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The time-dependent behavior of a two-level system interacting with a quantum oscillator system is analyzed
in the case of a coupling larger than both the energy separation between the two levels and the energy of the
quantum oscillator ������, where � is the frequency of the transition between the two levels, � is the
frequency of the oscillator, and � is the coupling between the two-level system and the oscillator�. Our
calculations show that the amplitude of the expectation value of the oscillator coordinate decreases as the
two-level system undergoes the transition from one level to the other, while the transfer probability between the
levels is staircaselike. This behavior is explained by the interplay between the adiabatic and nonadiabatic
regimes encountered during the dynamics with the system acting as a quantum counterpart of the Landau-
Zener model. The transition between the two levels occurs as long as the expectation value of the oscillator
coordinate is driven close to zero. On the contrary, if the initial conditions are set such that the expectation
values of the oscillator coordinate are far from zero, the system will remain locked on one level.
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One of the most studied quantum-mechanical models is
the two-level system interacting with a quantum oscillator. It
is used in a wide range of phenomena, especially in atomic
physics where it describes a two-level atom coupled to a
quantized electromagnetic field.1,2 A challenging enterprise is
to extend the model to “artificial atoms” in a condensed-
matter environment. These small solid-state devices like flux
lines threading a superconducting loop, charges in Cooper
pair boxes, and single-electron spins exhibit quantum-
mechanical properties which can be manipulated by currents
and voltages.3–5

The solid-state devices offer wider regimes for the cou-
pling strength between the two-level system and the oscilla-
tor. Typically, the coupling strength in atomic systems is
� /�=10−7–10−6.2 Similar dipolar coupling in Cooper pair
boxes and Josephson charge qubits is 3–4 orders of magni-
tude larger than the coupling in atomic systems.6,7 In contrast
to the dipolar coupling, the capacitive and inductive cou-
plings show even larger coupling strengths.8–10 Recently it
has been argued that it is possible to achieve values � /�
�1 experimentally.11 In this Brief Report we examine the
regime � /��1. We will show that, although the oscillator
dynamics “follows” the dynamics of the two-level system as
in the case studied in Ref. 11, the general features are differ-
ent: the system undergoes the transition from one level to the
other with a sudden change in the transition probability,
whenever the expectation value of the oscillator coordinate is
close to zero.

The Hamiltonian of the system is written as ��=1�

H =
p2 + �2q2

2
+ �q�z + ��x, �1�

where �z and �x are the spin operator matrices, and p and q
are the oscillator coordinates. The essential parameters are �,
�, and �, associated with the frequency of the oscillator,
the coupling strength of the two-level system with the oscil-
lator, and the splitting frequency of the two-level system,

respectively �our parameter � is scaled up by a factor of 2�2
with respect to parameter � in Ref. 11�. In Ref. 11 it was
assumed that the splitting frequency is much smaller than the
frequency of the oscillator; thus the problem can be cast into
the displaced oscillator basis which is the basis for the first
two terms of the Hamiltonian �1�. This displaced oscillator
basis is found by applying the unitary transformation U
=exp� i�p

�2 �z� to the Hamiltonian �1�. The transformed Hamil-
tonian becomes12

H� =
p2 + �2q2

2
+

�

2
��+ exp�− i

�p

�2� + H.c. � −
1

8

�2

�2 ,

�2�

with �+ ��−� as the spin-1
2 creation �annihilation� operator;

then time-dependent or/and time-independent perturbation
calculations can be performed as long as � /��1. A similar
path was followed by Schweber.13 Perturbation calculations
on the energy spectrum have been performed and compared
with the exact calculations in Fig. 3 of Ref. 11. The authors
extended the comparison to the regime � /�	1 and they
found some quantitative and qualitative resemblance be-
tween the exact solution and their approximate solution
	Figs. 3�b� and 3�d� in their paper
. The quantitative and
qualitative agreement shown in Fig. 3 of Ref. 11 can be
explained in simple terms as follows. The net effect of
exp� i�p

2�2 � on the wave function is to displace it by the amount
�

2�2 . Thus, the effective splitting given by the second term of
the Hamiltonian �2� will be quenched, such that perturbation
calculations on the Hamiltonian �2� can be extended to larger
values of �.

Irish and co-workers11 studied the collapse and revival of
the wave function for � /��1 and � /��1. In the following
we will explore the dynamics of the very strong coupling
regime �� /��1 and � /��1�. The Hamiltonian �2� would
be able, in principle, to explain the dynamics in the very
strong coupling regime because the effective coupling be-
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tween the two wells generated by the displaced oscillators is
quenched by the separation of these two potential wells. The
effective coupling between the two wells decreases
exponentially11 with increasing strength of � as can be
shown also by analyzing Eq. �2�. However, to gain additional
insight into the dynamics of the very strong coupling regime,
we follow a different approach. We perform another unitary
transformation12,14 U=exp	i
�q��y
 on the Hamiltonian �1�,
with tan	
�q�
=− �

�q , to obtain adiabatic motions which are
valid for either very strong coupling ��� ,� �case A� or
large level splitting ��� ,� �case B�. The intuitive picture
of the transformation is a q-dependent rotation around the y
axis that brings the effective field experienced by the two-
level system along the z axis. The Hamiltonian resulting
from the above unitary transformation is

H� =
1

2
�p2 + �2q2� +

1

8

�2�2

��2 + �2q2�2 + �z
��2 + �2q2

+
��

2
�y�p

1

�2 + �2q2 +
1

�2 + �2q2 p� . �3�

The above Hamiltonian �3� will be used below for our inves-
tigation. The last term ��y term� in Eq. �3� is small as long as
�q�� �which is supposed to be satisfied in case A� or �q
�� �which is satisfied in case B�. The inequalities �q��
and �q�� should be understood as operator inequalities in
the sense that they have to be satisfied as inequalities for
matrix elements in a certain basis. The �y term is the nondi-
agonal term and it accounts for the nonadiabaticity. Without
the �y term, the Hamiltonian �3� reveals an adiabatic motion,
with one part �either the two-level system or the oscillator�
becoming fast, while the other part becomes slow.14 Thus,
the adiabatic motion is generated by the first three terms,

Had� =
1

2
�p2 + �2q2� +

1

8

�2�2

��2 + �2q2�2 + �z
��2 + �2q2.

�4�

In the very strong coupling case ���� ,��, there are two
adiabatic potential sheets coupled by the �y term.12,14 The
shape of the adiabatic potentials is presented in Fig. 1. Dy-
namically, the oscillator is fast and the two-level system is
slow.14 The lower adiabatic sheet has two minima located at

qmin = �� �2

4�4 −
�2

�2 , �5�

with the value

V�qmin� = −
�2�2

2�2 −
�2

8�2 , �6�

and its second derivative at the minimum points

�min
2 = �2�1 −

4�2�4

�4 � . �7�

The lower adiabatic sheet is very close to the unperturbed
��=0� displaced harmonic potential sheets as long as �
�� ,�. Therefore one might expect similar dynamic behav-
ior as that studied in Ref. 11. However, the dynamics is
different for very strong coupling. In Fig. 2 we show the
dynamics of the expectation values of the q coordinate and
�z. The details of numerical integration are given in Ref. 14.
We compare the exact dynamics with the dynamics of the
adiabatic potential 	Eq. �4�
, and with the dynamics of a dis-
placed oscillator ��=0�. One can notice in Fig. 2 that the
amplitude of the expectation value of the q coordinate de-
creases with time. It occurs as the system undergoes the tran-
sition from one level to another. At the same time, the trans-

FIG. 1. The shape of the two sheets of the adiabatic potential
generated by the Hamiltonian in Eq. �4�. The solid line is the lower
sheet and the dotted line is the upper sheet. The second term in Eq.
�4� is sharply peaked around the origin and it is plotted with a
dashed line.

FIG. 2. Time-dependent behavior of the ex-
pectation value of �a� q coordinate, with � /�
=0.1 and � /2�=−5; �b� 2�z, with � /�=0.1 and
� /2�=−5; �c� q coordinate, with � /�=0.5 and
� /2�=−5; �d� 2�z, with � /�=0.5 and � /2�=
−5. The solid line denotes the exact dynamics,
the dashed line represents the adiabatic dynamics,
and the dotted line shows the corresponding dis-
placed oscillator. For convenience, we have cho-
sen negative values of �. We notice that the
strength of the coupling is, actually, � /2.
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fer probability is staircaselike. Moreover, the slope of the
amplitude decrease depends on � but the frequency of the
oscillations does not change significantly. Although it is
weaker, the same quenching of the q coordinate appears for
the adiabatic motion generated by Eq. �4�. It is weakly de-
pendent on � and it occurs as the system undergoes the
transition from one potential well to the other potential well.
This was pointed out by Wagner12 who showed that the tran-
sition rate from one well to the other is dependent on � in
second order in the adiabatic approximation. In contrast to
his paper,12 Fig. 2 shows clearly that the adiabatic motion is
not an accurate description of the full dynamics. This behav-
ior will be explained below as interplay between the adia-
batic and the nonadiabatic regimes encountered during the
dynamics.

In order to explain the dynamics, we employ the equation
of motion in the Heisenberg picture for an operator, d

dtA
= i	H ,A
. Taking the expectation value, the equation be-
comes d

dt �A�= i�	H ,A
�. We apply this last equation to the
Hamiltonian represented by Eq. �1�. The corresponding
equations are

d

dt
�q� = �p� ,

d

dt
�p� = − �2�q� − ���z� ,

d

dt
��z� = ���y� ,

d

dt
��x� = − ��q�y� ,

d

dt
��y� = ��q�x� − ���z� ,

 . �8�

Equation �8� is an infinite chain of coupled ordinary differ-
ential equations. The chain can be broken by making as-
sumptions like

�q�y� � �q���y� ,

�q�x� � �q���x� . �9�

The approximations made in Eq. �9� are valid if one part �the
oscillator� is fast and the other part �the two-level system� is
slow as in the usual adiabatic approximation.15,16 Thus, com-
bining Eqs. �8� and �9�, one can show that Eq. �8� can be
approximated and then recast as

d

dt
�q� = �p� ,

d

dt
�p� = − �2�q� −

�

2
��f1�2 − �f2�2� ,

i
d

dt
f1 =

�

2
�q�f1 +

�

2
f2,

i
d

dt
f2 = −

�

2
�q�f2 +

�

2
f1, �10�

with f1 �f2� being the probability function of the level 1 �2�.
In other words, �f1�2 ��f2�2� is the probability of the system to
be on the level 1 �2�.

Equation �10� sheds a better light on the relationship be-
tween the oscillator and the two-level system. The first two
equations in �10� are the equations of the classical harmonic
oscillator displaced by the amount �

2 ��f1�2− �f2�2�. This im-
plies that the time variation of ��f1�2− �f2�2�=2��z� modulates
the amplitude of the oscillator as can be seen in Fig. 2. The
last two equations in �10� explain the time-dependent behav-
ior of ��f1�2− �f2�2�. First, let us assume that ��q���, which
is the adiabatic condition and is supposed to be true most of
the time for ��� ,�. The last two equations in �10� will be
approximated by i d

dt f1� �
2 �q�f1 and i d

dt f2�− �
2 �q�f2. This

means that the probability functions f1 and f2 acquire just a
phase factor. Therefore, there is no mixing between f1 and f2,
and ��z� is constant in time. Now, let us assume that the
reverse is true, ��q���. Then, the last two equations in �10�
will be approximated by i d

dt f1� �
2 f2 and i d

dt f2� �
2 f1, i.e., f1

and f2 will mix, and ��z� will change. These assertions are

FIG. 3. �a� Comparison be-
tween the dynamics of ��z�
�solid line� and ��q� /� �dotted
line�. It shows that ��z� changes
whenever ��q� /� is close to 0.
The upper panel shows the scale
around the origin, while the
lower panel shows the full scale
of the plots. �b� Pictorial expla-
nation of the dynamics of the
two-level system in this very
strong coupling case. The transi-
tion from the left well to the
right well occurs at the origin
where the adiabatic condition
���q���� is not satisfied.

BRIEF REPORTS PHYSICAL REVIEW B 74, 113405 �2006�

113405-3



proven numerically in Fig. 3�a�, where one can see that ��z�
changes whenever ��q� /��0.

In Fig. 3�b�, we give a simple explanation of the dynamics
of the transition from level 1 to level 2. Suppose that the
wave packet of the system is in the left well which is asso-
ciated with level 1. As soon as the wave packet reaches re-
gions close to the origin it “sheds” a part of itself into the
right well and the rest of it returns into the left well. Basi-
cally, the transition from level 1 to level 2 occurs during
short periods of time when the system is out of its adiabatic
regime. The picture presented here is closely related to
Landau-Zener theory,17,18 which treats a quantum two-level
system placed in a slowly varying external field. Near the
crossing point the adiabaticity is violated and the system can
escape from the state it occupied initially to another one. In
the present case, the coupling is purely quantum through the
quantum oscillator; hence the oscillator explores all possible

trajectories �in the sense of Feynman’s path integral� and the
ones that explore the region at the level crossing can induce
a nonzero flipping probability for the two-level system.

In Fig. 4 we show the dynamics of ��z� as depending on
initial conditions. We consider as initial conditions various
displaced ground state wave functions of the harmonic oscil-
lator. The displacements are given in terms of q0=− �

2�2 ,
which is the displacement of the unperturbed oscillator ��
=0� corresponding to the level 1. Assuming that the system
is initially on the level 1, its q coordinate �q� will tend to
oscillate around q0, starting from the initial displacement.
Figure 4 shows that the system undergoes faster transitions
from level 1 to level 2 for those initial conditions which
generate dynamics that satisfies the condition ��q��� for a
longer time. In addition to that, the system can be locked on
level 1 as long as the initial expectation value of q is set to be
close to q0.

In conclusion, we investigated the dynamics of a two-
level system interacting with a quantum harmonic oscillator
in the regime of very strong coupling �������. This re-
gime generates an adiabatic motion defined by the condition
��q���. We have found that the amplitude of the expecta-
tion value of the oscillator coordinate �q� varies similarly to
the expectation value of 2��z� �the difference between the
occupation probabilities of the two-level system�. In addi-
tion, the difference 2��z� is staircaselike. This behavior is
explained by the interplay between the adiabatic �whenever
��q���� and nonadiabatic �whenever ��q���� regions.
The transition from one level to another occurs during short
periods of time when the system is out of its adiabatic re-
gion. Thus, the system can be locked on one level if it is
prepared to satisfy the adiabatic condition all the time.
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FIG. 4. �Color online� Dynamics of ��z� with different initial
conditions. The arrows indicate various initial conditions in terms
of the displaced ground state wave function of the initial oscillator.
The oscillator displacements are −0.5q0 �it produces the faster tran-
sition�, 0, 0.5q0, 1.5q0, and 2.5q0 �it locks the system on level 1�,
with q0=−� /2�2. � /�=0.2 and � /2�=3.
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