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Explicit current-dependent expressions for anisotropic longitudinal and transverse nonlinear magnetoresis-
tivities are represented and analyzed on the basis of a Fokker-Planck approach for two-dimensional single-
vortex dynamics in a washboard pinning potential in the presence of pointlike disorder. Graphical analysis of
the resistive responses is presented both in the current-angle coordinates and in the rotating current scheme.
The model describes nonlinear anisotropy effects caused by the competition of pointlike �isotropic� and aniso-
tropic pinning. Nonlinear guiding effects are discussed, and the critical current anisotropy is analyzed. Gradu-
ally increasing the magnitude of isotropic pinning force this theory predicts a gradual decrease of the aniso-
tropy of the magnetoresistivities. The physics of the transition from the new scaling relations for anisotropic
Hall resistance in the absence of pointlike pins to the well-known scaling relations for the pointlike disorder is
elucidated. This is discussed in terms of a gradual isotropization of the guided vortex motion, which is
responsible for the existence in a washboard pinning potential of new �with respect to magnetic field reversal�
Hall voltages. It is shown that whereas the Hall conductivity is not changed by pinning, the Hall resistivity can
change its sign in some current-angle range due to presence of the competition between i and a pins.
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I. INTRODUCTION

The importance of flux-line pinning in preserving super-
conductivity in a magnetic field has been generally recog-
nized since the discovery of type-II superconductivity. But
until now the mechanism of flux-line pinning and creep in
superconductors �and particularly in the high-Tc supercon-
ductors �HTSC’s�� is still a matter of controversy and great
current interest, especially in the cases of strong competition
between different types of pins.

One of the open issues in the field is the influence of
isotropic pointlike disorder on the vortex dynamics in the
anisotropic washboard planar pinning potential �PPP� for the
case of arbitrary orientation of the transport current with re-
spect to the PPP “channels” where the guiding of vortices
can be realized. The importance of this issue may be substan-
tiated by ubiquitous presence of pointlike pins in those high-
and low-Tc superconductors which were used so far for re-
sistive measurements of the guided vortex motion.1–9

The first attempt to discuss the influence of isotropic
pointlike disorder on the guiding of vortices was made by
Niessen and Weijsenfeld1 in 1969. They studied guided mo-
tion in the flux-flow regime by measuring transverse voltages
of cold-rolled sheets of a Nb-Ta alloy for different magnetic
fields H, transport current densities J, temperatures T, and
angles � between the rolling and current direction. The
�H ,J ,T ,�� dependences of the cotangent of the angle � be-
tween the average vortex velocity �v� and the vector J direc-
tion were presented. For the discussion, a simple theoretical
model was suggested, based on the assumption that vortex
pinning and guiding can be described in terms of an isotropic
pinning force Fp

i plus a pinning force Fp
a with a fixed direc-

tion which was perpendicular to the rolling direction. The
experimentally observed dependence of the transverse and
longitudinal voltages on the magnetic field in the flux-flow
regime as a function of the angle � was in agreement with
this model.

Unfortunately, in spite of the correct description of a ge-
ometry of the motive forces of a problem �see below Fig. 1�
it was impossible within the flux-flow approach1 to calculate

FIG. 1. System of coordinates xy �with the unit vectors x and y�
associated with the PPP planes and the system of coordinates x�y�
associated with the direction of the current density vector j; � is the
angle between the channels of the PPP and j, � is the angle between
the average velocity vector of the vortices v and the vector j, FL is
the Lorentz force, �Fp

i � and �Fp
a� are the average isotropic and an-

isotropic pinning forces, respectively, and FI is the average effective
motive force for a vortex. Here for simplicity we assume �=0.
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theoretically the nonlinear �J ,T ,�� dependences of the aver-
age pinning forces �Fp

i � and �Fp
a� which determine the experi-

mentally observed cot ��J ,T ,�� dependences.
The nonlinear guiding problem was exactly solved at first

only for the washboard PPP �i.e., for Fp
i =0� within the

framework of the two-dimensional single-vortex stochastic
model of anisotropic pinning based on the Fokker-Planck
equation with a concrete form of the pinning potential.10,11

Two main reasons stimulated these theoretical studies. First,
in some HTCS’s twins can easily be formed during the crys-
tal growth.2–5,8 Second, in layered HTCS’s the system of
interlayers between parallel ab planes can be considered as a
set of unidirectional planar defects which provoke the intrin-
sic pinning of vortices.12

Rather simple formulas were derived11 for the experimen-
tally observable nonlinear even �+� and odd �−� �with respect
to the magnetic field reversal� longitudinal and transverse
magnetoresistivities ��,�

± �j ,� ,� ,�� as functions of the dimen-
sionless transport current density j, dimensionless tempera-
ture �, and relative volume fraction 0���1 occupied by the
parallel twin planes directed at an angle � with respect to the
current direction. The ��,�

± formulas were presented as linear
combinations of the even and odd parts of the function
��j ,� ,� ,�� which can be considered as the probability of
overcoming the potential barrier of the twins11; this made it
possible to give a simple physical treatment of the nonlinear
regimes of vortex motion �see below, Sec. II C�.

Besides the appearance of a relatively large even trans-
verse ��

+ resistivity, generated by the guiding of vortices
along the channels of the washboard PPP, explicit expres-
sions for two new nonlinear anisotropic Hall resistivities ���

−

and ��
− were derived and analyzed. The physical origin of

these odd contributions caused by the subtle interplay be-
tween even effect of vortex guiding and the odd Hall effect.
Both new resistivities were going to zero in the linear re-
gimes of the vortex motion �i.e., in the thermoactivated flux
flow �TAFF� and the ohmic flux flow �FF� regimes� and had
a bumplike current or temperature dependence in the vicinity
of highly nonlinear resistive transition from the TAFF to the
FF. As new odd resistivities arose due to the Hall effect, their
characteristic scale was proportional to the small Hall con-
stant as for ordinary odd Hall effect investigated earlier.10 It
was shown11 that appearance of these new odd ���,�

− contri-
butions leads to new specific angle-dependent “scaling” re-
lations for the PPP which demonstrate the so-called anoma-
lous Hall behavior in the type-II superconductors.

Here we should to emphasize that the anomalous behavior
of the Hall effect in many HTSC’s and in some conventional
superconductors in the mixed state remains one of the chal-
lenging issues in the vortex dynamics.5,12,13 This problem
manifests itself experimentally by the Hall-effect sign rever-
sal in the vortex state with respect to the normal state �at
temperatures near Tc and for moderate magnetic fields� and
the existence of the Hall resistivity scaling relation ��	��

�

with 1	�	2, where �� is the Hall resistivity and �� is the
longitudinal resistivity. One of the main theoretical issues in
the field is the influence of the pinning on the “Hall
anomaly” and scaling relation. On the assumption that the
“bare” Hall coefficient �H is constant �see below, Eq. �1��,

two different scaling laws have been derived earlier theoreti-
cally for different pinning potentials.11,14 On the one hand,
Vinokur et al. have shown14 that a scaling law ��=
��

2

�where 
=n�Hc2 /B�0 is the Hall conductivity, n= ±1, c is
the speed of light, B is the magnetic field and �0 is the
magnetic flux quantum� is the general feature of any isotro-
pic vortex dynamics with an average pinning force directed
along the average vortex-velocity vector. On the other hand,
later it was shown11 that for a washboard PPP, the form of
corresponding scaling relation is highly anisotropic due to
the reason that pinning force for a pins is directed perpen-
dicular to the PPP channels. The scaling law for �=0 has the
form ��=−n��H /���� �� is the vortex viscosity� which was
interpreted previously11 as a scaling law with �=1, whereas
for �=
 /2 the scaling relation is more complex.11 As it is
shown in this paper, the ��

− resistivity for �i+a� pins can be
presented as a sum of the three contributions with the differ-
ent signs. The graphical analysis in Sec. III of this paper
represents a some range of the �� , j� values where the theory
predicts a nonlinear change of the ��

− sign.
Let us consider another specific feature of the purely an-

isotropic guiding model.10,11 From the mathematical view-
point, the nonlinear anisotropic problem, as solved in Ref.
11, reduces to the Fokker-Planck equation of the one-
dimensional vortex dynamics15 because the vortex motion is
unpinned in the direction which is parallel to the PPP chan-
nels. As a consequence, a critical current jc exists only for
the direction which is strictly perpendicular to the PPP chan-
nels ��=0�; jc���=0 for any other direction �0��	
 /2�.
However, the measurements of the magnetoresistivity
show1–8 that jc����0 for all � �although jc��� may be an-
isotropic�. So, in spite of some merits of a model with a
washboard PPP, which was the first exactly solvable stochas-
tic nonlinear model of anisotropic pinning, it cannot describe
the jc anisotropy of the experimentally measured samples.

Due to this reason, later another simple model was
suggested,16,17 which demonstrates this jc anisotropy for all
� on the basis of the bianisotropic pinning potential formed
by the sum of two washboard PPP’s in two mutually perpen-
dicular directions. In contradistinction to the nonlinear model
with uniaxial PPP,11 this bianisotropic nonlinear model pre-
dicts a jc��� anisotropy and relates it to the guiding aniso-
tropy, describing the appearance of two steplike and two
bumplike singularities in the ��,�

+ and ��,�
− �Hall� resistive

responses, respectively. Although several proposals to realize
experimentally this bianisotropic model were discussed so
far,16 the corresponding experiments, however, are still ab-
sent.

At the same time, the experimental study of vortex dy-
namics in the PPP is always accompanied by the presence of
a certain level of pointlike disorder. So, as far as the analysis
of existing experimental data is concerned, none of the
present theoretical studies in the limiting cases of purely an-
isotropic or isotropic pinning are sufficient. The more gen-
eral approach is needed.

The objective of this paper is to present results of a theory
for the calculation of the nonlinear magnetoresistivity tensor
at arbitrary value of competition between pointlike and an-
isotropic planar disorder for the case of in-plane geometry of
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experiment. This approach will give us the experimentally
important theoretical model which demonstrates the jc aniso-
tropy for all � and predicts a nonlinear change of the ��

− sign
at some set of parameters �without change of the Hall con-
ductivity� due to competition of the washboard PPP and a
pointlike disorder.

The organization of the article is as follows. In Sec. II we
derive main results of the �i+a�-pinning problem and con-
sider two main limiting cases of purely a or i pinning. In Sec.
III we represent the graphical analysis of different types of
nonlinear responses—in particular, the �j ,�� graphs of the
��,�

± magnetoresistivities and the resistive response in a ro-
tating current scheme. In Sec. IV we conclude with a general
discussion of our results.

II. MAIN RELATIONS

A. Formulation of the problem

The Langevin equation for a vortex moving with velocity
v in a magnetic field B=nB �B
�B�, n=nz, z is the unit
vector in the z direction and n= ±1� has the form

�0v + n�Hv Ã z = FL + Fp
a + Fp

i + Fth, �1�

where FL=n��0 /c�jÃz is the Lorentz force ��0 is the mag-
netic flux quantum, and c is the speed of light�, Fp

a

=−�Up�x� is the anisotropic pinning force �Up�x� is the
washboard planar pinning potential�, Fp

i is the isotropic pin-
ning force induced by uncorrelated point-like disorder, Fth is
the thermal fluctuation force, �0 is the vortex viscosity, and
�H is the Hall constant.

For purely isotropic pinning �i.e., for Fp
a =0�, Eq. �1� was

earlier solved14 for Fth=0, using the fact that

Fp
i = − �i���v , �2�

where �i��� is velocity-dependent viscosity and �
�v�.
Below we will show �see Eq. �8� and Sec. II D� that the

solution, obtained in Ref. 14, can be presented in terms of
the probability function of overcoming the effective current-
and temperature-dependent potential barrier of isotropic pin-
ning �i�FI�, which is simply related to �i���.

In the absence of pointlike disorder �i.e., for Fp
i =0�, Eq.

�1� was reduced to the Fokker-Planck equation, which was
solved,10,11 assuming that the fluctuational force Fth�t� is rep-
resented by a Gaussian white noise, whose stochastic prop-
erties are assigned by the relations

�Fth,i�t�� = 0,�Fth,i�t�Fth,j�t��� = 2T�0
ij
�t − t�� , �3�

where T is the temperature in energy units.
In what follows we derive the solution of Eq. �1�, using

for Fp
i the assumption �2�, which reduces Eq. �1� to the equa-

tion

�v + n�Hv Ã z = FL + Fp
a + Fth, �4�

where �=����
�0+�i���. Using the result of Ref. 11, the
self-consistent solution of the Eq. �4� can be represented as

�����vx� = Fa�a�Fa�/�1 + �̃2� ,

�����vy� = FLy + n�̃Fa�a�Fa�/�1 + �̃2� , �5�

where �a�Fa� is the probability of overcoming the PPP under
the influence the effective moving force Fa
FLx−n�̃FLy, FLx
and FLy are the Lorentz force components acting along the
vector x and y, respectively, �̃
�Z���, �
�H /�0, and Z���

�0 /���� with an obvious condition 0	Z���	1. Equations
�5� can be rewritten as

�����v� = FI, �6�

where FIx and FIy are corresponding right-hand parts of Eqs.
�5�. From Eq. �6� we have

����� = FI, �7�

where FI
�FIx
2 +FIy

2 �1/2 and we omitted for simplicity the
symbol of averaging for v. Then from Eq. �7� follows that
�=��FI� and thus it is possible to represent �i��� and Z��� in
terms of FI: �i���=�i��=��FI��
 �̃i�FI� and

Z��� = Z�� = ��FI�� 
 �i�FI� . �8�

Here �i�FI� has a physical meaning of the probability to
overcome the effective potential barrier of isotropic pinning
under the influence of effective �� dependent through the �̃
dependence� force FI. Then in terms of the �i�FI�, Eq. �6�
takes the self-consistent form

�0v = �i�FI�FI, �9�

which can be highly simplified for a small dimensionless
Hall constant ���1�. Really, in this limit �̃=��i�Fi�, where
Fi
FI��=0� and the right-hand part of the Eq. �6� becomes
� independent—i.e., is represented only in terms of the
known quantities. Just in this limit all subsequent results of
the paper will be discussed.

B. Nonlinear resistivity and conductivity tensors

The average electric field induced by the moving vortex
system is given by

E = �1/c�B Ã v = n�B/c��− �yx + �xy� , �10�

where x and y are the unit vectors in the x and y directions,
respectively.

From formulas �9� and �10� we find the dimensionless
magnetoresistivity tensor �̂ �having components measured in
units of the flux-flow resistivity � f 
�0B /�0c2� for the non-
linear law E= �̂�j�j:

�̂ = ��xx �xy

�yx �yy
� = � �i�FI� − n��i

2�Fi��a�FLx�
n��i

2�Fi��a�FLx� �i�FI��a�Fa�
� .

�11�

The conductivity tensor �̂ �the components of which are
measured in units of 1 /� f�, which is the inverse of the tensor
�̂, has the form

�̂ = ��xx �xy

�yx �yy
� = ���i�FI��−1 n�

− n� ��i�FI��a�Fa��−1 � . �12�

From Eqs. �11� and �12� we see that the off-diagonal com-
ponents of the �̂ and �̂ tensors satisfy the Onsager relation
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��xy =−�yx in the general nonlinear case and �xy =−�yx�. All
the components of the �̂ tensor and the diagonal components
of the �̂ tensor are functions of the current density j through
the external force value FL, the temperature T, the angle �,
and the dimensionless Hall parameter �. For the following
�see Sec. II E 2� it is important, however, to stress that the
off-diagonal components of the �̂ �i.e., the dimensional Hall
conductivity terms 
=n� /� f� are not influenced by a pres-
ence of the i and a pins.13

The experimentally measurable resistive responses refer
to a coordinate system tied to the current �see Fig. 1�. The
longitudinal and transverse �with respect to the current direc-
tion� components of the electric field, E� and E�, are related
to Ex and Ey by the simple expressions

E� = Exsin � + Eycos � ,

E� = − Excos � + Eysin � . �13�

Then according to Eqs. �13�, the expressions for the ex-
perimentally observable longitudinal and transverse �with re-
spect to the j direction� magnetoresistivities �� 
E� / j and
��
E� / j have the form

�� = �xxsin2 � + �yycos2 � ,

�� = �yx + ��yy − �xx�sin � cos � . �14�

Note, however, that the magnitudes of the ��,�, given by Eqs.
�14�, in general, depend on the direction of the external mag-
netic field B along z axis due to the n� dependence of the FI
and Fa forces in arguments of the �i and �a functions, respec-
tively. In order to consider only n-independent magnitudes of
the �� and �� resistivities we should introduce the even �+�
and odd �−� magnetoresistivities with respect to magnetic
field reversal (�±
���n�±��−n�� /2) longitudinal and trans-
verse dimensional magnetoresistivities, which in view of
Eqs. �14� have the form

��
+ = � f�sin2 � + �a�FLx�cos2 ���i�Fi� ,

��
− = � f
�sin2 � + �a�FLx�cos2 ���i

−�FI� + �i�Fi��a
−�Fa�cos2 �� ,

�15�

��
+ = − � f�i�Fi��1 − �a�FLx��sin � cos � ,

��
− = � f„n��a�FLx��i

2�Fi� + 
�a
−�Fa��i�Fi�

− �i
−�FI��1 − �a�FLx���sin � cos �… . �16�

Here �− are the odd (�−
�−�n�= ���n�−��−n�� /2) com-
ponents of the functions �i�FI� and �a�Fa�, and for �a

−�Fa� we
have the expansion in terms of ��1:

�a
− � − n��i�Fi�FLy�d�a�FLx�/dFLx� . �17�

Equations �15� and �16� are accurate to the first order in
��1 and contain a lot of new physical information, which
will be analyzed below �see Sec. II E�. However, before this
analysis it is instructive to discuss in short the main physi-
cally important features of two main limiting cases of purely

anisotropic a pinning and isotropic i pinning, which follow
from Eqs. �15� and �16�, when �i=1 or �a=1, respectively.

C. Anisotropic a pinning

Setting �i=1 we obtain rather simple formulas, which
were derived first11 for the experimentally observable nonlin-
ear even and odd longitudinal and transverse anisotropic
magnetoresistivities ��,�

± �j ,� ,� ,�a� as functions of the trans-
port current density j, dimensionless temperature � and rela-
tive volume fraction 0	�a	1, occupied by the parallel twin
planes, directed at an angle � with respect to the current
direction:

��a
+ = � f��a

+cos2 � + sin2 ��, ��a
+ = � f��a

+ − 1�sin � cos � ,

�18�

��a
− = � f�a

−cos2 �, ��a
− = � f�n��a

+ + �a
−sin � cos �� .

�19�

Here �a=�a�F� is considered as the probability of over-
coming the potential barrier of the washboard PPP in the x
direction under the influence of the effective force F
FLx
−n�FLy.

11 This �a function describes an essentially nonlinear
transition from the linear low-temperature thermoactivated
flux-flow �TAFF� regime of vortex motion to the Ohmic FF
regime. It is a steplike function of j or � for a small fixed
temperature or current density respectively �see Figs. 4 and 5
in Ref. 11�.

It follows from Eqs. �18� and �19� that for ��0, 
 /2 the
observed resistive response contains not only the ordinary
longitudinal ���a

+ ��� and transverse ��a
− ��� magnetoresistivi-

ties, but also two new components induced by the pinning
anisotropy: an even transverse ��a

+ ��� and an odd longitudi-
nal component ���a

− ���. The physical origin of the ��a
+ ���

�which is independent of � at ��1� is related to the guided
vortex motion along the “channels” of the washboard pin-
ning potential in the TAFF regime. On the other hand, the
component ���a

− ��� is proportional to the odd component �a
−,

which is zero at �=0 and has a maximum in the region of the
nonlinear transition from the TAFF to the FF regime at �
�0 �see Figs. 6 and 7 in Ref. 11�. The �j ,�� dependence of
the odd transverse �Hall� resistivity ��a

− �j ,�� has contribu-
tions both from the even �a

+��a and from the odd �a
− com-

ponents of the �a�j ,�� function. Their relative magnitudes
are determined by the angle � and the dimensionless Hall
constant �. Note that as the odd longitudinal ��a

− and odd
transverse ��a

− magnetoresistivities arise by virtue of the Hall
effect, their characteristic scale is proportional to ��1 �see
Eqs. �19��.

The appearance of these new odd Hall contributions fol-
lows from a guiding of the vortex along the channels of the
washboard anisotropic pinning potential at ��0,
 /2 and
leads to the new specific angle-dependent scaling relations
for the Hall conductivity11 �in the limit � tan ��1�:

n� = ���a
− − ��a

− tan ��cos2 �/���a
+ − � fsin2 �� . �20�

Here the dimensionless Hall constant ��1 is uniquely re-
lated to three experimentally observable nonlinear resistivi-
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ties ��a
+ ,��a

− ,��a
− and the scaling relation �20� depends on the

angle �. This relation differs substantially from the power-
law scaling relations, obtained in the isotropic case14 �see
below�. In the particular case �=0 we regain the results,10

specifically �=��a
− /��a

+ �in Ref. 10, �=�� /���—i.e., a linear
relationship between ��a

− and ��a
+ .

Equation �20� may be represented in another form

��a
− ��� = 
�a���� f

2 − ��a
− ���tan � , �21�

which is more suitable for considering scaling relations in
longitudinal ��=
 /2� and transverse ��=0� LT geometries
of experiment.11 In these geometries second term on the
right-hand side of Eq. �21� is zero and we obtain that

��a
− = 
̃���a

+ �2, �22�


̃�� = 
/2� 
 
̃L = 
�a�0,�� ,


̃�� = 0� 
 
̃T = 
/�a�j,�� . �23�

From Eqs. �22� and �23� follows that 
̃ may be interpreted
as an effective Hall conductivity in LT geometries which is

suppressed for �=
 /2 �
̃L�
� and enhanced for �=0 �
̃T

�
� in comparison with a bare Hall conductivity 
. The

physical reasons for this influence of the �a function on the 
̃
behavior in LT geometries are simple and discussed in detail
in Ref. 13.

D. Isotropic i pinning

For this case we put �a=1 and from Eqs. �15� and �16� it
follows that

��
+ = ��i = � f�i�FL�, ��

− = ��i = � fn��i
2�FL� , �24�

where FL=Fi��a=1�= �FL�. From Eqs. �24� the well-known
scaling relation ��i	���i�2, derived first in Ref. 14, follows.
Note that ��i

+ =��i
− =0 in this case; i.e., the nonlinear resistive

response is isotropic.

E. Competition between a and i pinning

Equations �15� and �16� for the magnetoresistivities ��,�
±

at arbitrary value of competition between pointlike and an-
isotropic planar disorder for the in-plane geometry of experi-
ment can be represented in a more suitable form, if we take
into account Eqs. �18�, �19�, and �24�:

��
+ = �i�Fi���a

+ , ��
+ = �i�Fi���a

+ , �25�

��
− = �i

−��a
+ + �i�Fi� · ��a

− , �26�

��
− = � fn��a�i

2 + � f
�a
−�i − �i

−�1 − �a��sin 2�/2. �27�

Here �i�Fi� is the probability function �i of anisotropic
argument Fi= �FLx

2 �a
2�FLx�+FLy

2 �1/2, the magnetoresistivity
��,�a

± , and the �a
�a�FLx� functions in Eqs. �25�–�27� are the
same as those in item C of Sec. II; �i

−=�i
−�FI�n�� and FI�n�

= �FLy
2 +FLx

2 �a
2�Fa�+2n��i�Fi�FLxFLy�a�1−�a��1/2. It is easy to

check, that previous results of Secs. II C and II D follow
from Eqs. �25�–�27� in the limits of purely anisotropic �i.e.,
for �i=1, �i

−=0� and isotropic �i.e., for �a=1, �a
−=0� pins.

In this subsection it must be suffice to discuss in short the
main physically important features of these equations. First
of all, the magnetoresistivities ��,�

± can be found if the �a and
�i functions are known. Moreover, the converse statement is
also valid: it is possible to reconstruct these functions from
�j, �, B�-dependent resistive measurements, using only Eqs.
�25�, where the Hall terms are ignored. Equations �26� and
�27�, which arise due to the Hall effect, have a rather com-
plicated structure, which reflects a more pronounced compe-
tition between isotropic and anisotropic disorder in the Hall-
mediated resistive responses. Let us outline the main new
physical results, following from Eqs. �25�–�27�.

1. Pointlike disorder and vortex guiding

For the discussion of the influence of pointlike pins on the
guiding of vortices in the anisotropic pinning potential it is
sufficient to analyze Eqs. �25�. Whereas for the purely aniso-
tropic pinning ��i=1� a critical current density jc exists only
for direction, which is strictly perpendicular to the PPP ��
=0� and jc���=0 for any other direction �0��	
 /2� due to
the guiding of vortices along the channels of a washboard
potential, in Eqs. �25� the factor �i�Fi� ensures that an aniso-
tropic critical current density jc�� ,�� exists for arbitrary
angles �.

It is interesting, however, to note that the angular depen-
dence of the ratio �� /��, which determines the angle � be-
tween j and v for a pins in Ref. 11, according to the relation

cot � = −
��a

+

��a
=

1 − �a

tan � + �acot �
, �28�

is not influenced by the isotropic disorder, because factor
�i�Fi� in Eqs. �25� vanishes from Eq. �28�. Physically it
means that the character of anisotropy in the case of compe-
tition between i and a pinning is determined only by �Fp

a�
= ��a�FLx ,��−1�FLx �see Fig. 1�—i.e., by the average pinning
force of the PPP. Isotropic pins influence only the magnitude
of the average v vector, because �Fp

i � �v �FI. So the polar
resistivity diagram ����, which can be measured
experimentally,5 is influenced by pointlike pins, because
from Eqs. �11� it follows that

���� = � f��xx
2 sin2 � + �yy

2 cos2��1/2

= � f�i�Fi��sin2 � + �a
2cos2 ��1/2. �29�

2. New Hall voltages and scaling relations

As follows from Eqs. �26� and �27�, the odd longitudinal
��

− and transverse ��
− magnetoresistivities contain terms with

the �i
− function. They possess a highly anisotropic current-

and temperature-dependent bumplike behavior. They tend to
zero in the linear regime of vortex motion. For �=0,
 /2
these new terms disappear, because �i

−=�a
−=0 at these limits.

As was in the case of purely a pinning �see Sec. II C�, the
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appearance of these new odd Hall contributions follows from
the emergence of a certain equivalence of xy directions due
to a guiding of vortices along the channels of the washboard
pinning potential for the case with ��0,
 /2. Note also that
��

− includes two terms with similar signs, whereas in ��
− there

are terms with opposite signs. The latter can give rise to the
well-known sign change in the �j ,� ,H� dependence of the
Hall resistivity below Tc.

12

From Eqs. �25�–�27� new anisotropic scaling relations for
the dimensionless Hall constant � can be derived. For this
purpose we exclude �i

− from Eqs. �25�–�27� and for �a
− use

Eq. �17�, and after some algebra in the limit � tan ��1 we
have

n� =
2��

− ��
+ + � fsin 2��1 − �a��i��

−

�2�a��
+ − sin 2�� f�iFLy�a��� f�i

2 . �30�

It is easy to check that from Eq. �30� follows scaling
relations 
=n� /� f =��i / ���i�2 �for i pins at �a=1� and Eq.
�20� �for a pins at �i=1�.

As follows from Eqs. �25� and �27�, just the same scaling
relations as given by Eqs. �22� and �23� for a pins exist also
for �i+a� pins �with a replacement of corresponding a resis-
tivities in Eq. �8� by � f��

− and � f��
+�. Physically it follows

from the fact that point-like disorder influences only the
magnitude of �v� �Ref. 13� and does not change the angular
dependence of the ratio ��a

+ /��a
+ , which determines the angle

� between j and average velocity vector �v� for a pins.11

III. GRAPHICAL ANALYSIS OF NONLINEAR
REGIMES

A. Pinning potential and �-function behavior

In order to analyze different types of nonlinear anisotropic
�j ,� ,��-dependent magnetoresistivity responses, given by
formulas �25�–�27�, we should bear in mind that these re-
sponses, as is seen from formula �11�, are completely deter-
mined by the �j ,�� behavior of the functions �a�Fa� and
�i�FI�, having a sense of the probabilities to overcome the
effective potential barriers of the a and i pins, respectively. A
simple analytical model for the calculation of the
�j ,��-dependent � functions was given earlier.11,13,17 We will
use for both �i and �a functions the one-dimensional periodic
pinning potential Up�x� �see Fig. 2�, which has a simple ana-
lytical form11,17

Up�x� = �− Fpx , 0 � x � b ,

Fp�x − 2b� , b � x � 2b ,

0, 2b � x � h ,

�31�

where Fp is the pinning force �Fp=U0 /b, where U0�0 is the
depth of the potential well and 2b is the width of the well�.
This form of Up�x� allows us to define as the properties of a
given pinning center �by the parameters U0 and b�, as well as
the density of such centers �by the parameter �=2b /h, where
h is the period of the Up�x��. Calculation of the ��j ,�� func-
tion on the basis of the pinning potential, given by Eq. �31�,
was done.11

The effect of the external force F acting on the vortices
consists in a lowering of the potential barrier for vortices
localized at pinning centers and, hence, an increase in their
probability of escape from them. Increasing the temperature
also leads to an increase in the probability to escape of the
vortices from the pinning centers through an increase in the
energy of thermal fluctuations of the vortices. Thus the pin-
ning potential of a pinning center, which for F ,T→0 leads to
localization of the vortices, can be suppressed by both an
external force and by temperature. A detailed quantitative
and qualitative analysis of the behavior of ��f ,� ,�� as a
function of all the parameters and its asymptotic behavior as
a function of each are described �see Figs. 4 and 5 in Ref.
11�.

B. Dimensionless form of the �¸,�
± responses

Let us turn to the dimensionless parameters by which one
can in general case take into account the difference of the
potentials Ua and Ui—specifically the difference of their pe-
riods ha, hi, the potential well depths U0a, U0i, and the widths
ba, bi. We introduce some new parameters: �= ��a�i�1/2 is the
average concentration of pinning centers, U0= �U0aU0i�1/2 is
the average depth of the potential well, �= ��i /�a�1/2

= �habi /hiba�1/2, and p= �U0a /U0i�1/2, where the parameters �
and p are measures of the corresponding anisotropies. The
temperature will be characterized by new parameters: �a
= pT /U0=T /U0a and �i= �1/ p�T /U0=T /U0i, which are the
ratio of the energy of thermal fluctuations of the vortices to
the average potential well depth U0a and U0i, respectively.

The current density will be measured in units of jc
=cU0 /�0h, where h= �hahi�1/2. Then the dimensionless pa-
rameters fa and f i, which specify the ratio of the external
forces Fa and Fi to the pinning forces Fpa=U0a /ba and Fpi
=U0i /bi ��a and �i are the even functions of their arguments�,
we denote as fa=Fa /Fpa and f i=Fi /Fpi. The values of the
external force F at which the heights of the potential barriers
U0a and U0i vanish at T=0 correspond �at �=0 and �
=
 /2� to the critical current densities jca=qjc and jci= jc /q,
respectively, where q= p /�. In the general case of nonzero
temperature and 0���
 /2 it is possible to consider the

FIG. 2. Model pinning potential Up�x�: h is the period of the
potential, 2b is the width of the potential well, U0 is the depth of the
potential well, and �=2b /h characterizes the concentration of the
pinning planes.
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angle-dependent crossover current densities jca��� and jci���
�see below� which correspond to change in the vortex dy-
namics from the TAFF regime to a nonlinear regime. The
condition that determines the temperature region in which
the concept of critical current densities is physically mean-
ingful is 0�T�U0, because for T�U0 the transition from
the TAFF to the nonlinear regime is smeared and the concept
of critical current loses its physical meaning.

It is possible now to rewrite Eqs. �15� and �16� in dimen-
sionless form in order to represent them as functions of j, �,
and � at given values of parameters �, �, q, and k; then, for
anisotropic and isotropic moving forces at �=0 we have,
respectively,

fa = jq−1 cos � , �32�

f i = jq�sin2 � + �a
2 cos2 ��1/2. �33�

Before following the graphical analysis of the ��,�
± dimen-

sionless dependences we should point out the magnitude of
some parameters which will be used for the presentation of
the graphs. It is important to remind the reader here that the
parameter q determines the value of anisotropy between �i
and �a critical current densities, whereas the parameter k
describes the anisotropy magnitude of the width of nonlinear
transition from the TAFF to the FF regime for the �i and �a
functions. More definitely, if q�1, then jca=qjc� jci= jc /q
and influence of the i pins on the vortex dynamics decreases
with q increasing. For q�1 the situation is opposite and
anisotropy effects may be fully suppressed with q decreas-
ing. So for the observation of pronounced competition be-
tween i and a pins q�1 should be taken.

The temperature dependences of the ��
+��� at small cur-

rent densities under conditions of the presence both isotropic
and anisotropic pinning potential were studied
experimentally.8 Arrhenius analysis of these dependences
within the frames of suggested here theoretical approach
have shown that for the samples8 the U0a=4031 K, U0i
=1568 K, ba=400 nm, and bi=2000 nm at T�8 K. Then
for these samples q�1.6, ��0.5, and ��0.003. It was also
pointed out8 that the best fitting of the experimental and the-
oretical curves was established for bi /ba=15, from which
follows ��0.25. So for all graphs below we used q=1.6,
�=0.25, �=0.003, and �=0.01, and if it is not pointed out
specifically, �a=1 and �i=0.1.

Note also that for the even longitudinal resistivity ��
+ and

the even transverse resistivity ��
+ for a small Hall effect,

terms proportional to ��1 are absent �see Eqs. �25�� and
only contributions describing the competition between iso-
tropic pinning and nonlinear guiding effects on the PPP in
terms of the even �i and �a functions are presented.

C. Graphical analysis of current-angular dependences

1. „j ,�… presentation of �a and �i

In order to discuss graphical �j ,�� behavior of the resis-
tive responses we will use �a and �i functions of their argu-
ments fa and f i, respectively. Then these functions are, as a
corresponding � function,11 the step functions in j �at fixed

�� or in � �at fixed j�. For every one of the � functions
it is useful to determine the “crossover current dens-
ities” jci��� and jca��� as those which correspond to the
middle point of a sharp steplike nonlinear transition from the
TAFF to the FF regime. As follows from Eqs. �32� and �33�,
we can present fa and f i as fa= j / jca��� with jca���
=q / cos � and f i= j / jci��� with jci����1/q cos � for
��
 /4 and jci����1/�aq cos � for tan2 ���a

2�j ,��;
jci����1/q sin � for ��
 /4 because Eq. �33� can
be presented in two equivalent forms: namely, f i

= jq cos ��tan �2+�a
2= jq sin ��1+ ��a / tan ��2.

The anisotropy of f i��� �see Eq. �33� and Fig. 3� can be
divided into two types: simple �“external”�, which depends
on cos2 �, and more complex �“internal”�, given by �a���.
The first �external� anisotropy stems from the “tensorial” �
dependence which exists also in the linear �TAFF and FF�
regimes of the flux motion. The second �internal� is through
the � dependence of �a, which in the region of transition
from the TAFF to the FF regime is substantially nonlinear
�see Fig. 4�. The appearance of nonzero sin2 � term in f i for
��0 physically describes the guiding of vortices along the
channels of the PPP in the presence of i pins for the current
densities j� jci���. The influence of �a anisotropy on �i is
different for different values of the angle � �see Fig. 5�. For

FIG. 3. The current-angle dependence of the average effective
motive force for a vortex f i�j ,��.

FIG. 4. The current-angle dependence of the anisotropic prob-
ability function �a�j ,��. In all following graphs the parameters q
=1.6, �=0.25, �=0.003, �=0.01, �a=1, and �i=0.1 �unless other-
wise stated�.
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��
 /4 the anisotropy of �a��� does not influence the value
of f i��� because ��a / tan ��2�1 in the expression for jci���.
On the contrary, for ��
 /4 the influence of a pins on �i���
is most effective for that range of current density, where �a

2

� tan2 �, due to the inequality tan2 ��1. Thus, the �i and �a
as functions of the angle � at j=const behave themselves
oppositely �see Figs. 4 and 5�: �i increases monotonically
with � increasing, whereas �a monotonically decreases. For
j� jca��� and at small angles which meet the condition
tan2 ��1, the behavior of the �i and �a is qualitatively simi-
lar in � and opposite in q.

In the case where tan2 ��1, the �i and �a behavior is
qualitatively different and stems from the �� ,q� dependences
of the corresponding crossover current densities. In contra-
distinction to �a, the transition of �i from the TAFF to the FF
depends weakly from � and q; it moves to the lower current
densities with q increasing for ��
 /4 and moves to the
higher ones for ��
 /4. In general, the �a behavior is more
anisotropic than �i behavior. The �i anisotropy appears only
in the TAFF regime, whereas �a anisotropy exists as in the
TAFF, as well in the FF regime. And this anisotropy is
greater in the current density as the angle � is greater. The �i
and �a transition width at �=const is defined by �i and �a
parameters, respectively, and it increases for �i→1 and �a
→1.

2. „j ,�… presentation of even magnetoresistivities

Now we are in a position to discuss the results of the
presentation of Eqs. �25� in the form of graphs. First we note
that according to Eqs. �25�, the even resistive responses can
be represented as the products of corresponding isotropic and
anisotropic � functions. For this reason the graphical analysis
of the ��

+�j ,�� and ��
+ �j ,��, after the above-mentioned con-

sideration of the �i�j ,�� �see Fig. 5�, can be reduced to the
construction and analysis of the ��a

+ �j ,�� and ��a
+ �j ,��

graphs.
Let us begin with a discussion of ��a

+ behavior �see Eq.
�18� and Fig. 6�. For all ��0, due to the term sin2 � in Eq.
�18�, a critical current density jc exists only for direction,
which is strictly perpendicular to the PPP ��=0� �as was
shown in Sec. II E 1� and jc���=0 for any other direction
�0��	
 /2� due to the guiding of vortices along the chan-

nels of a washboard potential �see also Fig. 8 in Ref. 11�. In
the FF regime the isotropization of the ��a

+ arises due to the
vortex slipping over the PPP channels. Thus at small angles
� the �a function strongly influences the ��a

+ , whereas for �
→
 /2 this influence is not so effective due to the external
anisotropy, which is proportional to the sin2 � term.

Returning now to the consideration of the ��
+�j ,�� graph

we refer to Eqs. �25�. It is necessary to pay special attention
to the TAFF behavior of these curves at small currents and
temperatures, which follows from the full pinning of vortices
by pointlike pins. This behavior is completely different �for
��0� from the non-TAFF behavior of the corresponding
graphs for the case of purely anisotropic pinning �see Fig. 8
in Ref. 11�, which is provocated by the guiding of vortices
along the channels of the PPP. At high current densities and
�or� temperatures appears the FF regime, because the vortex
motion transverse to the a-pins becomes substantial and lon-
gitudinal resistivity practically becomes isotropic. In these
limiting cases the ��

+�j� magnitudes are equal to unity �Fig.
7�.

For the angles 0���
 /2 the ��
+�j� behavior follows

substantially the properties of one multiplier. The qualitative
behavior of these multipliers, depending on the j and � mag-
nitude, is very different as determined by different behavior
of their crossover current densities jci and jca. The priority of

FIG. 5. The current-angle dependence of the isotropic probabil-
ity function �i�j ,��.

FIG. 6. The current-angle dependence of the dimensionless even
longitudinal anisotropic magnetoresistivity ��a

+ �j ,�� for the value of
the parameter �a=1.

FIG. 7. The current-angle dependence of the dimensionless even
longitudinal magnetoresistivity ��

+�j ,�� for the value of the param-
eter �a=1.
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a sharp rise of the appearance �i or �a functions depends on
the competition between the crossover current densities jci
and jca, respectively. That is why it may appear a “step” on
some of the ��

+�j� curves �for q�1 and ��0,
 /2� when the
next sequence of the vortex motion regimes is realized: �a�
full i pinning in the TAFF regime �0� j� jci�, �b� nonlinear
transition from the TAFF to the FF regime for i pins �j
�2jci�, �c� practically linear the FF regime as a consequence
of the guiding of vortices along the channels of the wash-
board PPP �on the ��

+�j ,�� surface one can see the horizontal
sections at j� jca; see Figs. 7 and 8�, �d� nonlinear transition
to the FF regime of vortex motion transverse to the a pins for
j� jca, and, at last, �e� a free FF motion for j� jca.

With decreasing of the q, �a�–�e� corresponding regions
along the current density axis j can overlap each other and a
common nonlinear transition appears instead of �b�–�d� re-
gions. For the limiting cases �=0, 
 /2, a guiding of vortices
is absent and the ��

+�j� LT behavior is simply related to the �i

and �a behavior. If the parameter �a is decreasing, then the
width of the transition of �a from the TAFF to the FF is also
decreasing. Such an enhancement of the �a steepness leads to
appearance of the minimum in � for the ��

+�j ,�� graph �see
Fig. 8�.

Now we pass to a discussion of the ��a
+ �j ,�� and ��

+ �j ,��
graphs. Since the ��

+ , according to Eqs. �25�, is the product
of the ��a

+ and �i�f i�, so this graph �see Fig. 9� can be re-
duced to the product of the graphs in Figs. 5 and 10. The
transition from the TAFF to the FF regime is highly aniso-
tropic in �; this causes a shift of the maximal ��

+ �j ,�� mag-
nitude in the direction of a small angle ��
 /4 for the j
=const. That is why in view of the i pinning presence the
��

+ �j ,��, as distinct from ��a
+ �j ,��, has the minimum both in

� and in j. This statement follows from the fact that influ-
ence of i pinning leads to ��

+ →0 for 0� j� jci��� due to
�i�1. For the current densities j� jca��� the ��

+ �j ,�� behav-
ior is determined exclusively by the above-mentioned
��a

+ �j ,�� behavior.

3. „j ,�… presentation of odd magnetoresistivities

Before following discussion of the odd resistive responses
we should remind the reader about the bumplike behavior of

the current and temperature dependence of the �− functions
�see Figs. 6 and 7 in Ref. 11�, because the �i

− and �a
− func-

tions give an important contribution to the odd responses.
The �−�j� and �−��� curves for the case of ��1 in fact are
proportional to the derivatives of the corresponding �+�j� and
�+��� curves, which have a steplike behavior as a function of
their arguments �see Ref. 11 for the detailed discussion of
this point and Eq. �17� in this paper�. As the ��

− and ��
−

resistivities given by Eqs. �26� and �27� arise by virtue of the
Hall effect, their characteristic scale is proportional to ��1,
as for Eqs. �19� for purely anisotropic pins.

The position of the characteristic peak in the �i
− and �a

−

functions is different for q�1, because the parameter q de-
termines the anisotropy of the critical current densities for i
and a pins. So, if q is not very close to unity, the positions of
the i and a peaks cannot coincide, and in this case the current
and temperature odd resistive dependences ��,�

− can have a
bimodal behavior. For the ��

− curves such dependences will
correspond to existence of the resistive steps on the ��

+ curves
�see Fig. 7�, because for ��1 we can consider the ��

− depen-
dences as derivatives of the ��

+curves. From this viewpoint it
is easy to understand the previous assertion in Sec. II E 2 that
��

− includes two terms �every proportional to the �i
− and �a

−,
respectively� with similar signs.

Now let us discuss a graphical presentation of the Eq.
�26�, which can be represented as ��

−=B1+B2, where B1

FIG. 8. The current-angle dependence of the dimensionless even
longitudinal magnetoresistivity ��

+�j ,�� for the value of the param-
eter �a=0.01.

FIG. 9. The current-angle dependence of the dimensionless even
transverse magnetoresistivity ��

+ �j ,��. Pay attention to the inverted
direction of the axes in comparison with Fig. 10.

FIG. 10. The current-angle dependence of the dimensionless
even transverse anisotropic magnetoresistivity ��a

+ �j ,��.
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=�i
−��a

+ , and B2=� f�a
−�icos2 �. Taking into account that every

factor in the B1 and B2 is positive �see Figs. 5, 6, 11, and 12�,
we can conclude that ��

−�0 for all values of the j ,� ,q.
The ��

− �j ,�� dependence is the most complicated. For the
sake of simplicity the analysis we represent the ��

− as a sum
��

− =� f�A1+ �A2+A3�sin 2��, where A1=n��a�i
2, A2=�a

−�i /2,
and A3=−�i

−�1−�a� /2. First we consider the limiting cases of
purely isotropic or anisotropic pinning ��a→1 or �i→1, re-
spectively�. For i pinning we have ��

− =� fn��i
2, from which

follows �Vinokur et al.14� a scaling relation ��	��
2. For the

case of purely anisotropic pinning ��
− =� f
n��a

+ ��a
−sin 2�� /2� and the scaling relation is ��	�� �see also

Ref. 13�.
Now we consider every term in the ��

− �j ,�� in detail. The
A1 contribution can be reduced in fact to the multiplication of
the graph in Fig. 4 by the graph in Fig. 5 squared; the result
is essentially nonzero for j� jca�� ,q�. The A2 contribution
was described above �see the B2 term in the ��

− without tak-
ing into account the cos2 � anisotropy�. Note also that both
terms �A1 and A2� are positive for n��0. The A3 behavior is
of great interest because the A3�0 for n��0. Let us con-
sider the cases q�1 and q�1, which correspond to the a-,
or i-pinning domination, respectively. Then, for ��
 /4, we
have the following.

�a� For q�1 we have jci���� jca��� and the sharp maxi-
mum of the �i

− is suppressed by the factor �1−�a�→0. As a
result, the A3 contribution can be ignored.

�b� For q�1 the opposite inequality follows—i.e., jci���
� jca���. Then for j� jci��� the A3 term is dominant because
�a�1 and �i

−→n� in this �j ,�� region �see Figs. 4 and 5�.
As a result, the ��

− �j ,� ,q� change the sign for j� jci��� and
0���
 /4. Since the scale of the �i

−��i, the amplitude of
the minimum is small in comparison with the ��

− magnitude.
Thus, a competition of the a and i pinning leads to the

qualitatively important conclusion that the ��
− can change

its sign at a certain range of �� , j ,q� values—namely, for
j� jci�� , j ,q�, 0���
 /4, and q�1.

D. Resistive response in a rotating current scheme

1. Polar diagram

An experimental study of the vortex dynamics in
YBa2Cu3O7−
 crystals with unidirectional twin planes was
recently done using a modified rotating current scheme.4,5 In
that scheme it was possible to pass current in an arbitrary
direction in the ab plane of the sample by means of four
pairs of contacts placed in the plane of the sample. Two pairs
of contacts were placed as in the conventional four-contact
scheme, and the other two pairs were rotated by 90° with
respect to the first �see the illustration in Fig. 1 of Ref. 4�. By
using two current sources connected to the outer pair of con-
tacts, one can continuously vary the direction of the current
transport in the sample. By simultaneously measuring the
voltage in the two directions, one can determine directly the
direction and magnitude of the average velocity vector of the
vortices in the sample as a function of the direction and
magnitude of the transport current density vector. This made
it possible to obtain the angular dependence of the resistive
response on the direction of the current with respect to the
pinning planes on the same sample. The experimental data4,5

attest to the anisotropy of the vortex dynamics in a certain
temperature interval which depends on the value of the mag-
netic field. A rotating current scheme was used4 to measure
the polar diagrams of the total magnetoresistivity ����,
where �= ��x

2+�y
2�1/2 is the absolute value of the magnetore-

sistivity, �x and �y are the x andy components of the magne-
toresistivity in an xy coordinate system, and � is the angle
between the current direction and the oy axis �parallel to the
channels of the a-pinning centers�. In the case of a linear
anisotropic response the polar diagram of the resistivity is an
ellipse, as can easily be explained. In the case of a nonlinear
resistive response the polar diagram of the resistivity is no
longer an ellipse and has no simple interpretation.

In this subsection we carry out a theoretical analysis of
the polar diagrams of the magnetoresistivity � in the general
nonlinear case in the framework of a stochastic model of a
+ i pinning. This type of angular dependence ���� is infor-
mative and convenient for theoretical analysis. For a sample
with specific internal characteristics of the pinning �such as
q, �a, �i, and �� at a given temperature and current density
the function ���� is contained by the resistive response of the
system in entire region of angles � and makes it possible to
compare the resistive response for any direction of the cur-
rent with respect to the direction of the planar pinning cen-
ters. In addition, in view of the symmetric character of the

FIG. 11. The current-angle dependence of the function
�a

−�j ,��.

FIG. 12. The current-angle dependence of the function
�i

−�j ,��.
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���� curves, their measurements makes it possible to estab-
lish the spatial orientation of the system of the planar pinning
centers with respect to the boundaries of the sample if this
information is not known beforehand.

Now for analysis of the ���� curves we imagine that vec-
tor j is rotated continuously from an angle �=
 /2 to �=0.
The characteristic form of the ���� curves will obviously be
determined by the sequence of dynamical regimes through
which the vortex system passes as the current density vector
is rotated. By virtue of the symmetry of the problem, the
���� curves can be obtained in all regions of angles � from
the parts in the first quadrant.

We recall that in respect to the two systems of pinning
centers it is possible to have the linear TAFF and FF regimes
of vortex dynamics and regimes of nonlinear transition be-
tween them. The regions of nonlinear transitions are deter-
mined by the corresponding values of the crossover current
densities jci�� ,q� and jca�� ,q�.

Now let us consider the typical ���� dependences which
are presented in Figs. 13 and 14 for a sequence of a current
density magnitude. We remind that the polar diagram graphs
represented below are constructed, as the previous graphs in

Figs. 3–7, 9–12, 15, and 16 for the next values of the param-
eters: q=1.6 �i.e., for the case with dominant a pins�, �
=0.25, �=0.003, �=0.01, �i=0.1, �a=1 �Fig. 13�, and �a
=0.1 �Fig. 14�. Note that ���� is the product of two multi-
pliers: one is the �i�f i� dependence, which was earlier studied
in Fig. 4 of Sec. III C 1, and other is the �sin2 �+�a

2cos2 �
factor, which qualitative behavior is close to the ��a

+ �j ,��
dependence �see Fig. 6 in Sec. III C 2�.

Let us analyze the ���� behavior for the series of values
of the current density j. When the angle � changes from 0 to

 /2 the function ���� grows monotonically from ��0�
=�a�j /q��i(jq�a�j /q�) to ��
 /2�=�i�jq�. In Fig. 13 curves
1–6 of the function ���� have the shape of a figure 8 drawn
along the ox axis �strongly elongated for curves 1 and 2�.

This anisotropy can be determined by the relation of the
magnitudes of the half-axis at the direction �=
 /2 to the
transverse half-axis for any fixed magnitude of the current
density. Curves 1–6 of the �=���� graph have the figure-8
form elongated along the ox axis. It is caused by the steplike
behavior of the �i function, corresponding for curves 1 and 2
to the crossover from the TAFF to the FF regime. That is
why the magnitude of the ��
 /2� for curve 2 is rather greater
than for the first one. With � increasing the �i function is in
the TAFF region �see Fig. 5�, which provocates the ����
�1 in the case where the condition j� jci��� is satisfied.
Therefore, with j increasing the magnitude of the angle �,
which separates the TAFF and FF regions of the �i function
at a fixed value of the current density, decreases to the �
�1.

As the �i�j ,�=
 /2� is in the FF region �i.e., j� jci��
=
 /2��, so the anisotropy of the figure-8 curve decreases for
curves 3–6. The �=���� behavior of curves 5 and 6 is more
isotropic in the region ��
 /4 than behavior of curves 1–4.
If the condition j� jca�0� is satisfied, an appearance of the
nonzero resistance in corresponding region follows. Its mag-
nitude is smaller than ��
 /2� for curves 7, 8, and 9 and
practically is equal to the ��
 /2� for curve 10. Note that for
the �=0,
 and jca� j�3jca /2 one can see the minimum,
which decreases with j increasing and disappears in the case
where the condition j�3jca /2 is satisfied. So for large mag-
nitudes of the current densities the ���� behavior becomes
more isotropic.

It is necessary to pay attention to the �=���� behavior in
the case where �a=0,1 �see Fig. 14� for the same series of

FIG. 13. Series of graphs of the function ���� for a sequence of
the parameter j: 0.63 �1�, 0.65 �2�, 0.75 �3�, 1.00 �4�, 1.50 �5�, 1.92
�6�, 2.00 �7�, 2.50 �8�, 4.00 �9�, 20.0 �10� for �a=1.

FIG. 14. Series of graphs of the function ���� for a sequence of
the parameter j: 0.63 �1�, 0.65 �2�, 0.75 �3�, 1.00 �4�, 1.50 �5�, 1.92
�6�, 2.00 �7�, 2.50 �8�, 4.00 �9�, 20.0 �10� for �a=0.1.

FIG. 15. The current-angle dependence of the odd longitudinal
magnetoresistivity ��

−�j ,��.
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the magnitudes of the current densities. The behavior of
curves 6, 7, 8, and 9 differs from the above-mentioned case,
but the behavior of curves 1–5 and 10 remains the same. This
fact is caused by the influence of the parameter �a on the �i
behavior only in the area of its sharp steplike behavior at the
j� jca���. Note that the �i contribution is dominant in the
region ��1 as well as the above-mentioned anisotropy of
the ��a

+ �j ,�� �see Figs. 5 and 7�. As decreasing of the �a

causes the more narrow crossover from the TAFF to the FF
regime, the �i��� has a minimum at fixed magnitude of the
current density. The magnitude of this minimum decreases
with the j increasing and the minimum shifts from the �
�
 /4 to the ��
 /2. The influence of the parameter q acts
on the crossover current densities jci and jca only quantita-
tively, but does not change an evolution of curves 1–10
qualitatively.

2. �E„�… dependence

Let us examine theoretically in our model a new type of
the experimental dependence, recently studied4 for �E���,
where �E is the angle between the j vector and the electric
field vector E measured at fixed values of the current density
and temperature. Taking into account that in the xy coordi-
nate system the magnetoresistivity components are �x
=�xxsin �=�i�Fi�sin � and �y =�yycos �=�i�Fi��a�Fa�cos �,
we obtain the following simple relation: tan �E���=�x /�y

=tan � /�a�Fa� or

�E��� = arctan�tan �/�a�Fa�� . �34�

Note that the �i term, describing the i pinning, is absent in
Eq. �34�. Then it follows from the latter that �a�j ,� ,��
=tan � / tan �E�j ,� ,��; i.e., the �a�j ,� ,�� function can be
found from the experimental dependence �E���. Unfortu-
nately, the dependence �E��� for the series of the tempera-
ture values was experimentally found4 so far only for the FF
regime �see Fig. 2 in Ref. 4�. The �E�j ,�� dependence is
presented in Fig. 17. It shows all changes in the �E�j ,��
behavior also for the TAFF regime.

Let us analyze Eq. �34� in detail. The �E�j ,�� is the odd
function of the angle �, and its magnitude increases mono-
tonically with the � increasing for all values of the j due to
the monotonical decreasing of the �a�j ,�� function �see Fig.
17�. It follows from Eq. �34� that the period of the function
�E��� is equal to 
. One more important limiting case is
realized for �a�1, which corresponds to the limit of isotro-
pic pinning. Depending on the inequality between the j mag-
nitude and the crossover current density jca����q / cos �,
one can separate two regions where the �E�j ,�� behavior is
qualitatively different. If A is the argument of the arctangent
function in Eq. �34�, then in that region j ,� ,q, where the
inequality j� jca��� is true �the FF regime for �a�j ,��; see
also Fig. 4�, the magnitude of �E�A as A�1. And for the
case j� jca �the TAFF regime of the �a�j ,��� the value �E

�
 /2−A−1, as A�1.
Note that the parameter �a influences the �E�j ,�� by

changing the character of the steplike crossover of the
�a�j ,�� �the smaller the �a, the sharper the crossover�. The
value of the parameter q, as well as the above mentioned,

determines the magnitude of the jca��� �and therefore the
position of the boundaries in j of the regions of quite differ-
ent �E��� behavior� at fixed �.

3. Critical current density anisotropy

Under the critical current density we mean the current
density, which corresponds to the electric field strength on
the sample E=1 �V/cm. Let us determine the jc��� behav-
ior graphically by crossing the E�

+= j��
+�j� graph and the plain

E=Ec in the polar coordinates. For all angles � the point of
crossing for these graphs determines the critical current den-
sity magnitude for the defined direction and the crossing line
of the graphs presents the dependence jc���.

Let us remind the reader that as in above-mentioned sec-
tions, in the nonlinear law E�

+= j��
+�j� we measure j and � in

the values of the j0=cU0 /�0dh and � f =�nB /Bc2, respec-
tively. That is why we have to measure the E magnitude in
the E0= j0� f. As well as in Sec. III B we use the data from
Ref. 8, where for the niobium samples �n�5.5
�10−6 � cm, B�150 G s, Bc2�17 kG s, � f �5
�10−8 � cm, U0=2500 K, and d=2.5�10−6 cm.

Therefore, E0�6�10−6 V/cm, and for Ec=1 �V/cm we
have to cross the dimensionless ��

+�j�j graph by the plain E
�0.002.

Now we will discuss the jc��� as a function of �, q, Ec,
and � in detail. The jc��� anisotropy can be determined by
the relation of the magnitudes of the half-axis at the direction
�=0 to the transverse half-axis for any fixed magnitude of
the parameters q and Ec. The jc��� decreases monotonically
from jc�0� with � increasing and has a minimum for
�=
 /2. It is caused by the fact that, as was shown in
Sec. II C 1, the a pinning �with high values of the jca for
q�1� does not influence the i pinning for �=
 /2. There-
fore, the inequality for the crossover current densities
jci���� jca��� for q�1 leads to the corresponding inequality
for the critical current densities jc�0�� jc�
 /2�.

The q influences the jc��� behavior �as in Sec. II D 1�
only quantitatively: with q increasing the ratio jc�0� / jc�
 /2�
grows and vice versa. It is caused by the jc�0� increasing and
jc�
 /2� decreasing due to the � behavior of the correspond-
ing crossover current densities jci��� and jca���. The smaller
the �a, the sharper the crossover between the jc��� regions of
slowly and quickly decreasing as a function of the �. With Ec
increasing the nonlinear law E�

+=��
+�j�j is satisfied for the

larger values of the current density.
That is why with � increasing from 0 to �* values �for

which the condition tan2 �*��a
2�j ,�*� is satisfied� the �a

function is in the FF regime and jc��� decreases slowly.
When the condition ���* is true the �a function has a step-
like crossover from the FF to the TAFF regime and jc���
decreases quickly.

So the �* behavior as a function of the parameters q and
Ec is qualitatively different: it increases with Ec increasing
and decreases with q increasing. On the increase of the Ec by
several orders of magnitude the jc��� curve degenerates into
a circumference due to the isotropization of the jci��� and
jca��� behavior for the high j values. Otherwise, with Ec

decreasing the jc��� curve degenerates into a narrow loop,
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because the jci��� and jca��� behavior for a small j is very
anisotropic.

IV. CONCLUSION

In the present work we have theoretically examined the
strongly nonlinear anisotropic two-dimensional single-vortex
dynamics of a superconductor with coexistence of the aniso-
tropic washboard PPP and isotropic pinning potential as
function of the transport current density j and the angle �
between the direction of the current and PPP planes at a fixed
temperature �.

The experimental realization of the model studied here
can be based on both naturally occurring2–5 and artificially
created6–8 systems with �i+a�-pinning structures. The pro-
posed model has made it possible for the first time �as far as
we know� to give a consistent description of the nonlinear
anisotropic current- and temperature-induced depinning of
vortices for an arbitrary direction relative to the anisotropy of
the washboard PPP. In the framework of this model one can
successfully analyze theoretically certain observed resistive
responses which are used for studying anisotropic pinning in

a number of new experimental techniques4 �the polar dia-
gram of ����, the �E��� curve described by formula �34�� as
well as new Hall responses specific for the �i+a�-pinning
problem.

A quantitative description of the anisotropic nonlinear re-
sistive properties of the problem under study is done in the
framework of the stochastic model on the basis of the
Fokker-Planck approach. The main nonlinear components of
the problem are the anisotropic �a�Fa� and isotropic �i�Fi�
probability functions for the vortices to overcome the poten-
tial barriers of a- and i-pinning centers under the action of
anisotropic motive forces Fa and Fi, respectively. The latter
include both the “external” parameters j ,�, and � and the
“internal” parameters q, �i, and �a which describe the inten-
sity and anisotropy of the pinning. As can be seen from Eqs.
�25�–�27�, the magnetoresistivities ��,�

± �j ,� ,�� are, in gen-
eral, nonlinear combinations of the experimentally measured
�i and �a functions (�i can be measured independently from
the ��,�

+ ��=
 /2� �see Eq. �25�� and �a from the �E��� �see
Eq. �34��).

Therefore, the nonlinear �in j� resistive behavior of the
vortex system can be caused by factors of both an aniso-
tropic and isotropic pinning origin. It is important to under-
line that whereas the structure of the �a�Fa� and Fa is the
same as for purely a-pinning problem, the structure of the
�i�Fi� and Fi is strongly different from the structure of the
purely i-pinning problem due to the fact that Fi, as motive
force of the i+a problem, is nonlinear and anisotropic �see
Eqs. �32� and �33�� and �Figs. 3–5�.

Two main new features appear due to the introduction of
the isotropic i pins into the initially anisotropic a-pinning
problem. First, unlike the stochastic model of uniaxial aniso-
tropic pinning studied previously,10,11 where the critical cur-
rent density jc is indeed equal to zero for all directions �ex-
cepting �=0� due to the guiding of vortices, in the given i
+a model the anisotropic critical current density jc��� exists
for all directions because i pins “quench” the guiding of
vortices in the limit �j ,��→0. Second, the Hall resistivity
response functions ��

− �j ,�� can have a change of sign in a

FIG. 16. The current-angle dependence of the odd transverse
magnetoresistivity ��

− �j ,��. The characteristic minimum �which is
shown by the arrow� is in the region 0���
 /4 and j� jci���. The
minimum is shown as two neighboring minimums due to the step-
like behavior of the calculation. Pay attention to the inverted direc-
tion of the axes in comparison with Fig. 15.

FIG. 17. Series of graphs of the function �E��� for a se-
quence of the parameter j: 1 �1�, 1.7 �2�, 2.2 �3�, 3.5 �4�, 20 �5� for
T=8 K.

FIG. 18. Series of graphs of the function jc��� for the parameter
pairs: Ec=0.002, q�1.6 �1�; Ec=0.002, q=3 �2�; Ec=2, q=1.6 �3�.
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certain range of �j ,� ,q� �at fixed dimensionless Hall con-
stant �=�H /� and the dimensional Hall conductivity 

=n� /� f�, whereas the sign of the ��

−�j ,�� does not change.
It should be noted that recently8 the nonlinear �in �� an-

isotropic longitudinal and transverse resistances of Nb films
deposited on facetted sapphire substrates were measured at
different angles � between j and facet ridges in a broad range
of temperature and relatively small magnetic field H. The
experimental data were in good agreement with the theoret-
ical model described here. The measured ��

+�� ,�� depen-
dences can be fitted using the probability functions �a and �i

in the form proposed here �see Eq. �25�� with the anisotropic
and isotropic pinning potential given by Eq. �25�. The peri-
ods and depths of the potential wells were estimated from the
experimental data8 and were used here �see Sec. III� for the
theoretical analysis of different types of nonlinear aniso-
tropic �j ,��-dependent magnetoresistivity responses, given
by Eqs. �25�–�27�, in the form of graphs �see Figs. 3–18�.
Whether these theoretical results can explain a new portion
of the �j ,��-dependent i+a resistivity data measured at �
=const �in particular, for the samples investigated earlier8 at
small current densities� remains to be seen.18–20
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