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I. INTRODUCTION

It has been proposed that a second-order phase transition
is characterized by the breakdown of a generalized rigidity
associated with a proliferation of defect structures in the or-
der parameter.1 In the case of extreme type-II superconduct-
ors, it has been explicitly demonstrated that the system un-
dergoes a continuous phase transition driven by a
proliferation of closed loops of quantized vorticity.2–4 In par-
ticular, it has been demonstrated that the connectivity of the
vortex-tangle �the tangle of topological defects of the sys-
tem� changes dramatically at the critical temperature of the
system.3,4 In other words, it is possible to describe the super-
conducting phase transition in terms of the proliferation of
defect structures �viz. vortices and flux lines�, which are sin-
gular phase fluctuations and determine the critical properties
of the theory. Using this argument, it is possible to relate the
critical properties of the phase transition to the geometric
properties of the loops5 at the critical point.

The phenomenology of superconductivity usually starts
with the Ginzburg Landau �GL� model. The Hamiltonian for
this model is

H�q,u�� = m�
2 ���2 +

u�

2
���4 + �D���2 +

1

2
�� � A�2. �1�

Here �= �� �ei� is a complex matter field, coupled to a mass-
less gauge field A through the minimal coupling D�=��

− iqA�. m� is the mass parameter for the � field and u� is the
self-coupling. This is a rich model which embodies many
different aspects of superconductivity,6 in this paper we will
focus on the limit �	1 corresponding to extreme type-II
superconductors. In this case the gauge field fluctuations can
be ignored, and we are left with a neutral ���4 theory. For this
theory it can be shown that amplitude fluctuations in � are
innocuous,3,4 and only the phase variables must be retained.
When the resulting model is defined on a lattice, one obtains
the three-dimensional �3D� XY model.

The 3D XY model is a model for phase fluctuations, and
both the smooth spin-wave fluctuations and the singular

transverse fluctuations are accounted for. The transverse
phase fluctuations are defined by

� � ���r� = 2
n�r� , �2�

where n�r� is the local vorticity. The vortices are the critical
fluctuations of the theory, which drive the superfluid density
to zero in the neutral case, and the magnetic penetration
length to infinity in the charged case. We have performed
simulations directly on the phase degrees of freedom, and
extracted the vortex content according to Eq. �2�, alterna-
tively it is possible to integrate out the spin-wave degrees of
freedom and retain only the vortex degrees of freedom.7 The
definition Eq. �2� ensures that ��n=0 everywhere, hence
the vorticity must be in the form of closed loops.

Since the vortex loops are the critical fluctuations of the
theory it is natural to formulate a theory expressed in terms
of these degrees of freedom. In d=3 it is possible to start
with the charged theory Eq. �1� in a fixed-amplitude approxi-
mation and derive7 a field theory for the vortex loops. It turns
out that this dual theory is a neutral ���4 theory. Hence the
dual of a charged superfluid is a neutral superfluid and vice
versa and, furthermore, the vortex loops of a neutral
�charged� superfluid are described by a field theory isomor-
phic to a charged �neutral� superfluid. In this paper we will
use the convention that � represents the original superfluid,
and that � is the corresponding dual. Then � will be the field
theory for the vortices of �.

The description in terms of loops is physically appealing.
First, it highlights the physical meaning of the ���4 term
which, depending on the sign of u�, represents a steric repul-
sion �as in the case of type-II superconductors� or a steric
attraction for type-I superconductors with a first-order
transition.6 In the case of a neutral superfluid the vortices
will interact attractively through a long-range interaction me-
diated by a dual gauge field, this will yield a vortex tangle
more dense than a set of random loops.8

A geometric interpretation of the critical point in terms of
proliferating geometric objects was given already in 1967 by
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Fisher.9 He considered droplets of one phase immersed in a
background phase. Close to the critical point the distribution
of droplet size was argued to behave as

n�s� �
1

s�e−s,  � �T − Tc�1/�, �3�

n�s� is the mean number of droplets of “mass” s. The behav-
ior of Eq. �3� is governed by two critical exponents � and �,
where the former governs the vanishing tension when ap-
proaching the critical point and � is related to the entropy of
a droplet. These two exponents can be related to the six
ordinary critical exponents

� = 2 −
� − 1

�
, �G =

� − 2

�
, �G = 1 +

� − 1

d�� − 2�
,

�G = 2 +
d�� − 3�

� − 1
, � =

� − 1

d�
, �G =

3 − �

�
. �4�

The distribution n�s� Eq. �3� is also used to describe the
cluster density close to the critical point in percolation, and
the relations Eq. �4� can be easily derived from that context
as well.10 The exponents in Eq. �4� have an index G to em-
phasize their geometric origin. These exponents will in gen-
eral not agree with those of the underlying model. The
Fortuin-Kasteleyn clusters11 of the Q-state Potts model is a
special case where the exponents derived from � and � agree
with those of the ordinary Potts model, i.e., �G=�, �G
=� , . . . . The vortices of the 3D XY model, which we study in
this paper, constitute another special case, here the exponents
derived from � and � agree with the dual of the initial theory.
Since the dual of a neutral superfluid is a charged superfluid,
the study of the vortices in the 3D XY model can actually be
used to glean knowledge of the critical properties of a
charged superfluid. In particular, this can be used to relate the
anomalous scaling dimension of the Ginzburg-Landau
theory, �� to the fractal dimension of the vortex loops in the
3D XY model.

The paper is organized as follows. In Sec. II we derive the
relation between the fractal Hausdorff dimension DH of the
loops and the anomalous dimension of the dual condensate,
��. Sections III and IV are devoted to presenting our results
from Monte Carlo simulations. As a benchmark, we deter-
mine the fractal dimension of percolation clusters in sec. III,
and in Sec. IV we determine the fractal dimension of the
vortex loops of the 3D XY model. Finally, in Sec. V we
discuss our results.

II. RELATION BETWEEN THE HAUSDORFF AND THE
ANOMALOUS DIMENSIONS

The anomalous dimension �� of the � field is defined as
the critical exponent of the correlation function as follows:

G�x,y� = ���x��†�y�� . �5�

This correlation function has the standard form at large dis-
tances at the critical point, namely

G�x� � 1/xd−2+��, x → � , �6�

where d the spatial dimension of the system. Particle-field
duality dictates that this correlation function has a geometric
interpretation, yielding the probability amplitude of finding
any particle path connecting x and y. In the present work, the
particle trajectories correspond to vortex loops which can be
deduced from the phase distribution of the matter field. It is
essential that any vortex path connecting two points x and y
must be part of a closed vortex loop, since only closed vortex
loops provide the vortex paths in this system. To highlight
the important properties of the probability amplitude
P�x ,y ,N� of connecting two points x and y by a continuous
vortex path, we start by focusing on the properties of the
vortex loops.

It is known that for random loops in a lattice, the number
of steps N, defined as the number of occupied links, and the
average distance RF=��x

2+�y
2+�z

2, where �i are the coordi-
nate variations of the trajectories, are related by

RF � N1/DH, N → � , �7�

where DH is the Hausdorff dimension.12

Since these vortex are the critical fluctuations of the
theory their average size RF is related to the correlation
length � of the field � so that we can set ��RF,

� � N1/DH. �8�

With this we can now relate the correlation function G�x ,y�
with the Hausdorff dimension DH by taking advantage of the
fact that in every second-order transition the system is scale
invariant at T=Tc. We can, then, write the following scaling
ansatz for the probability amplitude P�x ,y ,N�,

P�x,y,N� � P��r�,N� �
1

�dF� �r�
�
	 � N−d/DHF� �r�

N1/DH
	 ,

�9�

where P�x ,y ,N� is the probability of finding a loop of length
N connecting the points x and y. The probability of coming
back to the starting point is generally given by P�x ,x ,N�. For
some models like self-avoiding walks �SAWs� and random
walks in d�3 this probability is vanishing, and the scaling
function F�z� has the limiting behavior

lim z → F�z� = z�, � � 0. �10�

In the case of vortex loops, which are closed, we clearly
must have �=0. This is discussed in more detail in the Ap-
pendix. At the critical point the two-point correlation func-
tion G�r�, Eq. �5�, scales with an anomalous dimension ��.
At the same time we know that, by the definition of
P�x ,y ,N� together with Eq. �9�,

G�x,y� = 

N

P�x,y,N� = 

N

N−d/DHF� �r�
N1/DH

	 . �11�

If we focus on the long loop regime �N	1�, we can replace
the summation with an integral and obtain
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G�x,y� � � dnn−d/DHF� �x − y�
n1/DH

	 =
C

�x − y�d−DH
. �12�

Therefore we can relate the anomalous dimension �� to the
fractal dimension of the vortex loops DH as follows:

�� + DH = 2. �13�

We can also relate DH and, indirectly ��, to another critical
exponent � which is related to the density of loops in the
system. From the definition of loop density we have

D�N� �
1

N



x

P�x,x,N� . �14�

Here, P�x ,x ,N� is the probability of finding a closed loop of
length N and D�N� is the mean number of loops of length N.
Near Tc the loop distribution will then take the form

D�N� � N−�. �15�

If the system is homogeneous, all the contributions in Eq.
�14� are equal. Thus picking an arbitrary x we find

P�x,x,N� �
N

V
D�N� � N1−�. �16�

Finally, combining Eqs. �9�, �16�, and �7� we arrive at the
following relations:

d

DH
= � − 1, �17�

�� = 2 − DH = 2 −
d

� − 1
. �18�

It can be seen from Eqs. �13� and �18� that the anomalous
dimension of the dual condensate can be determined either
through the determination of � or DH, the former being sta-
tistically easier to evaluate. However, �� is quite sensitive to
� ���� /��=d / ��−1�2�1.5.

The purpose of the present work is to carry out a direct
evaluation of DH which facilitates a check of the scaling law
Eq. �17�. For this reason, the first part of this study has been
devoted to test their validity and the validity of the algo-
rithms used in the case of a percolation transition, since it
has been extensively studied in the literature and can be eas-
ily implemented.

Before we start, let us return to the points made above
concerning the high-temperature �HT�-graph expansion of
the partition function and two-point correlation
functions.13,14 Suppose one were to compare the Hausdorff
dimension of physical vortex loops5 with the Hausdorff di-
mension of the sort of open ended, self-avoiding walks that
one would consider in a HT-graph expansion of the two-
point correlation function.13 We may compute the loop-
distribution function for vortex loops, Dloop�N��N−�loop, with
the distribution of “closed” graphs in self-avoiding walks
DSAW�N��N−�SAW. A self-avoiding walk of length N is de-
fined as closed if one after N steps ends up on a lattice point
which is nearest neighbor to the starting point,13,14 see also
Fig. 1 of Ref. 14 From Fig. 1 in Ref. 14, it is immediately

clear that the stop criterion for defining a closed self-
avoiding walk, if applied to real physics vortex loops, would
mean that one would discard a tail in the distribution func-
tion involving large vortex loops. This is so since one could
connect the remaining last bridge by an arbitrarily long and
complicated vortex path, not just over the shortest link. �In
fact, these two points were connected by an arbitrarily long
and complicated path, and there is no reason to close the path
only by the shortest distance.� This would lead to an overes-
timate for �loop, since removing large loops means that D�N�
drops too much as a function of N. An overestimate of �
would lead to an underestimate of DH, cf. Eq. �17�. In the
scaling relation ��+DH=2, it is crucial to compute DH from
the real physical vortex loops of the system. If one underes-
timates DH by for instance considering the fractal Hausdorff
dimension of other objects than real physical vortex loops,
this might lead one to erroneously conclude that one needs to
introduce an additional exponent ��0 and modify the scal-
ing relation to ��+DH=2−�. While ��0 is needed in the
case of self-avoiding walks, this is not so for vortex loops
due to the topological constraint � ·n=0.

III. RESULTS FOR THE PERCOLATING SYSTEMS

Percolation theory is used to describe a variety of natural
physical processes where disorder is an essential ingredient.
Applications range from spontaneous magnetization of di-
luted ferromagnets, formation of polymer gels, electrical
conductivity of amorphous semiconductors, and many
others.10

In link �site� percolation the links �sites� of a lattice are
occupied independently with probability p, and then the re-
sulting clusters of connected links �sites� are analyzed. For
small p we will only have small clusters, and the there will
be no path connecting the edges of the system. For large p
there will be large clusters comparable to the entire system,
and the system can sustain a current from edge to edge. The
transition from an insulator to metal is a second order �geo-
metric� phase transition at a critical value pc.

Figures 1 and 2 show our results for the percolation prob-
ability, i.e., the probability that there is at least one cluster
spanning the whole system, for sites and bond percolation,
respectively. We have found pc=0.311 619 and pc
=0.248 627, respectively. These values agree reasonably well
with existing results.15 Clusters have been identified using
the Hoshen-Kopelman �HK� �Ref. 16� labeling algorithm and
up to 104 configurations were considered in the measure-
ments.

We next focus on the calculation of the fractal dimension
of percolation clusters at the critical point, and compare with
results from the literature.17 Formally the fractal dimension
can be defined from the box counting technique.12 The fractal
object is covered with boxes of linear size l, and we count
the number of boxes needed for complete coverage. The
fractal dimension is inferred from the variation in total num-
ber of boxes N�l� with box size l as follows:

N�l� � lim
l→0

l−DH. �19�

Defining l on a lattice is difficult since the lattice spacing a is
a fixed dimensionless constant. Instead, we can relate l to

METHODS TO DETERMINE THE HAUSDORFF¼ PHYSICAL REVIEW B 74, 104507 �2006�

104507-3



1/RF, which is equivalent to considering loops of different
size RF as the same loop, but at a different length scale. This
relation is unique provided that the different loops can be
embedded in a box �x�y�z of the same shape, i.e.,

�i

� j
= Cij, " i � j, i, j � �1,3 , �20�

where Cij are constants enforcing a constant proportion con-
straint �CPC�. This implies that loops have to be divided into
groups, each one characterized by the actual values of the
two independent ratios Cij, say Cxy and Cxz, and Eq. �19�
applies separately to each group. In the current paper we
have only considered cubic boxes with �x=�y =�z.

From Eq. �7�, it can be seen that there is a relation be-
tween the dimension of the cluster �i.e., the number of cells�

and its radius �i.e., the dimension of the box containing it�.
Thus we first relate the number N of occupied cells by the
loops to their length RF using an embedding box of fixed
shape �x=�y =�z. Although this approach is very close in
spirit to the definition Eq. �19� the method fails miserably
giving DH=1.329�8�, which deviates strongly from the lit-
erature results DH=2.5230.17

The problem, we believe, is that this method �later called
Method 1� is affected by two strong restrictions. First, every
box must scale in all the three directions in the same way
�because of the CPC�, i.e., all the boxes have to be cubes.
Second, the extraction of the box can be mistaken if the
cluster extends beyond the borders of the lattice, so that
boxes touching the borders are excluded. For these two rea-
sons the statistics of N�RF� in Method 1 is extremely poor,
and a correct value of DH cannot be found.

Another way to extract DH is to consider the largest clus-
ter for every configuration, and assume that the box contain-
ing this cluster consists of the entire lattice. When the linear
size of the lattice is varied this gives the fractal dimension
from

N* � LDH, �21�

where N* is the size of the largest cluster and L is the linear
extent of the lattice. Using this approach we have found
DH=2.52, which is consistent with the value �=2.189.

Hence the study of the percolation transition has been
useful to first test the simulation and the algorithms used for
the extraction of the geometrical properties and, ultimately, it
has provided a test of Eq. �17�. We can now proceed to the
more difficult task of determining the Hausdorff dimension
for the ensemble of vortex loops generated by thermal trans-
verse phase fluctuations of the 3D XY model.

IV. RESULTS FOR THE 3D XY MODEL

The Hamiltonian for the case of a neutral condensate in
the London approximation �i.e., neglecting amplitude fluc-
tuations� is given by

H�q = 0,�� = − J

�i,j�

cos��i − � j� . �22�

Equations �17� and �13� are valid only at the transition point
where the system is scale invariant. Therefore the simula-
tions must be restricted to the case T=Tc. We have used the
standard Metropolis algorithms for lattice sizes of L
=80,100,150,180, all the runs had a hot start and 5000
sweeps were discarded before measurements were made.
Vortices are found identifying singularities in the phase con-
figuration according to Eq. �2�. The temperature found �T
=2.187 27, cf. Fig. 3� is close to, but different from, the
thermodynamical one, Tc=2.201 84.18 Variations with the di-
mension of the system are still present, and it cannot be
excluded that in the thermodynamical limit the two values
merge together. More extensive simulations along with a
finite-size scaling analysis will be necessary to provide this
question with a more satisfactory answer.

For the time being, since any T�Tc is better than T�Tc
to test Eq. �17�, all the following simulations will be done at
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FIG. 1. �Color online� Percolation probability of sites as a func-
tion of concentration p for a simple 3D cubic system. The concen-
tration at which percolation takes place is given by the common
inflection point of the different curves for increasing lattice size.
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the fixed temperature of Tc=2.201 84. Now that the tempera-
ture has been set, � and DH can be determined separately and
their values compared to the ones available in the literature.

All the simulations were performed on a system of fixed
size L=200 using up to 40 2-Ghz Pentium 4. The Monte
Carlo runs had a cold start and 104 sweeps were discarded
for thermalization before taking measurements over 4�105

configurations. The loops in the system are identified with a
modified version of the Hoshen-Kopelman algorithm which
resolves vortex crossings randomly. The exponent � for the
loop distribution has been determined earlier as
�=2.310�3�.4,5 The results obtained for � are shown in Fig. 4.

We now turn to the fractal dimension DH. The first inter-
esting fact is that the method used to extract the pair �length,
box� used in the percolation transition does not work any
more, giving unphysical values for DH. On the other hand,

the more correct method of extracting the exact box contain-
ing the loops yields a value in agreement with Eq. �17�.

There is also a topological reason for which we can ex-
pect to have different statistics for the two systems �and
therefore we need to apply two different methods�. When
extracting the clusters in a percolating system, all connected
sites �or bonds� are considered part of the same object, i.e.,
belonging to the same cluster. In general, this will lead to
fewer but larger clusters in the system; this is particularly the
case at the transition point, where the cluster tension van-
ishes. In the case of vortex loops, on the other hand, two
intersecting loops are connected with 50% probability, which
directly influences the value of � which is smaller in the case
of percolation.

A. Method 1

We have tested Method 1, and the extracted value of DH
=2.168�6� �Fig. 5� is in good agreement with the expected
one of DH�2.162�1�, as calculated using Eq. �17�, and the
value of �=2.3876�8� previously obtained �Fig. 4�.

Equation �7� is assumed to hold only in the limit N→�,
so that small deviations from linearity are expected for small
N where the discrete form of the lattice becomes important.
Therefore in order to reduce these lattice effects we have
varied the lower cutoff on RF systematically. Results are
shown in Fig. 6, which is characterized by a “saturation” in
the long-loop regime. To obtain a reliable value of DH this
saturation region has to be reached, but, although this is the
case, there are still considerable fluctuations.

For this reason and owing to the results obtained for per-
colating systems, we have considered two different methods
in order to determine values of the Hausdorff dimension DH
with better precision. The main limitation in Method 1 is the
limited statistics; in an attempt to improve on this situation
we have devised two additional methods to calculate DH.
Both methods rely on “relaxation” of the CPC constraint.
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FIG. 3. �Color online� Percolation probability OL as function of
temperature T for the 3D XY model at different lattice sizes. The
critical temperature is given by the common inflection point of the
different curves for increasing lattice size. The value obtained is
Tc=2.187 27.

10 100 1000 10000

Loop length (N)

10000

1e+08

1e+12

D
(N

)

τ= 2.3876(8)

Loop Distribution
Vol=200x200x200    T=2.20184

FIG. 4. Vortex-loop distribution D�N��N−� as a function of
perimeter length N at the temperature T=2.187 27, as explained in
the text.

10 100
R

F

100

1000

10000

L
oo

p 
L

en
gt

h

N(R_F)
Volume=200x200x200   T=2.20184    Method1

47

FIG. 5. Loop length N�RF� as a function of the characteristic
size RF. The best fit has been performed only on the point between
4�RF�47.

METHODS TO DETERMINE THE HAUSDORFF¼ PHYSICAL REVIEW B 74, 104507 �2006�

104507-5



The strongest statistical limitation on Method 1 is that the
loops have to be divided into groups and that only compari-
sons within each group are allowed. The consequence of this
restriction can be directly seen in Fig. 5, where the longest
loop considered has a linear dimension of �47, to be com-
pared with the linear dimension of the lattice of 200. Clearly
then, the longest loops present in the lattice �the ones for
which Eq. �7� holds are excluded from the final statistics
obtained.

B. Method 2

The first of these two new methods �Method 2 below�
determines a lower and an upper bound for RF. To see how
this can be done let us consider a box containing a loop with
the condition �x=�y =� and �z=�+C where C is some con-
stant, and �x, �y, �z the dimensions of the box containing
the loop in the three directions. We immediately observe that,
since C is constant, there is a violation of the CPC,

�z

�x
=

� + C

�
�

�� + C

��
=

�z�

�x�
. �23�

However, the error is of the order of C /�, so in the limit of
large boxes ��	C� this approximation is exact. We can then
define the following loop size RF as follows:

RF = ��x
2 + �y

2 + �z
2, �24�

RF
− = ��3, �25�

RF
+ = �� + C��3, �26�

where RF
− and RF

+ are lower and upper bounds for RF. By
definition, we have RF

− �RF�RF
+ for every �, so that DH

−

�DH�DH
+ "�. Moreover,

lim
�→�

DH
− = lim

�→�
DH

+ = lim
�→�

DH
+ = DH. �27�

Then, DH
− and DH

+ represent a lower and upper bond, respec-
tively, for the Hausdorff dimension, thus allowing a direct
estimate of the error in DH. As can be seen from Fig. 7, the
separation between the two values obtained, DH− and DH+, is
still of the order of the fluctuations in Fig. 6, hence there is
no significant improvement in the DH determination.

C. Method 3

We finally turn to the last method �Method 3 below�
which will prove to be the best one to extract a precise value
for DH. In contrast to what is the case for Method 1 and
Method 2, in Method 3 there is no constraint on the propor-
tions of the box containing the loops, since it is based on the
approximation that, considering a large number of configu-
rations, the different values for DH will eventually compen-
sate. As can be seen from Fig. 9, this method gives much
better statistics both in the small- and large-loop regimes.
Moreover, the longer loops considered in the statistic, having
a linear dimension of �150 �cf. Fig. 8�, although greater than
the one considered with Method 1 and Method 2, is still
smaller than the linear dimension of the lattice. Hence finite-
size effects should not substantially influence the final value
of DH obtained.

V. CONCLUSIONS

The results obtained for the different methods are summa-
rized in Table I. All methods are in agreement with Eq. �17�
and consistent with each other, although they have different
accuracies. As predicted by Ref. 19 finite-size effects are
present both in the short- and long-loop regimes �Fig. 4�, but
there is a clear monotonic behavior towards the continuum
limit �Figs. 6, 7, and 9�. The best results are obtained from
Method 3, which yields a final value for the anomalous di-
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mension of the condensate ��=−0.1693�4�. This is consis-
tent with both perturbative renormalization-group
calculations20–23 and previous simulations.4,5,8

In ordinary local quantum field theories without gauge
fields, one can prove that �� must be greater or equal to zero.
In contrast, in gauge theories the proof of a non-negative ��

is not applicable due to the non-gauge-invariant form of the
correlation function.24–26 Moreover, a negative value of ��

implies a fractal dimension larger than that of Brownian ran-
dom walks, which means that the current lines are self-
seeking. This point has been thoroughly discussed in Ref. 8.
Indeed a DH�2 �corresponding to ���0� is necessary for
the possibility of the existence of a phase transition driven by
a vortex-loop unbinding even in the presence of a finite ex-
ternal magnetic field.2,3 This value is different from the one
obtained for the 3D XY model, showing that the gauge fluc-

tuations of the Abelian Ginzburg-Landau model �dual 3D
XY� modify the critical behavior, so that the Abelian gauge
model and the �4 model belong to two different universality
classes.
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APPENDIX: VORTEX LOOPS AND EQ. (10)

The quantity

lim
r→0

F� �r�

�̄
	 = lim

z→0
F�z� = z�, � � 0 �A1�

is a scaling function for the probability of traversing the dis-
tance between two points along a continuous vortex path,
and holds for an ensemble of both closed and open self-
avoiding walks.27 Equation �A1� is often used in polymer
physics to describe the statistical properties of polymer
tangles. The statement that ��0 is certainly not true for the
statistical properties of vortex loops, which are, by construc-

tion, closed and not self-avoiding, so we have P�x ,x , N̄�
�0 and �=0.28 The main physical difference between vor-
tex loops in a superconductor and a tangle of polymers is that
while polymers can start and end inside a system, this is not
so for vortex loops. They must either close on themselves or
alternatively thread the entire system. If we denote by n the
local vorticity arising from transverse phase fluctuations, de-
fined by Eq. �2�, then we have the constraint � ·n=0 every-
where inside the superfluid �and superconductor�. We reem-
phasize that this in particular means that each and every
vortex path in the system must be part of a closed vortex

TABLE I. Values of � and DH; it can be seen that Eq. �17� is
satisfied for all methods, and that all the values of DH extracted are
consistent with each other. The last two columns are a check of
internal consistency.

DH � ��=2−
d

�−1
��=2−DH

Method 1 2.168�6� 2.3876�8� −0.162�1� −0.168�6�
Method 2 2.14�7� 2.3876�8� −0.162�1� −0.14�7�
Method 3 2.1693�4� 2.3876�8� −0.162�1� −0.1693�4�
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loop. No paths of vortices can be open ended. Hence for the
former we can have ��0 while for the latter �=0. To em-
phasize this further, let us consider the physical meaning of a
positive �.14 In the problem of self-avoiding walks, ��0 is
an exponent that governs the asymptotic number of open-
ended paths of length N at the critical point, via the relation
zN�N�/DH. We also emphasize that in this paper and in pre-
vious works, we have3–5 exclusively been dealing with the
geometrical properties of vortex-loop paths at the critical
point in superfluids and superconductors.

Let us also make another remark which is relevant in this
context. It is known29 that the partition function of the 3D
XY model may be expanded in so-called high-temperature
�HT� graphs, which are isomorphic to the vortex-loop gas of
a superconductor. In the case of charged superconductor the
fluctuating gauge field screens the Coulomb interactions and
the resulting loop interactions are short range.5 Hence for the
purposes of studying the critical thermodynamics of a super-
conductor, one might as well use such a HT expansion of the
partition function, instead of summing over all configura-
tions of closed vortex loops of the system. In other words, at
the level of the partition function, one can elevate the HT
graphs to objects that are equivalent to real physical topo-
logical defects in the superconducting order parameter, i.e.,
closed vortex loops. A similar property is known for the two-
dimensional Ising model, where one at the level of the par-
tition function can proceed with a HT expansion and identify
a formal equivalence between the closed HT graphs and the
topological defects of the theory, namely closed lines in a 2D
plane connecting domains of oppositely directed Ising spins.

However, when we compute correlation functions, as we
need to do for computing the probabilities we have discussed
above, the connection between physical closed vortex loop
paths and the graphs of the HT expansion for the correlation
functions is far less obvious. When one utilizes the HT ex-
pansion to compute the correlation function ���x��†�y��, one
has to consider open-ended graphs starting at x and ending
at y.14 One may, if one wishes, define such a closed path as
the path at which the end point of the walk for the first time
reaches a lattice point which is the nearest neighbor of the
starting point, see for instance Fig. 1 of Ref. 14. One may
further go on to discuss the geometrical properties of such
open-ended �and “closed”� HT graphs involved in computing
the two-point correlation function in a HT expansion. How-
ever, the graphs that one then ends up with studying have
nothing to do with the closed vortex paths that are the topo-
logical defects of the superconductor, and which were the
objects under consideration in our previous work.5 �The frac-
tal structure of HT graphs in O�N� models in two spatial
dimensions, as well as the fractal structure of spin clusters
and domain walls in the two-dimensional Ising model, has
recently been investigated in detail.30,31 The Hausdorff di-
mension of such correlation function HT graphs will not be
the same as the Hausdorff dimension of the closed vortex
loops of a superconductor. Such open-ended graphs violate
the constraint that the vortex-loop paths must respect, namely
that they must form continuous closed paths and cannot start
or end inside the system.

*Electronic address: massimo.camarda@ct.infn.it
1 P. W. Anderson, Basic Notions in Condensed Matter �Addison-

Wesley, Redwood City, CA, 1984�.
2 Z. Tesanović, Phys. Rev. B 59, 6449 �1999�.
3 A. K. Nguyen and A. Sudbø, Europhys. Lett. 46, 780 �1999�.
4 A. K. Nguyen and A. Sudbø, Phys. Rev. B 60, 15307 �1999�.
5 J. Hove and A. Sudbø, Phys. Rev. Lett. 84, 3426 �2000�.
6 S. Mo, J. Hove, and A. Sudbø, Phys. Rev. B 65, 104501 �2002�.
7 M. Peskin, Ann. Phys. �N.Y.� 113, 122 �2002�.
8 J. Hove, S. Mo, and A. Sudbø, Phys. Rev. Lett. 85, 2368 �2000�.
9 M. E. Fisher, Rep. Prog. Phys. 30, 615 �1967�.

10 D. Stauffer and A. Aharony, Introduction to Percolation Theory
�Taylor & Francis, London, 1991�.

11 C. M. Fortuin and P. W. Kasteleyn, “On the random-cluster
model”, Physica �Utrecht� 57, 536 �1972�.

12 B. B. Mandelbrot, The Fractal Geometry of Nature �Freeman,
San Francisco, 1982�.

13 N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 96, 219701
�2006�.

14 W. Janke and A. M. J. Schakel, cond-mat/0508734 �unpublished�.
15 C. D. Lorenz and R. M. Ziff, Phys. Rev. E 57, 230 �1998�.
16 J. Hoshen and R. Kopelman, Phys. Rev. B 14, 3438 �1976�.

17 M. B. Isichenko, Rev. Mod. Phys. 64, 961 �1992�.
18 Y.-H. Li and S. Teitel, Phys. Rev. B 40, 9122 �1989�.
19 D. Austin, E. J. Copeland, and R. J. Rivers, Phys. Rev. D 49,

4089 �1994�.
20 R. Folk and Yu. Holovatch, J. Phys. A 29, 3409 �1996�.
21 I. F. Herbut and Z. Tesanović, Phys. Rev. Lett. 76, 4588 �1996�.
22 J. S. Kang, Phys. Rev. D 10, 3455 �1974�.
23 B. I. Halperin, T. C. Lubensky, and S. K. Ma, Phys. Rev. Lett. 32,

292 �1974�.
24 F. S. Nogueira, Phys. Rev. B 62, 14559 �2000�.
25 H. Kleinert and F. S. Nogueira, Nucl. Phys. B 651, 361 �2003�.
26 H. Kleinert and A. M. J. Schakel, Phys. Rev. Lett. 90, 097001

�2003�.
27 P. G. de Gennes, Scaling Concepts in Polymer Physics �Cornell

University Press, London, 1979�, Chap. 1.
28 J. Hove and A. Sudbo, Phys. Rev. Lett. 96, 219702 �2006�.
29 H. Kleinert, Gauge Fields in Condensed Matter �World Scientific,

Singapore, 1989�, Vol. 1.
30 W. Janke and A. M. J. Schakel, Phys. Rev. Lett. 95, 135702

�2005�.
31 W. Janke and A. M. J. Schakel, Phys. Rev. E 71, 036703 �2005�.

CAMARDA et al. PHYSICAL REVIEW B 74, 104507 �2006�

104507-8


