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Phonon-induced relaxation of a two-state system in solids
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We study phonon-induced relaxation of quantum states of a particle (e.g., electron or proton) in a rigid
double-well potential in a solid. The relaxation rate due to Raman two-phonon processes has been computed.
We show that in the two-state limit symmetry arguments allow one to express these rates in terms of indepen-
dently measurable parameters. In general, the two-phonon processes dominate relaxation at higher temperature.
Due to parity effects in a biased two-state system, their rate can be controlled by the bias.
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I. INTRODUCTION

Relaxation and decoherence in a two-state system coupled
to the environment is a fundamental problem of quantum
physics. It was intensively studied in the past; see, e.g., the
review of Leggett et al.! In recent years the interest in this
problem has been revived by the effort to build solid-state
qubits. Recently, symmetry implications have been consid-
ered for the problem of a particle in a rigid double-well po-
tential embedded in a solid.> It was demonstrated that sym-
metry arguments allow one to obtain a parameter-free lower
bound on the relaxation of quantum oscillations in a rigid
double well, caused by the elastic environment. One of the
arguments is that the double-well potential formed by the
local arrangement of atoms in a solid is defined in the coor-
dinate frame of that local atomic environment, not in the
laboratory frame. Another argument is that interactions of the
tunneling variable with phonons must be invariant with re-
spect to global translations and rotations. When these argu-
ments were taken into account, a simple universal result for
the relaxation rate was obtained” in terms of measurable con-
stants of the solid, with no unknown interaction constants.

The above-mentioned universal result refers to the low-
temperature limit when the relaxation of a two-state system
is dominated by the decay of the excited state due to the
emission of one phonon. In this paper we extend the method
developed in Ref. 2 to the study of two-phonon Raman pro-
cesses in double-well structures.>® Such processes can
dominate relaxation at higher temperatures.’~!" We will show
that in the temperature range bounded by the level splitting
from below and by the Debye temperature from above, the
rate of the Raman process for a biased rigid double well is
given by a universal expression, very much like the rate of
the direct one-phonon process. The Raman rate is propor-
tional to the seventh power of temperature, while the one-
phonon rate is linear in temperature. Interestingly, however,
at small bias, the Raman rate, unlike the one-phonon rate, is
proportional to the square of the bias. Consequently Raman
processes can be switched on and off by controlling the bias.
This universal result, which is a consequence of the parity of
quantum states, must have important implications for solid-
state qubits at elevated temperatures. Indeed, for an electron
in a quantum dot, the rate of a direct one-phonon process is
usually small. If the rate of a two-phonon process can be
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made small as well, this means that one can eliminate
phonons as a significant source of relaxation and decoher-
ence of the electron states in solid-state qubits.

II. PARTICLE AND PHONONS

Throughout this paper we shall use units where A=kp=1
unless stated otherwise. In the absence of phonons, the
Hamiltonian in the laboratory frame is

2

Ho=§—m+v<r>, (1)

where r is the radius vector, p is the momentum, and m is the
mass of the particle (e.g., electron). A long-wave phonon
described by the displacement field u(r) translates the rigid
double well in space. The Hamiltonian of the system (includ-
ing the free-phonon field) in the laboratory frame becomes

2
H=2p—m+V(r—u)+th. )

Here, th is the Hamiltonian of the free-phonon field. We
intend to obtain a Hamiltonian of the form H=Hy+H,,
+H,.,n where the last term describes the interaction of
phonons with the electron in the double-well potential. Using
the fact that u is small, one can expand V(r—u) in Taylor
series to obtain

2 2

p av 1 &V
=—+VO)+H,,— —uj+ ———uu;+ . (3

2m =) ph &r,-u Z!ﬂriﬁrjuuj ®)

The first three terms form the interaction-free part of the total
Hamiltonian. The rest of the terms containing powers of u
comprise the electron-phonon interaction. It is clear that Eq.
(3) requires detailed knowledge of the potential and its de-
rivatives. One can, however, obtain Eq. (2) by performing a
unitary transformation on Eq. (1) with the help of the trans-
lation operator R =eP"

H= e_ip'“HoeiP.u + th. (4)
This can be expanded for small u as
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2
i
H=Ho+H,,+ i[Ho.piJu; + E[[HO’pilpj]uiuj +

)

Working out the commutators brings one back to Eq. (3).
However, the use of Eq. (5) that we are going to employ
allows one to obtain parameter-free results solely in terms of
the energy levels of our effective two-state system without
knowledge of the explicit form of V(r).

We consider the case in which the particle, with good
accuracy, is localized near r=+R,,, where =R are the en-
ergy minima of the left and right wells. Without loss of gen-
erality we assume that +Ry==+Xe,. The localization length
of the state inside each well is small compared to the dis-
tance between the minima of the double-well potential. The
bare ground states (when tunneling is neglected) in the left
and right wells, that we denote by |+X), are approximately

orthonormal,
(£Xo| £ Xy =1, (= Xo|Xo)=0. (6)

The tunneling between the wells leads to the hybridization of
the states given by orthonormal wave functions

1
|¢:> = TE(C1|X0> * C1|_XO>)’ (7)
\
where
Co=\lze/A, A=VAj+e? )

with A, being the tunnel splitting in the unbiased double well
and & being the energy bias between the wells. Note that the
double well also has states |:,b§> with energies E; other then
E. corresponding to |¢.). The energy splitting

A=E,-E_ )

is considered small compared to the distance from E. to
other E¢. As we shall see, in this limit the summation over all
states |} renders a result for phonon-induced transitions
between izﬂi) that is insensitive to the explicit form of the
potential.

Below we shall deal with the matrix elements of operators
P=Dp,, X, and their combinations. Other components of p and
r are irrelevant. Localization of |,) allows one to compute
matrix elements of powers of the operator x with the help of
the relation

x|iX0>= iX0|iXO>. (10)

This gives

1
(x| ) = X05<Ci ~ C?) = X,(e/A),

<1,b_|x| ) =XoC,.C_=X((Ay/A)

<‘/’¢|x2|‘//1>=X2’ <¢_|X2|¢+>=O. (11)

To compute other matrix elements we shall use the relations
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p=mx=—

im[x, Ho] (12)

and
2
=m—— =-
dt

px + xp = m(xx + xx) imlx*, Hyl.  (13)

This gives

(Welp|per) = im(Eg— Egr)(helx|her),

(Welpx + xpliper) = im(Eg— Eg) (e, (14)

and thus (¢ | px|,)=0.
As we shall see, perturbation theory for Raman processes
requires computation of the sum

(W_|plipe) ¢§|P|¢//+>
g E;~E,

(15)

Application of Eq. (12) eliminates the denominator and
yields

= im 2, (Y |pl )l (16)
EF+

Using the completeness of |1,0§) we obtain

= im[<‘/’—|px|‘/’+> - <ll/_|P|¢+><l//+|x| )] (17)

Finally, with the help of the above relations for matrix ele-
ments of x, p, and px we get

S =—m?Xg(Ay/A)s. (18)

This is a mechanism of elimination of unspecified energy
levels E; from the problem, leading to a universal result.

III. RAMAN MATRIX ELEMENT

We are interested in the transition rate between the eigen-
states of Ho+H,

|\I’:>=|¢:>® |¢:> (19)

Here, |,) are the tunnel-split states of the double well given
by Eq. (7). The states |¢,)=|ny,ny) and [¢_)=|nx—1,n4+1)
are the eigenstates of H,,, with energies E,,;, . that correspond
to the phonon states before and after particle transition be-
tween E, states in the double well. Our goal is to study
Raman scattering processes involving absorption of a pho-
non of frequency wy and emission of a phonon of frequency
wq=wy+A, accompanied by the transition of the particle
|¢+>H|¢ ) (see Fig. 1). The Raman rate can be computed
with the help of the Fermi golden rule in the second order in
the interaction. The matrix element for this process is the
sum of two matrix elements,

M=M? + p+D, (20)

The first term denotes the first-order perturbation on
1
HEw == THopL.pl. (21)

while the second term stands for the second-order perturba-
tion on
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FIG. 1. Raman process on tunnel-split levels in a double-well
potential, including virtual transitions to higher levels Ey [the first
term in Eq. (24) shown].

M =ilHo.plu,. (22)
The explicit expressions for M® and M+D are!?
M® = (W [H2) W) (23)
and
& E+ + ﬁ Wk — Eg
S (W H Y H, ) o
& E+ - h wq - E§
Here, |W,) is a direct product of the eigenstates of H,, with
2 p 8 0

the phonon states |nk—1,nq> in the first term and
In,ng+1) in the second term.

First, we calculate the phonon parts of M?® and M(+V
using canonical quantization of the phonon displacements'3

1 ek)\eik-r :
u= 2 — (ak)\ + a_k’)\) s (25)
20V Ny

where p is the density of the solid, V is its volume, ey, are
unit polarization vectors, A=t,,f,,/ denotes polarizations,
and o =vk is the phonon frequency, which we will
usually write as w,. Writing |W,)=|ny,ng)®|¢,) and
|W_)=|ny—1,nq+1)®|4), for the phonon matrix element in
M® one obtains

1 ) m(ng +1)
_ 2 _ x x _i(k-q)r k\™q
k ’ s
(= 1,ng + ulng, ng) = —epeq.e
pV wgog
=M, (26)

For the phonon matrix elements in M*! one obtains
(e = 1ng + ume = 1,n )y — 1,nglung,ng)
= (= Lng + Vumgng + D{ng,ng + 1|u|ng,ng)
=M,,/2. (27)
(One can see from the completeness relation that the sum of
these two expressions is M)
Next, we evaluate the particle parts of M@ and MU*D,

For (¢_|[[Hop].p1| #,), which enters M, writing the com-
mutator explicitly and inserting the identity operator

1=3¢| e)(1fg results in
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(Y|(Hop* = 2pHop + p*Ho) [ ¢h,)
=2 (E, + E_ = 2E ) |plypl).  (28)
13

The particle part of M+ simpifies to

— Y |[Ho.pll bl Ho.p1| 1)
= (E¢— E)(Eg— E)UIplvp{welplin).  (29)
Collecting the terms, for M of Eq. (20) one obtains

1
M= EM,,h% <(/f—|p|l/"§><‘//§|p|l/f+>Q§’ (30)

where

Q'fE E++E_— 2E§+ (Eg—E_)(Eé:—E+)

1 1
( + ) (31)
Eg—E+—wk Eg—E++a)q

A common mistake that propagates through literature'* is
summation of rates due to M® and M+, instead of adding
matrix elements first and then squaring the result and com-
puting the rate. This mistake is not innocent since M® and
MUY may cancel leading parts of each other. Taking into
account conservation of energy wq=w+A and the relation
E_=E,—-A, one can rewrite this expression as

_ Zwk(wk + A)(Ef— E+ + A/Z)
C(Ei—E, - o) (Eg—E, + oy +A)’

o (32)

One has Q.=+ A. We consider the case of wy~T<E;
—E, and AKE,~E,, when

Zwk(wk + A)
E:~E,

0:=0; (33)

It follows from Eq. (14) that the terms with ¢é==+ in Eq. (30)
disappear. Using Eq. (15), one obtains

1 ~
M=_M,, g G lpl g bdpl i) 0= Mo (@ + A)S

(34)
and finally, with the help of Egs. (26) and (18),
1 +1 A
M=-—eneq\ Msz%s—owk(wk +A).
pV W Wq A
(35)

Here we have suppressed an irrelevant phase factor. This
result for the Raman matrix element is insensitive to the
explicit form of the double-well potential V(x). It would be a
hopeless task to obtain it from Eq. (3).

IV. RAMAN TRANSITION RATE

According to the Fermi golden rule'? the Raman rate is
given by
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dk d
2 q

@ )6V2|M|22775(wq—wk A).  (36)

The integration variables dk dq can be written in spherical
coordinates as dk dq kzqdedeq, which yields
2 o,
2=m4XgA2A082B2f D
2mp 0

o\ A
X(—k> [1+0(—)}5(wq—wk—A), (37)
A Wy

where wp is the Debye frequency,

f a5 (o) (38)

4 Y U)\

doydwgoyogny(ng+ 1)

vy is the velocity of sound with polarization X\, and
n=(e“®’T—1)~! is the Bose occupation number of a phonon.
In the limiting case of A < wy~ T one obtains for the Raman

rate
4X4A5A2 2 T\7
= W Z(K a(wD/T), (39)
where, within the Debye model,
wp/T x6ex
/T) = dx——. 40
alwp/T) fo S (40)

At T< wp/10, one has a=(16/21)w°.

The value of B can be calculated with the help of
the transverse-phonon sum rule 2., , (ey-a)(ey b)
=(a-b)—(a'l';)(lA(~b), where k=k/k. Setting a=b=e, and av-
eraging over the directions of k yields

A ( K 1-k2) 2 1
= E S+t |=T3+t- 3. (41)
v; v; 3v; 3v;

According to theory of elasticity!® v,>2v,. Thus, the sec-
ond term in this expression is a small correction and it can be
neglected. Since we are interested in the region AT we
can keep only the leading order in 7/A in Eq. (39). The
Raman rate for A < T< wp then becomes

2T TN\ e\ T\
F2=——(—°) 3) =, (42)
189 A\ A &) \¢&
where we have introduced characteristic energy and fre-
quency scales

ﬁpl}z ) 1/4

E=hQ, = (sz%

(43)

of the problem that are entirely determined by the parameters
of the unperturbed dot and its elastic environment.
V. DOT FRAME CALCULATION

In this section we will check our result by calculating the
Raman rate in the frame of reference of the dot, as was done
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for one-phonon processes.”
grangian of the particle is

In the laboratory frame the La-

EP:%(i"+i1)2—V(r’), (44)

where r’ is the radius vector of the particle of mass m in the
coordinate frame rigidly coupled to the double well. The
linear momentum that is canonically conjugated to r’ is
given by

p —&—f)—m(r +1). (45)

The corresponding Hamiltonian is

12
Hp(p',x')=p' -v' - Lp= P p -u+V(r'). (46)
2m
The full Hamiltonian is ‘Hp+H,,. Contrary to the previous
model described by Eq. (3), we now have only one interac-
tion term, —p’-u. Similarly to Sec. III, one can write the
matrix element for the Raman processes as

M= 2<Ir/f |p ll|(//§><(/f§|p u|‘r/f+>

E + h Wy — E§
E <‘// |p u|l//f§i><l//§|p u|‘r//+> (47)
wq Eg

Inserting'3

[ e
— i =2 e g (@, — a'y) (48)
2pVn

into Eq. (47) and evaluating the matrix elements, we obtain

M=— ,,hE | pl (el pl ) O, (49)

which coincides with Eq. (30) up to an insignificant phase.

VI. DISCUSSION

We have demonstrated that the two-phonon relaxation of
the tunnel-split states of a particle in a biased solid-state
double-well potential can be expressed in terms of indepen-
dently measured parameters and without any unknown con-
stants. Two-phonon processes may dominate relaxation at el-
evated temperatures (see below). An interesting observation,
however, is that at a small bias the rate of Eq. (42) is pro-
portional to &2, while at a large bias it becomes independent
of . This means that one can switch Raman processes on
and off by controlling the bias. This result may seem strange
at first; however, it is a fundamental consequence of quantum
mechanics. The reason for this effect is parity. If we remove
the bias, the potential well will become symmetric. Conse-
quently, the Hamiltonian and the parity operator commute,
which leads to eigenstates of even or odd parity. It is easy to
see that the states |¢_) and |¢,) at £=0 have even and odd
parity, respectively. Therefore, the matrix elements in Eq.
(24) will all vanish.
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To find the range of parameters where two-phonon relax-
ation becomes important, the rate of the Raman processes
should be compared with one-phonon transition rate’> which
can be written in the form

gl ) (3ol ) o
=——|—=] | =] coth{ —|.

Taanl\ ) g 2T

Notice that Egs. (50) and (42) do not contain any unknown
interaction parameters. The quantity of interest is the ratio
I',/T"; which can tell us the importance of the second-order
versus the first-order process at various temperatures. In our
case of T>>A, coth(A/2T) in Eq. (42) can be replaced by
2T/A. The above-mentioned ratio then yields

2 2 6

S o
I 63 A) \NA) \E,
At any given temperature this ratio has a maximum at
e=A,. For an electron in a double-well dot with
Xo~ 10 nm embedded in (or deposited on) a solid with
p~5 g/cm® and v,~ 10° m/s, the parameter &, is of order
300 K if one takes the electron effective mass m to be of the
order of the bare mass m,. Then, for, e.g., e ~Ay~1 K, Ra-
man processes, according to Eq. (51), will dominate
electron-phonon relaxation above 30 K, while below that
temperature the relaxation will be dominated by direct pro-
cesses. The actual phonon rates for an electron are not likely
to exceed 10° s~! even at T~ 100 K. Note that for m<m,,
which is typical in semiconductors, the rates are even
smaller. For a proton in a molecular double well with
X,~0.3 nm in a solid with p~5 g/cm?® and v,~ 10> m/s,
one gets £~40 K. At e~ Ay~ 1 mK, according to Eq. (51),
Raman processes will dominate proton-phonon relaxation
above 1 K, while direct processes will dominate relaxation in
the millikelvin range.
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Recently, we learned about a paper by Stavrou and Hu,'®
who also investigated two-phonon relaxation for a particle in
a double dot. Our paper and Ref. 16 bear similarities and
differences. They both consider a similar system—an elec-
tron in a double dot interacting with acoustic phonons. Nu-
merical work in Ref. 16 is performed for a particular model
of the double well and is customized for the GaAs elastic
environment, while our approach is more general, based
upon symmetry. Because of this, one cannot expect a sub-
stantial agreement between these two works. In particular,
we obtain that for a spatially symmetric double well (dot) of
arbitrary shape the relaxation rate is zero. The reason this is
not the case in Ref. 16 is that the deformation of the dot due
to the elastic environment breaks the spatial symmetry. How-
ever, the conclusions made in both works about the relative
strengths of one-phonon and two-phonon processes are simi-
lar.

Finally, we should note that since our model is based upon
bare quantum states that are well localized in space, it is
rigorous for heavy particles, such as, e.g., a proton or an
interstitial atom, but is less rigorous for such a light particle
as an electron. Nevertheless, even for an electron our formu-
las should provide a good approximation in the limit of weak
tunneling between the wells. Note also that, at large tunnel
splitting, the actual rates for a heavy particle like a proton,
interstitial atom, or defect can become so large that the ap-
proximation based upon the Fermi golden rule will no longer
apply.'” Even in this case, however, the matrix elements can
be expressed in terms of measurable parameters of the quan-
tum well and the solid.
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