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Critical temperature and specific heat for Cooper pairing on a spherical surface
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Based on an exact solution of the Bardeen-Cooper-Schrieffer-type Hamiltonian on a spherical surface, we
calculate the specific heat for the electron system with pair correlations on a sphere. We find that it is possible
to extract from the specific heat a temperature above which many-body states with broken Cooper pairs get
populated. Therefore, we define this temperature as the characteristic temperature signaling the onset of a
BCS-type pair-correlated state for electrons on a spherical surface. Such spherical electron systems are realized
in multielectron bubbles in liquid helium, for which the above-mentioned characteristic temperature is found to
be of the order of 10—100 mK. Both the specific heat and the critical temperature show a pronounced (4—6 %)
odd-even parity effect that persists even for numbers of electrons as large as 10°.
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I. INTRODUCTION

The physics of the two-dimensional electron system re-
mains the subject of intense theoretical and experimental
scrutiny. Spherical two-dimensional electron systems have
not been as thoroughly investigated as their flat counterparts,
despite the fact that the spherical geometry is expected to
lead to new physics because of its intrinsic topological dif-
ference with a flat space.! Moreover, the presence of curva-
ture also influences the coupling of the system to magnetic
fields, as has been shown for spherical2 and toroidal electron
systems.?

Spherical two-dimensional electron systems appear in
various physical systems: prominent examples are metallic
nanoshells* and buckyballs.’ The most idealized realization
of a spherical two-dimensional electron system is found in a
multielectron bubble (MEB) in liquid helium. MEBs are
(typically micron-sized) cavities in the liquid, containing
anywhere from a few up to 10® electrons. They have first
been observed as a result of a surface instability that occurs
when a liquid helium surface is being charged with electrons
beyond a critical surface charge density.°®

The bare single electron states on the surface of a spheri-
cal bubble are angular momentum eigenstates and have dis-
crete energies, characterized by the angular momentum L
and with degeneracy 2L+ 1. At low temperature there will be
a well-defined Fermi surface located at the highest occupied
state. Small-amplitude shape oscillations, including surface
waves, can be quantized as spherical ripplons, described by
the Hamiltonian

Hripl = 2 ﬁdez,mdL,m’ (l)

L>0.m

where dz‘m (@) is the creation (annihilation) operator for a
ripplon with angular momentum L and its z-projection m. w;,
are the ripplonic frequencies derived in Ref. 7 for spherical
MEBs under external pressure. The electrons can interact
with these ripplons. The interaction between electrons and
ripplons on the bubble surface is analogous to that of elec-
trons and phonons in solids. In particular, it can lead to the
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formation of ripplonic polarons.® In a recent work, the
present authors have shown that the electron-ripplon interac-
tion leads to the formation of strong pairing correlations be-
low a critical temperature.” These pairing correlations are
similar to the Bardeen-Cooper-Schrieffer (BCS) supercon-
ducting pair correlations in metals. This raises the obvious
question of how “superconductivity” will manifest itself on a
micron-sized spherical surface. More specifically, one can
ask how the formation of strong pairing correlations can be
detected experimentally, and how the critical temperature can
be determined.

In their study of nanoscopic superconducting aluminum
particles, Black ef al.'® used electron tunneling spectroscopy
to detect the superconducting excitation gap. Also in multi-
electron bubbles, pairing correlations lead to a (pseudo)gap
in the density of states.’ In the present paper, we investigate
observable manifestations of pairing correlations in MEBs.
The altered density of states will reflect itself in particular in
the specific heat of the system. Below, we calculate the spe-
cific heat of the spherical two-dimensional electron system
and argue that the onset of a sharp rise in the specific heat
can be used to define a characteristic temperature for the
transition between a normal state and the pair-correlated
state. Moreover, we derive an analytical expression for this
characteristic temperature and show that the specific heat re-
veals a pronounced odd-even parity effect, which persists
even for large (10°) numbers of electrons.

II. SPECIFIC HEAT OF COOPER PAIRS ON A SPHERE

The spherical, two-dimensional electron system, is de-
scribed in second quantization with the operators ¢y, . and
Cem.o that create, respectively, destroy an electron with spin
o=1,/ in the angular momentum eigenstate |¢,m). In Ref. 9
we have shown that in the case of multielectron bubbles, the
electron-ripplon interaction leads to a Cooper-type attractive
interaction between the electrons, resulting in a BCS-type
Hamiltonian:
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This Hamiltonian can be mapped onto the so-called “reduced
BCS Hamiltonian” studied in the context of superconducting
nanograins.'"!> In the present case, €, represents the unper-
turbed, 2(2€ + 1)-degenerate angular-momentum energy level

h2
€= 2meR2€(€ +1), (3)
where m, is the electron mass and R is the radius of the
spherical system. The separation between different angular
momentum levels € of the unperturbed system is typically
much larger than the energy of the ripplons, and the interact-
ing electron-ripplon system can effectively be treated as a
sum over subsystems with different €. The typical energy
scale of the kinetic energy is € =#2/(m,R?). For a 10 000
electron bubble at zero external pressure, €;=0.78 mK. The
interaction energy scale G for the same bubble lies around
G=10 mK, and the ripplon energy scale for this bubble is
10 pK. In what follows, we will present results as a function

of the dimensionless coupling constant G/ €.

The Hamiltonian (2) can be solved analytically, using Ri-
chardson’s method.'*'* The total energy is a sum of the en-

ergies for each € subsystem,

E;= E E (4)

e8ebe’

and is characterized by the set of quantum numbers j
={ny,8¢,b¢}¢=0.12... . The energy levels of the subsystem ¢
are given by

£

npgpby = (20 +bo)eg—Glng—go) 2 —bg+2-ng—gg).

)

The quantum number 7, corresponds to the number of elec-
tron pairs in the subsystem, whereas b, is the number of
unpaired electrons and g, is the number of elementary
bosonic pair-hole excitations' in the system of n, pairs. In
the ground state all electrons are paired (b,=0), except one
when an odd number of electrons is present in the system.
There are no pair-hole excitations (g,=0) in the ground state.
The spherical symmetry, resulting in a discrete and degener-
ate single-particle level structure, allows for an exact solu-
tion of the Hamiltonian (2), describing also the fluc-
tuations.'® At finite temperatures, two types of excitations
will be present. The broken pair states (b, # 0) correspond on
a mean-field level to quasiparticle states in the BCS approxi-
mation. The presence of collective modes (in the context of
the Richardson solution sometimes called “gaudinos”) corre-
spond to the case when g, #0."”

At strong coupling (G = €,/2) the electron pairs redistrib-
ute themselves over approximately w=2G/¢€, different ¢
subsystems around the Fermi level €=L; to minimize the
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energy.” The above estimate for the number of partially oc-
cupied angular momentum levels € does not hold for G
=Ne¢,/2, where N is the total number of electrons in the
system. As implied from Eq. (25) of Ref. 9, at G=Ng, /2,
when the interaction strength G exceeds the Fermi energy for
noninteracting electrons, the ground state would correspond
to an electron configuration with just a single pair per ¢
level. However, such an extreme strong-coupling limit ap-
pears irrelevant for the multielectron bubbles under consid-
eration and it is not addressed in the following, where the
inequality G<<Ne;/2 is assumed to be satisfied.

The degeneracy of energy level E; is a product of the
degeneracies of the energy levels of the constituent sub-
systems,

_ ()
J.f - H J"e gpbe? (6)
with
, 8¢=0,
JO = 21"«’C2€+ 2041-by _ 26+1-b
08¢be ™ (Cg; ¢ _ g{:l () g =
(7)

where C* are binomial coefficients.'®

The analytic expression for the energy levels and their
degeneracies allow to compute the specific heat straightfor-
wardly,

_dB)
Cdar’ ®

where (E) is the statistical average energy of the electrons in
the MEB,

2 JE; exp[- E//(kgT)]

E)= 9
= 2] exp[— E/(kBT)] ©)

The density of states Ds(E) allows to express this as an
energy integral. The subscript J is used to indicate that we
numerically calculate the density of states by counting the
states in an energy interval ¢ around the energy E. For the
results presented in Fig. 1, we chose energy intervals of &
=0.01¢,. Figure 1 shows the density of states Ds(E) as a
function of the energy above the ground state energy Eq, for
different values of the coupling constant G/e€;. Each graph
shows results for both an even (full circles) and an odd
(crosses) number Ny of electrons on the highest angular mo-
mentum level Ly occupied at G=0. As the coupling constant
is increased, a clear odd-even effect appears in the density of
states. The presence of an unpaired electron sensitively raises
the degeneracy of the energy levels and thus the number of
available states.

The aim of the next section is to examine the effect of
pairing interactions, described by the Hamiltonian (2) and
characterized by the coupling strength G, on the behavior of
the specific heat as a function of temperature.
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FIG. 1. (Color online) The calculated density of states for a
spherical 2D electron system with pairing correlations is shown as a
function of the energy above the ground state energy Ey. Here
Ds(E) is evaluated by counting the number of states in an interval
8=0.01¢€, around energy E. Results are shown for even (Np=54,
solid circles) and odd (Ny=53, crosses) numbers of electrons on the
(unperturbed) Fermi angular momentum level Ly=26. The different
panels correspond to different strengths of the attractive electron-
electron term in the BCS-type Hamiltonian (2).

III. RESULTS AND DISCUSSION
A. Small coupling, G/e;<1/2

When there are no pairing interactions (G=0), the energy
level spectrum consists of the discrete levels €, and the spe-
cific heat will be similar to that of a collection of fermionic
quantum rotors. It will be small for temperatures T
<#h?%/(2mR’kp) and rise rather abruptly to saturate at Nkj for
T>h?/(2mR’kp). The onset of the increase of the specific
heat at G=0 is shown in the full curve in Fig. 2. The increase
in the specific heat starts at a temperature where there ap-
pears a non-negligible occupation probability for the lowest
excited states. These excited states are separated from the
ground state by an energy ~¢€(Lp+1) and correspond to
transitions of electrons between different € subsystems.
These transitions will be referred to as interlevel transitions.

For small, nonzero G<<¢;, an additional peak in C(T)
develops as shown in Fig. 2. This additional peak appears at
a temperature smaller than the temperature at which the G
=0 specific heat starts to increase. This peak corresponds to
intralevel excitations of the system: pair breaking and pair-
hole excitations. As follows from Eq. (5), the first pair-
breaking energy equals the lowest pair-hole excitation en-
ergy. For a subsystem € with an even number of electrons,
we find A,=(2€+1)G. For an odd number of electrons, this
becomes A,=2¢G.

So, when G <€, the intralevel excitations occur at ener-
gies much smaller than the interlevel excitations. As G is
increased, the specific heat peak that corresponds to these
intralevel excitations shifts to higher temperatures. In the
case of a closed-shell configuration, no intralevel excitations
from the ground state are possible, so that no additional peak
of C(T) appears at G<e¢.

B. Large coupling, G/e;>1/2

For G>¢€,/2, the pair-breaking energy becomes larger
than the energy spacing between the single-electron € levels.
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FIG. 2. (Color online) The calculated specific heat is plotted as
a function of temperature for an even and odd number of electrons.
The results are shown for several values of the interaction strength
G<=<¢/2. The down and up arrows are positioned at the corre-
sponding characteristic temperatures given by (11) and (12) for
even and odd MEBs, respectively.

The density of states no longer resembles a set of peaks, but
it becomes more similar to a step function, where the steps
occur at the pair-breaking energy. When the temperature is
small enough so as not to populate states with a broken pair,
the available density of states is small. But when the tem-
perature is increased and broken pair states become popu-
lated, the relevant density of states jumps to a value that is
orders of magnitude higher [cf. Figs. 1(e) and 1(f)]. This
reflects itself in the behavior of the specific heat: as soon as
the temperature is large enough to break pairs, the specific
heat will be strongly enhanced. This abrupt transition can be
seen in Fig. 3.

The values of the temperature that correspond to the fast
increase in C(T) clearly correlate with G. Note that—as dis-
tinct from the case of G/€;<1/2—at large coupling (G/¢;
>1/2) the specific heat is nonzero even at temperatures be-
low the temperature of the onset of the rise in C. This is due
to the presence of excitations related to interlevel transitions
of pairs: for large G, these can have energies smaller than the
pair-breaking energy. With increasing G, the number of these
excitations increases [cf. Fig. 1(f) to Fig. 1(e)], resulting in
the corresponding increase of C with G in the low-
temperature region (see Fig. 3).

C. The critical temperature for pair breaking

As implied form the previous discussion and from Figs. 2
and 3, both for the case of small (G<¢€,/2) and large (G
= €,/2) coupling the specific heat starts rising at a tempera-
ture when states with broken pairs get populated. Below this
temperature, BCS-type pairing correlations are dominant, but
above this temperature, the “superconducting” pairing corre-
lations are suppressed. So, it is possible to extract from C(T)
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FIG. 3. (Color online) The calculated specific heat is plotted as
a function of temperature for an even and odd number of electrons.
The results are shown for several values of the interaction strength
G>g,/2. The down and up arrows are positioned at the corre-
sponding characteristic temperatures given by (11) and (12) for
even and odd MEBs, respectively.

a typical temperature 7" separating the two aforementioned
regimes.

Here we make an analytical estimate for 7". The probabil-
ity for the system to be in the ground state is proportional to
Py=Jys exp(=E,/kgT), where J, is the degeneracy of the
ground state. The probability for the system to break up one
pair is proportional to Pyp,=Jyp exp[—(Eg+Ap)/kpT],
since ALF is the first pair-breaking energy. Here, Jyy,, is the
total number of states with one broken pair. An appreciable
contribution of states with one broken pair to the specific

heat appears when Py, becomes comparable to P, i.e., at a
temperature
kgT" = _ S (10)
B ln(‘llbp/]gs) .

The ground state for an even bubble is characterized by g,
=0, by=0. A state with one broken pair is characterized by
ng—ne—1 and by—b,+2. At small coupling, the first pair-
breaking takes place for €=L;. At strong coupling (/2
<G<Ng /2), the electron pairs partially occupy about u
=2G/ €, single-particle € levels around the Fermi level Lg
and the first pair-breaking can take place on any of these
levels (so we still have € =Ly for Lp>1).

From (7) we see that the degeneracy of states that corre-
spond to the first intralevel pair-breaking exceeds that of the
ground state by a factor Jlbp/.lg5=4C§L""+1 (=8L3 for Lp>1).
The ground state for an odd bubble is characterized by g,
=0, b,=1 for the lowest partially occupied subsystem with
€= Ly, so that the odd bubble has a ground state that is a
factor 2C257*! more degenerate than that of the even bubble.
Applying again Eq. (7) we get for odd bubbles Jyp,/ /g
=203k it = 81273,
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Given that the pair-breaking energy is equal to the pair-
hole excitation energy, why did we assume that the increase
in the specific heat is due to the breaking of pairs rather than
to pair-hole excitations? This is justified because the increase
in degeneracy due to the pair-breaking is much larger than
the increase in degeneracy due to a pair-hole excitation. A
pair-hole excitation is characterized by g,— g,+1 (whereas
by and n, are unchanged). From (7) we see that indeed the
increase in the degeneracy of states due to the lowest pair-
hole excitation (for an even bubble) is characterized by the
factor (C37*'~1), much smaller than Jipp/Jgs Tor Lp>1.

Thus far, we have only considered intralevel pair break-
ing. But for G> €,/2, also interlevel pair breaking, where an
electron pair is broken up and one electron is transferred to
another € subsystem, become important.

At strong coupling, the electron pairs partially occupy
about u=2G/e€; single-particle € levels around the Fermi
level L. All these w single-particle levels become relevant in
the pair-breaking process, raising the degeneracy of states
due to pair breaking so that Jp,/J, = 4C% QLA 8L§,u,2 for
even bubbles and similarly Jyp,/Jy =~ 8L12p,u2/ 3 for odd
bubbles.

D. Parity effect

From the preceding discussion, it is clear that there ap-
pears a parity effect. The presence of an unpaired electron in
the odd bubbles alters the degeneracy ratio of the broken-pair
state over the ground state. The presence of the unpaired
electron also changes the pair-breaking energy to ALF
=2LzG as compared with A; =(2Lp+1)G for the even
bubble. The estimate for the temperature 7° at which the
broken-pair states start being populated will therefore also be
different for even and odd cases. In particular, we have for
the even case

« QL+ 1)G

=~ s 11
B+ even ln(sLiuz) ( )
with w=max[1,2G/ €], and for the odd case
. 21:G
=~ 12
Brodd  1n(8L2 u2/3) (12)

The location of these temperatures is indicated by arrows in
Figs. 2 and 3. The estimates (11) and (12) are in good agree-
ment with the temperatures at which C(T) increases. Note
that for even bubbles, the rise of the specific heat seems to
show an initial “shoulder,” and T, is a bit smaller than
Tzdd. This shoulder in the specific heat corresponds to the
first pair-breaking transition. What makes it different from
the following pair-breaking transitions? As implied from Fig.
1 depicting the density of states, the relative increase in D
due to the first pair-breaking transition is larger than that for
further pair-breaking transitions. Moreover, the energy sepa-
ration of states with one broken pair from adjacent states is
larger than that of states with more than one broken pair.
From Egs. (11) and (12), the relative difference between
the characteristic temperature for odd and even bubbles is
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odd even even — ln(SL%,U,Z) ZLF +1

-1
X <1 - L%) . (13)
In(8Lyu”)

For MEBs with large numbers of electrons (N> 1), the an-
gular momentum Ly increases with N approximately as
VN/2. With increasing N, also the parameter u=2G/ €, rises
(it is about 11.6 for N=10? and 170 for N=10°). Therefore,
for sufficiently large N, inequalities In(3) <ln(8L12V,u,2)

<2Lp+1 are satisfied so that Eq. (13) takes the form
(Thgg = Toyen) Toyen = In(3)/In(8L7:1%). (14)
The relative difference (Thyq—Toyven)/ Toven» described by Eq.
(14), reflects the fact that—as discussed in the preceding
section—for odd bubbles the ratio J;,,/Jy is approximately
3 times smaller as compared to that in even bubbles. With
increasing N, the ratio Jp,/Jg strongly increases, while the
relative difference in Jy,,/J,, between odd and even bubbles
remains the same at any Ly> 1. Since the characteristic tem-
perature 7~ depends on J 1bp/Jgs logarithmically [see Eq.
(10)],*the effect of the aforementioned difference in Jyp,/Jq
on (T,yq—Toyen)! Teven Weakens with increasing N. As a re-
sult, the relative difference between the characteristic tem-
perature for odd and even bubbles decreases with increasing
N, but slowly. The characteristic temperature for multielec-
tron bubbles with an even number of electrons, is shown in
panel (a) of Fig. 4 as a function of the number of electrons in
the bubble and the pressure exerted on the bubble. The pres-
sure on a multielectron bubble increases the electron-ripplon
coupling, and thus G, and T". The relative difference be-
tween the even and odd cases, as given by Eq. (13), is shown
in panel (b). Even for fairly large numbers of electrons, N
~10°, the T.,, is 4% higher than T,

ven®

IV. CONCLUSIONS

In this paper, we have focused our discussion on the
spherical electron system as it is realized in multielectron
bubbles, even though the results presented here are more
general, and valid for all the systems well described by the
Hamiltonian (2). This BCS-type Hamiltonian on the sphere
can be solved analytically using Richardson’s method, and
the specific heat is calculated from the energy level spectrum
and the level degeneracies, or from the density of states. The
ground state of the system is a state with strong BCS-type
pair correlations. We show that the specific heat shows a
sharp increase as soon as the temperature is large enough to
populate the many-body states that contain broken pairs. The
temperature at which the specific heat starts to increase con-
stitutes a characteristic temperature 7~ that separates the
BCS-type pair-correlated state below 7° from the broken-
pair states above T". This definition relates T to the critical
temperature for the onset of superconductivity that can be
derived from measuring the specific heat of a superconduct-
ing sample. It is important to note that the procedure fol-
lowed here is not able to distinguish whether the BCS-tape
pair-correlated state appears due to a phase transition or due
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FIG. 4. (Color online) The characteristic temperature above
which states with broken pairs become populated is shown as a
function of the number of electrons on the sphere in panel (a) for an
even number of electrons. In panel (b) the relative difference be-
tween the characteristic temperatures of even and odd systems is
shown. Here p is the pressure on a multielectron bubble.

to a smooth evolution from the “normal” Fermi liquid. The
presence of an unpaired electron in spherical systems with an
odd number of electrons significantly affects both the spe-
cific heat and 7": we find that for multielectron bubbles with
odd numbers of electrons 7T~ is roughly 4—6 % larger than in
the even case. This persistent parity effect is present even for
a large total number of electrons.
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