

�z
�kx� . �6�

The group velocity is perpendicular to the constant-� con-
tours like the one plotted in Fig. 5. The figure demonstrates

that apart from a region around kz=0, the group velocity
vectors all point in almost the same two directions: this is the
basis for the preferred direction of propagation. Remember-
ing that the x and y directions are equivalent, we can see that
the preferred directions form a cone around the z axis. The
half-angle of the cone is

� = arctan�−
�x

�z
. �7�

In the region around kz=0, the arrows point outside the cone.
In this band, there are no propagating modes in a small re-
gion around kx=0, and no propagating modes with a group
velocity vector lying inside the cone.

If we take a cross section from the second band, instead of
the first, we also see a hyperbolic contour; the plot resembles
Fig. 5, but rotated by 90°. The group velocities for the modes
around kx=0 now point inside the cone, rather than outside.

To conclude this section, we look at the physical process
that allows our layered metamaterial to mimic an anisotropic
material and to support the propagation of normally evanes-
cent waves. The key fact is that surface plasmons are sup-
ported at an interface where the permittivity changes sign.
When the metal permittivity is negative, this sign change
occurs at every interface; the wave is transmitted via coupled
surface plasmons, as indicated in Fig. 6.

IV. TRANSMISSION THROUGH AN ANISOTROPIC
SYSTEM

We have seen that we can produce a metamaterial with
interesting properties by stacking alternating layers of metal
and dielectric. Next, we look at a slab of this material, and
examine the transmission coefficient.

We assume that the slab is embedded in a uniform me-
dium of constant permittivity �which may be unity, repre-
senting vacuum�. In such a medium, the dispersion relation
�4� becomes

FIG. 4. �Color online� The dispersion relation for an idealized
metal-insulator system. The permittivity of the metal is given by �5�
with �m���=2.0, while the dielectric has permittivity �d=2.5; the
layers are of equal width ��=1�. kp is the wave vector correspond-
ing to the plasma frequency �kp=�p /c�. The first two bands are
shown; they have been separated to make visualization easier, but
there is no band gap. The plots are symmetric about the planes kx

=0 and kz=0.

FIG. 5. �Color online� The relationship between kx and kz for
�=0.2�p �in the middle of the lower band in Fig. 4�. The straight
lines show the asymptotes given by Eq. �6�. The group velocity is
indicated by the arrows, which are perpendicular to the curve; the
length of the arrows is proportional to the magnitude of the group
velocity.
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kx
2 + kz�

2 = k0
2� . �8�

We write kz� to distinguish the z component of the wave
vector in the surrounding medium from that in the slab. The
transmission coefficient for TM waves is

t�kx,�� =
2

2 cos kzd − i� kz��x

kz�
+

kz�

kz��x
�sin kzd

, �9�

where the dispersion relations �4� and �8� are used to define
kz and kz� in terms of kx and �.

In Fig. 7, we plot the transmission coefficient for three
different regimes, corresponding to the three different fre-
quency ranges. At high frequencies �here represented by �
=�p�, both components of the metamaterial permittivity are
positive. In this regime, the transmission coefficient is close
to unity for small wave vectors. It drops abruptly to zero at
kx=k0, and rises equally sharply afterward, again approach-
ing unity; finally, it decays exponentially for larger wave
vectors. Very similar behavior is observed in the intermediate
frequency range ��=0.65�p�. This time, the maximum fol-
lowing the zero at kx=k0 is higher, and the rate of exponen-
tial decay for large kx is less rapid.

The most interesting frequency range is the lowest one
��=0.3�p�. There is the usual zero in the transmission at
kx=k0, followed by a very sharp peak. However, there is also
significant transmission even for large wave vectors; the
transmission coefficient has a series of peaks, decreasing in
magnitude, and approximately periodic in kx. The resonances
correspond to localized states for the slab; they are in turn
antisymmetric and symmetric. There is a difference between
the first two resonances �just above kx=k0� and those for
higher wave vectors. For the first two, the wave is nonpropa-
gating inside the slab �because kz is almost purely imagi-
nary�: the resonances therefore consist of coupled surface
plasmons located on each surface of the slab. For the higher
wave vectors, the wave is able to propagate16 within the slab
�because kz is almost purely real�, and the transmission peaks
correspond to Fabry-Perot resonances—standing waves in-
side the slab.11

In fact, a similar set of peaks would be visible in the
intermediate-frequency regime, were it not for absorption.
The material parameters used to generate Fig. 7 include a
realistic amount of absorption, and a glance at Figs. 2 and 3
shows that absorption is high in the region where Re��z�

becomes negative. The localized states are supported in both
the low- and intermediate-frequency ranges, but are sup-
pressed in the latter by high absorption.

V. IMAGING A LINE SOURCE

We have seen that the layered system allows enhanced
transmission of high-spatial-frequency components at certain
frequencies. This gives us hope that we may achieve sub-
wavelength imaging using the slab. As a test, we consider the
image of the line source pictured in Fig. 8.

In the absence of the metamaterial, the field generated by
this source is

E�r� = �
−�

� �
−�

�

eikxx+ikyy+ikz�z−i�tẼ0�ky��x̂ −
kx

kz�
ẑ�dkxdky ,

�10�

where the current profile in the y direction is as yet unspeci-
fied. As before, kz� represents the z component of the wave
vector in the surrounding medium.

When we place the metamaterial next to the source, as
shown in the figure, some radiation will be reflected from the
slab and will generate additional currents. If we neglect
these, we can estimate the x component of the transmitted
field as

Ex
TM�r� = �

−�

� �
−�

�

eikxx+ikyy+ikz��z−d�−i�tt��kx
2 + ky

2,��

�
Ẽ0�ky�kx

2

kx
2 + ky

2 dkxdky . �11�

Note that this is the TM component of the field. In general,

FIG. 6. �Color online� Schematic diagram of the transmission of
normally evanescent waves, showing the role of surface plasmons.
The line represents the electric field strength.

FIG. 7. �Color online� The transmission coefficient, as defined
in Eq. �9�, with the surrounding medium taken to be air. The slab
width used is d=2/kp, which would be of the order of 100 nm for a
plasma frequency �p�4 eV. The results for three different frequen-
cies are plotted, corresponding to the three bands referred to in the
discussion of Fig. 4. The real part of �x is negative when �
=0.3�p, while that of �z is positive; the signs are reversed when
�=0.65�p. At higher frequencies, both are positive. The permittiv-
ity of the metal is taken to be �m=1.7+0.6i−�p

2 /�2, while that of
the dielectric is �d=2.5.
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there will also be a TE component which must be calculated.
However, if we consider a line source which is uniform in
strength and infinitely long, so that E0�ky�	
�ky�, the entire
field is transverse magnetic. In this case, the calculation re-
duces to the solution of the following integral:

Ex
TM�r� =

E0

k0
�

−�

� 2eikxx+ikz��z−d�−i�t

2 cos kzd − i� kz��x

kz
+

kz

kz��x
�sin kzd

dkx.

�12�

The integral can be solved approximately when the fre-
quency is in the intermediate range: that is, when Re��x�
�0 and Re��z��0. The resonant states then all have large kx;
they are the standing wave states discussed in the previous
section, rather than the coupled surface plasmon states
�which have kx close to k0�. We are, therefore, justified in
making the near-field approximation, which leads to the fol-
lowing analytic form for the x component of the transmitted
field:

Ex
TM�r� 	

±4iE0

k0d�1/�z − �x�
e−ik1
�x�−i�z−d��−i�t

1 + e−i�k
�x�−i�z−d�� , �13�

where

k1 =
1

d
�−

�z

�x
arctan�2�− �x�z

1 + �x�z
� �14�

and

�k =


d
�−

�z

�x
. �15�

In this approximation, Ex
TM and Ez

TM are identical to within a
phase factor. In Fig. 9, we plot the intensity of the transmit-
ted field, comparing the approximate analytical solution to
the results of numerical integration. To generate the plot, we
take an unrealistically low value for the absorption in the
metal; the point of the graph is to compare numerical and
analytical results, but also to demonstrate the features which
we hope to be able to observe.

First, we note that the position of the peaks is proportional
to the slab width. This is a manifestation of the preferred
direction of propagation; within the metamaterial, the light
travels at a fixed angle to the z axis, in the xz plane �since we
have translational invariance in the y direction�. The second-
ary peaks which are visible when k0d=1.0 are caused by
reflection from the boundaries; this is why they overlap pre-
cisely with the primary peaks for the slab with k0d=3.0. The
reflections are illustrated in Fig. 10.

In the first frequency regime, the approximate analytical
solution is more difficult to obtain: there are the additional
surface plasmon resonances close to kx=k0, for which one
cannot make the near-field approximation. However, it is still
possible to obtain numerical results. As one would expect
from Fig. 7, these are much more promising: using realistic
parameters, we are able to produce a sharp image, as shown
by the line marked “Effective medium” in Fig. 11. The width
of the principal peak in the effective-medium approximation
is around � /10. Figure 11 also illustrates the results of a
more detailed analysis, which goes beyond the simplified
effective-medium approach; we will discuss these next.

VI. BEYOND THE EFFECTIVE-MEDIUM
APPROXIMATION

Treating the layered system as an effective medium is a
helpful simplification, in terms of both understanding and

FIG. 8. �Color online� Imaging a solenoidal line source.
FIG. 9. �Color online� The transmitted field intensity, comparing

analytical and numerical results. The parameters used were �d

=2.5, �m=1.7+0.05i−�p /�2, with �=0.68�p. In each case, we plot
the field just beyond the slab �so that, for example, when k0d=2.0,
k0z=2.01�.

FIG. 10. �Color online� A schematic showing that reflections
lead to periodically repeated images of the two principal peaks.
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performing simulations. However, it has limitations. In this
section, we model the system in more detail, considering the
finite width of the layers; naturally, as the layers are made
thinner, we see that the effective-medium approximation be-
comes more appropriate.

First, we look at the dispersion relation for the layered
metamaterial. We can obtain kz as a function of kx �at a given
frequency� from the characteristic matrix, as described in the
Appendix. These isofrequency contours are plotted in Fig.
12. The effective medium has a full translational symmetry,
but this is broken when considering the structure of finite-
width layers; the system becomes periodic, and the figure
shows part of the first Brillouin zone, which extends from
kz=−kp to kz=kp. The effective-medium contours are de-
formed by the new periodicity, and bend towards the zone
boundaries. This introduces a new cutoff: for a given fre-
quency, there is a value of kx above which no propagating
solution exists. This affects the resolution of the lenslike sys-
tem.

The next logical step is to investigate the change in the
behavior of the slab of metamaterial described in Sec. IV.
From now on, we focus on the first band. Figure 13 shows
that the new cutoff in kx is clearly manifested in the trans-
mission function: above the cutoff, the transmission decays
very rapidly. Below the cutoff, we see the familiar Fabry-
Perot and coupled surface plasmon resonances, although
they have moved slightly; this is because the relationship
between kx and kz has been altered, as shown in Fig. 12.

Finally, we reexamine the image of a line source using the
modified transmission functions shown in Fig. 13. Figure 11
shows the transmitted electric field intensity, plotted as a
function of x, for various different layer widths. Increasing
the width of the layers which make up the metamaterial slab
�while keeping the total slab width constant� causes the prin-
cipal peak to broaden, as expected. As the layers get thinner,
the transmitted image more closely resembles the effective-
medium result.

VII. CONCLUSION

We have investigated a class of anisotropic materials in
which one of the components of the dielectric permittivity
has a different sign from the others. These materials are able
to support the propagation of modes that would normally be
evanescent: they are able to collect and transfer the near
field. In addition, inside the anisotropic medium, light travels
in a preferred direction.

We have studied the transmission properties of a slab
made up of such a material. The image of a line source
consists of two lines, with an offset determined by the ratio
of the components of the permittivity; the width of the im-
aged lines depends on the amount of absorption, but, in prin-
ciple, can be much less than the wavelength of light used.

FIG. 11. �Color online� The transmitted electric field intensity
for a line source, imaged by a metamaterial slab of thickness 1/k0.
The material parameters used correspond to layers of Ag and
ZnS-SiO2, embedded in crystalline Ge2Sb2Te5 �a phase-change ma-
terial used in optical storage devices�, for light of wavelength
650 nm. This corresponds to a total slab width of around 105 nm.

FIG. 12. �Color online� Isofrequency contours demonstrating
the effect of a finite layer width. The solid lines are the contours for
a system where the cell size �d1+d2� is 1 /kp; the result is a Brillouin
zone of extent 2 on the kz axis. The dashed lines are the equivalent
contours in the effective-medium approximation. The three sets of
contours correspond to the three bands of the dispersion relation
discussed in Sec. III; the first two are hyperbolic in the effective-
medium approximation, while the third is elliptical. The material
parameters are the same as those used to generate Fig. 4.

FIG. 13. �Color online� The transmission as a function of kx for
various layer widths. The total slab width is maintained at 1 /k0 in
each case, while the number of individual layers is adjusted.
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One realization of such a material is a stack of alternating
layers of metal and dielectric. The thinner the layers, the
better this metamaterial approaches the form of the ideal an-
isotropic medium. We have shown how the ideal band struc-
ture is deformed by the nonzero layer width. Using realistic
material parameters, we have also demonstrated that a stack
of alternating Ag and ZnS-SiO2 layers can form an image of
a line source which is much narrower than the wavelength of
light when working at 650 nm.

The combination of subwavelength resolution with the
fact that the position of the image depends on the frequency
of light being used suggests that this layered system may
have useful applications. For example, in conjunction with a
super-resolution near-field optical structure,14,15 it may allow
the possibility of multiplexed recording.

APPENDIX: HOMOGENIZATION IN LAYERED SYSTEMS

The effective-medium parameters for our one-
dimensional system of alternating layers can be calculated by
using the characteristic matrix method. The effective dielec-
tric permittivity is obtained from a consideration of TM
fields; TE fields give the effective magnetic permeability.

The geometry of the system is shown in Fig. 1, with the z
axis perpendicular to the layers. We take the plane of inci-
dence to be the xz plane; the symmetry of the system means
that this is equivalent to the yz plane, and the results which
follow are general.

The characteristic matrix M j�kx ,d� relates the Fourier
component of the field in the plane z=z0 to that in the plane
z=z0+d �all within medium j�. For TM waves in a homoge-
neous medium, it takes the form8

M j�kx,d� =� cos kz
�j�d

ik0� j

kz
�j� sin kz

�j�d

ikz
�j�

k0� j
sin kz

�j�d cos kz
�j�d  , �A1�

where kz
�j� is given by the dispersion relation

kx
2 + �kz

�j��2 = �k0
2. �A2�

The matrix for a single cell of our layered system, con-
sisting of one sheet of each material, is just the product of the
matrices for the separate layers:

Mcell�kx,d1,�� = M1�kx,d1�M2�kx,�d1� . �A3�

A stack of n cells has the characteristic matrix Mn= �Mcell�n.
We can calculate this by diagonalizing Mcell; we then obtain

Mn =
1

p − q
� − q�n + p�−n �n − �−n

− pq��n − �−n� p�n − q�−n � . �A4�

We have introduced �, which is one of the eigenvalues of
Mcell; the other eigenvalue is �−1, which follows because
det Mcell=1. We have also introduced p and q, which are the
ratios of the components of the eigenvectors of Mcell.

Expanding in powers of the layer thickness allows us to
relate Mn to the characteristic matrix for an effective me-
dium:

Mn =� cos kz
effn�1 + ��d1

ik0�x

kz
eff sin kz

effn�1 + ��d1

ikz
eff

k0�x
sin kz

effn�1 + ��d1 cos kz
effn�1 + ��d1


+ O
�1 + ��d1� �A5�

=Meff + O
�1 + ��d1� �A6�

where the effective-medium parameters are

�x =
�1 + ��2

1 + �
, �A7�

1

�z
=

1

�1�1 + ��
+

�

�2�1 + ��
. �A8�

These parameters appear in the dispersion relation for the
effective medium, which differs slightly from �A2� because
the permittivity is now anisotropic:

kx
2

�z
+

�kz
eff�2

�x
= k0

2. �A9�

We also note here that the cell matrix Mcell has another
use. We can determine the true dispersion relation for the
layered system—without using the effective-medium
approximation—by finding the eigenvalues and eigenvectors
of this matrix. When the eigenvalue has unit modulus, we
have found a Bloch mode; we then make the association

� = eikz�1+��d1. �A10�

The eigenvalue � depends on the frequency and on kx; Eq.
�A10� is, therefore, the dispersion relation.
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