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We study the critical behavior of the short-range p-state Potts spin glass in three and four dimensions using
Monte Carlo simulations. In three dimensions, for p=3, a finite-size scaling analysis of the correlation length
shows clear evidence of a transition to a spin-glass phase at Tc�0.273 for a Gaussian distribution of interac-
tions and Tc�0.377 for a ±J �bimodal� distribution. These results indicate that the lower critical dimension of
the three-state Potts glass is below 3. By contrast, the correlation length of the ten-state �p=10� Potts glass in
three dimensions remains small even at very low temperatures and thus shows no sign of a transition. In four
dimensions we find that the p=3 Potts glass with Gaussian interactions has a spin-glass transition at Tc

�0.536.
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I. INTRODUCTION

There are two main motivations for studying the Potts
glass: First, the model for which the number of Potts states p
is equal to 3 is a model for orientational glasses1 �also known
as quadrupolar glasses�, which are randomly diluted molecu-
lar crystals where quadrupolar moments freeze in random
orientations upon lowering the temperature due to random-
ness and competing interactions. This is similar to spin
glasses where spins are frozen in random directions in the
spin-glass phase. However, unlike conventional spin-glass
systems2 with Ising or vector spins, the Potts model does not
have spin inversion symmetry, except for the special case
with p=2 in which case the Potts model reduces to the Ising
model. In mean-field theory �i.e., for the infinite-range ver-
sion of the model� it is found3 that the three-state Potts glass
has a finite transition temperature to a spin-glass-like phase.

Second, the Potts glass could help us understand the struc-
tural glass transition of supercooled fluids. In the mean-field
�i.e., infinite-range� limit, the Potts glass with p�4 has a
behavior quite different from that of the Ising spin glass
since two4,5 transitions occur in the Potts case. As tempera-
ture is lowered, the first transition is a dynamical transition at
Td below which the autocorrelation functions of the Potts
spins do not decay to zero in the long-time limit. The second
transition is a static transition at Tc�Td where a static order
parameter, described by “one-step replica symmetry break-
ing,” appears discontinuously. At the mean-field level, it
turns out that the equations which describe the dynamics of
the p-spin Potts glass for T�Td are almost identical to the
the mode-coupling equations; see Ref. 6, and references
therein, which describe structural glasses as they are cooled
towards the glass transition. Hence Potts glasses with p�4
and structural glasses seem to be connected, at least in mean-
field theory.

However, it is important to understand to what extent
these predictions for phase transitions in the infinite-range
Potts glass are also valid for more realistic short-range mod-
els. Here we consider this question by performing Monte
Carlo simulations on the three-state and ten-state Potts glass
models.

Earlier work on short-range three-state Potts glasses in
three dimensions have used zero-temperature domain-wall
renormalization group methods,7,8 Monte Carlo simula-
tions,9–11 and high-temperature series expansions.12–14 The
results of the domain-wall and Monte Carlo studies have
generally indicated that the lower critical dimension dl is
equal to, or close to, 3. The series expansion results tend to
be better behaved in higher dimensions and less reliable in
d=3, but Schreider and Reger13 have also argued in favor of
dl=3 from an analysis of their series. Overall, though, it
seems to us that conclusive evidence for the value of the
lower critical dimension is still lacking. In this paper we
therefore investigate the lower critical dimension of the
three-state Potts glass by Monte Carlo simulations of this
model in three space dimensions using the method that has
been most successful in elucidating the phase transition in
Ising15 as well as vector16 spin glasses: a finite-size scaling
analysis of the finite-size correlation length.

In four space dimensions, Scheucher and Reger17 per-
formed Monte Carlo simulations, finding that the critical
temperature Tc is finite and a value for the order parameter
exponent � close to zero, as well as a correlation length
exponent � consistent with 1/2. These are the expected3 val-
ues at the discontinuous transition in the mean-field Potts
model for p�4. It is surprising that these should be found in
four dimensions, since, as for Ising and vector spin glasses,18

the upper critical dimension is 6. To try to clarify this situa-
tion we therefore also apply the finite-size scaling analysis of
the correlation length to the three-state Potts glass in d=4.

Earlier work on the ten-state Potts glass in three dimen-
sions by Brangian et al.19,20 found that, in contrast to the
mean-field version of the same model, both the static and
dynamic transitions are wiped out. Relaxation times follow
simple Arrhenius behavior, and judging by the lack of size
dependence in the results, the correlation length is presumed
to be small, although it was not calculated explicitly. In this
paper we calculate the correlation length and find that it is
always less than one lattice spacing, consistent with the re-
sults of Brangian et al.

In Sec. II we discuss the model and the numerical method
that we have used. We show the results of the simulations for
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the three-state model in Sec. III and for the ten-state model in
Sec. IV. Section V contains a summary.

II. MODEL AND METHOD

In the Potts glass, the Potts spin on each site i can be in
one of p different states, ni=1,2 , . . . , p. If neighboring spins
at i and j are in the same state, the energy is −Jij, whereas if
they are in different states, the energy is zero. Thus the
Hamiltonian of the model is given by

H = − �
�i,j�

Jij�ninj
, �1�

in which the summation is over nearest-neighbor pairs.
The sites lie on a hypercubic lattice with N=Ld sites, and we
consider dimensions d=3 and 4. The interactions Jij are
independent random variables with either a Gaussian
distribution with mean J0 and standard deviation unity,

P�Jij� =
1

�2�
e−�Jij − J0�2/2, �2�

or a bimodal �±J� distribution with zero mean,

P�Jij� =
1

2
���Jij − 1� + ��Jij + 1�	 . �3�

It is convenient to rewrite the Potts glass Hamiltonian
using the “simplex” representation where the p states are
mapped to the p corners of a hypertetrahedron in
�p−1�-dimensional space. The state at each site is repre-
sented by a �p−1�-dimensional unit vector Si, which takes
one of p values, S� satisfying

S� · S�� =
p���� − 1

p − 1
�4�

��=1,2 , . . . , p�. In the simplex representation, the Potts
Hamiltonian is similar to a �p−1�-component vector
spin-glass model,

H = − �
�i,j�

Jij�Si · S j , �5�

ignoring an additive constant, where

Jij� =
�p − 1�

p
Jij . �6�

However, an important difference compared with a vector
spin glass is that, except for p=2, if S� is one of the �dis-
crete� allowed vectors, then its inverse −S� is not allowed.

In mean-field theory, assuming the transition is continu-
ous, the spin-glass transition temperature is given by3

Tc
MF =

z1/2

p
��Jij − J0�2	av

1/2 =
z1/2

p
=

z1/2

p − 1
��Jij� − J0�2	av

1/2, �7�

where z=2d is the number of nearest neighbors and �¯	av

denotes an average over disorder. Actually, in mean-field
theory there is a discontinuity in the order parameter for p
�4 and the transition then occurs at a higher temperature.3

For the case of p=10 this is found to be at21 Tc=0.28, rather
than Eq. �7�, which predicts Tc=0.24. Hence, the mean-field
transition temperatures for the models discussed in this paper
are

Tc
MF = 
0.82 three-state, d = 3,

0.94 three-state, d = 4,

0.28 ten-state, d = 3.
� �8�

The spin-glass order parameter for a Potts spin glass with
wave vector k, q	��k�, is defined to be

q	��k� =
1

N
�

i

Si
	�1�Si

��2�eik·Ri, �9�

where 	 and � are components of the spin in the simplex
representation and “�1�” and “�2�” denote two identical cop-
ies �replicas� of the system with the same disorder. The
wave-vector-dependent spin-glass susceptibility 
SG�k� is
then given by


SG�k� = N�
	,�

���q	��k��2�	av, �10�

where �¯� denotes a thermal average.
The correlation length, �L, of a system of size L is

defined15 by

�L =
1

2 sin�kmin/2� 
SG�0�

SG�kmin�

− 1�1/2

, �11�

where kmin= �2� /L ,0 ,0� is the smallest nonzero wave vec-
tor. Since the ratio of �L /L is dimensionless, it satisfies the
finite-size scaling form

�L

L
= X̃�L1/��T − Tc	� , �12�

where � is the correlation length exponent, Tc is the transi-

tion temperature, and X̃ a scaling function. At the transition
temperature, �L /L is independent of L, and so this quantity is
particularly convenient for locating the transition. Once Tc
has been obtained from the intersection point, one deter-
mines the exponent � by requiring that the data collapse onto
a single curve when plotted as a function of L1/��T−Tc�.

We are also interested in obtaining the critical exponent �
which characterizes the power-law decay of the correlation
function at criticality. The two exponents � and � completely
characterize the critical behavior, since the other exponents
can be obtained from them using scaling relations.22 From
scaling theory, we expect the spin-glass susceptibility 
SG to
vary as


SG = L�2−��C̃�L1/��T − Tc	� . �13�

To perform the scaling fits systematically, we use the
method recently proposed in Ref. 23. By assuming that the
scaling function can be approximated in the vicinity of the
critical temperature by a third-order polynomial �with coef-
ficients ci, i=1–4�, a nonlinear fit can be performed on the
data for �L with six parameters �ci, Tc, and �� using Eq. �12�
in order to determine the optimal finite-size scaling. For the
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SG data, we have an additional parameter � from Eq. �13�,
so the fit involves seven parameters. It is necessary to choose
a temperature range within the scaling region to do the fits.
We limit our temperature range to where results from scaling
the data in �T−Tc� and ��−�c�, where �=1/T is the inverse
temperature, agree within error bars and quote the results
obtained from the fits with �T−Tc�. To estimate the errors we
used a bootstrap procedure, described in Ref. 23. If there are
Nsamp samples for a given size, we generate Nboot=100 ran-
dom sets of the samples �with replacement� with Nsamp
samples in each set, do the analysis for each set, and take the
standard deviation of the results from the sets to be the error.
We emphasize that this gives the statistical errors only. In
addition, there can be systematic errors, from corrections to
finite-size scaling which are difficult to estimate from simu-
lations on only a modest range of sizes, as is possible here.

Spin-glass simulations are hampered by long equilibration
times, so we use parallel tempering,24,25 which has proven
useful in speeding up equilibration. In this approach, copies
of the system with the same interactions are simulated at
several temperatures. To check for equilibration, we use the
following relation which holds if the couplings Jij are drawn
from a Gaussian distribution with mean J0 and unit standard
deviation:

2T�U	av

z
= ���ninj

�2	av − ����ninj
�2�	av − J0T���ninj

�	av,

�14�

where U= �1/N��H� is the energy per spin for a given disor-
der realization. Equation �14� is obtained26 by integrating by

parts the expression for the energy with respect to the inter-
actions Jij. Note that the square can be omitted in the second
term on the right of Eq. �14� �since �ninj

only takes values 1
and 0�. The first term on the right is calculated from two
copies at the same temperature—i.e., ���ninj

��1���ninj
��2�	av.

Hence, if NT is the number of temperatures, the total number
of copies simulated �with the same interactions� is 2NT. As
the simulation proceeds, the left-hand side �LHS� of Eq. �14�
approaches the equilibrium value from above, while the
right-hand side �RHS� approaches the �same� equilibrium
value from below since the spins in the two copies are ini-
tially uncorrelated. When both quantities are simultaneously
plotted as a function of Monte Carlo sweeps, the two curves
merge when equilibration is reached and remain together
subsequently.26 Hence requiring that Eq. �14� is satisfied is a
useful test for equilibration.

An example of the equilibration test is shown in Fig. 1 for
the three-state Potts glass in d=3 for L=12 at T=0.248. In
the main panel, the upper curve is the energy term on the
left-hand side of Eq. �14� while the lower curve corresponds
to the right-hand side of Eq. �14� as a function of equilibra-
tion time measured in Monte Carlo sweeps �MCS�. Note that
one sweep consists of one Metropolis sweep of single spin-
flip moves on each copy, followed by a sweep of global
moves in which spin configurations at neighboring tempera-
tures are swapped. Figure 1 shows the number of sweeps
used for measurements, Nsw; in addition, an equal number of
sweeps have been used for equilibration, so the total number
of sweeps is 2Nsw. We see that the two curves merge in this
case at around 107 MCS and stay within error bars after that,
indicating that equilibration has been reached. The inset of
Fig. 1 shows the correlation length �L as a function of Monte
Carlo sweeps. The data increase until �107 MCS where they
saturate. This indicates that the equilibration time for the
correlation length is in agreement with the equilibration time
determined from the requirement that the two sides of Eq.
�14� agree.

Unfortunately, the equilibration test using Eq. �14� only
works for a Gaussian bond distribution. For the bimodal dis-
order distribution, we study how the results vary when the
simulation time is successively increased by factors of 2
�logarithmic binning of the data�. We require that the last
three measurements for all observables agree within error
bars.

TABLE I. Parameters of the simulation for the three-state Potts
glass with Gaussian interactions and J0=0 in three dimensions.
Nsamp is the number of samples. Nsw is the total number of Monte
Carlo sweeps used for measurement for each of the 2NT replicas for
a single sample. An equal number of sweeps is used for equilibra-
tion; hence, the total number of MCS performed is 2Nsw. Tmin is the
lowest temperature simulated, and NT is the number of temperatures
used in the parallel tempering method for each system size L.

L Tmin NT Nsamp Nsw

4 0.2 18 9356 80000

6 0.2 18 3980 80000

8 0.2 20 4052 655360

12 0.248 28 352 16777216

FIG. 1. �Color online� An equilibration plot showing the left-
hand side �upper curve� and right-hand side �lower curve� of Eq.
�14�. The data are for the three-state Potts glass in d=3 for L=12 at
T=0.248 as a function of equilibration time measured in Monte
Carlo sweeps, Nsw. An equal number of sweeps are also performed
for measurement, so the total number of sweeps is 2Nsw, respec-
tively. The two sets of data merge at long times, as expected, and
then remain independent of time. The inset shows the correlation
length �L for the corresponding number of Monte Carlo sweeps.
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For the Potts glass with p�2, an additional issue arises,
which is not present for the Ising �p=2� case: At low tem-
peratures ferromagnetic correlations develop27 due to lack of
spin-inversion symmetry, even for a symmetric disorder dis-
tribution �J0=0�. Since we want to study the glassy phase,
rather than the ferromagnetic phase, we can mitigate this
undesirable feature by choosing a negative value for J0. A
choice of J0=−1 seems sufficient for the ten-state Potts
glass,20 while for the three-state Potts glass, the ferromag-
netic correlations are small, as we shall show, so we set
J0=0.

III. THREE-STATE POTTS GLASS

A. Gaussian disorder „d=3…

We first discuss results for the three-state Potts glass with
Gaussian interactions. The simulation parameters are shown
in Table I. As shown in Fig. 2, the data for �L /L intersect at
T�0.27. The common intersection provides good evidence
for a spin-glass transition at this temperature. It would be
desirable to obtain data in this temperature range for larger
sizes, but unfortunately equilibration times are prohibitively
long. Interestingly, the same transition temperature Tc
�0.27 was proposed earlier by Banavar and Cieplak7,8 who
studied the free-energy sensitivity to changes in boundary
conditions at finite temperature using very small system sizes
L=2 and 3.

To determine Tc and �, we analyze the �L data for L6
using the method discussed in Sec. II for the temperature
range 0.20�T�0.32 for all L and obtain

Tc = 0.273�5�, � = 1.30�7� . �15�

A finite-size scaling analysis of �L /L according to Eq. �12� is
shown in the inset of Fig. 2 for L6. The solid line repre-
sents the third-order polynomial that we have used to ap-
proximate the scaling function. The data collapse well.

Next we discuss the results for 
SG. We find that allowing
Tc to vary, in addition to � and �, the value of Tc so obtained
is rather different from that obtained using data for �L /L.
Since we believe the value of Tc obtained from
�L /L—namely, Tc=0.273—to be our most accurate estimate,
we fix Tc to this value and fit � and � �and the polynomial
parameters ci� to Eq. �13�. This gives �=0.94�3� and

� = − 0.03�2� . �16�

We show the corresponding plot in Fig. 3.
If we analyze 
SG allowing Tc to vary, as well as the

exponents � and �, we obtain Tc=0.254�23�, �=0.99�8�, and
�=−0.18�16�. The transition temperature and exponents are
consistent, within the statistical errors, with those found for
the same fit with Tc fixed to be 0.273. We can also analyze
the 
SG data by fixing both Tc and � to the values obtained
from �L /L and so obtain just �. This gives �=−0.06�2�
which is consistent with the result in Eq. �16�. As discussed
in Sec. III C, the results from �L /L are expected to be more
accurate than those from 
SG.

TABLE II. Parameters of the simulation for the three-state Potts
glass with Gaussian interactions in three dimensions used to com-
pare results with J0=0 and J0=−1 where J0 is the mean of the
distribution. See Table I for details.

L J0 Tmin NT Nsamp Nsw

4 0 0.2 18 1000 81920

6 0 0.2 18 1000 81920

8 0 0.2 20 2400 655360

4 −1 0.2 18 1000 81920

6 −1 0.2 18 1000 81920

8 −1 0.2 20 2256 655360

FIG. 2. �Color online� Finite-size correlation length �L /L vs T
for the three-state Potts glass with Gaussian couplings in three di-
mensions. The curves intersect at Tc�0.273. The inset shows a
scaling plot according to Eq. �12� using Tc=0.273 and �=1.30. The
solid line is the third-order polynomial used in the fit.

FIG. 3. �Color online� Scaling plot of 
SG/L2−� vs T for the
three-state Potts glass with Gaussian interactions in three dimen-
sions according to Eq. �13� with Tc fixed to 0.273 �determined from
the data for �L /L shown in Fig. 2�. The fit to Eq. �13� then gives
�=−0.03 and �=0.94.
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The three-state Potts model is somewhat similar to the XY
spin glass in that the spins point along directions in a two-
dimensional plane. The difference is that in the XY model the
spins can point in any direction in the plane while in the
three-state Potts model they can only point to one of three
equally spaced directions. In units where the standard devia-
tion of Jij� is unity �see Eq. �5�	, a transition was found16 in
the XY spin glass at Tc

XY =0.34�2�. Since our interactions Jij

differ from the Jij� by a factor of �p−1� / p �see Eq. �6�	, this
corresponds to Tc

XY =0.23�2� in the units used here. We find a
slightly larger value for Tc in the Potts case, which is reason-
able since fluctuations in the Potts model are presumably
reduced relative to those in the XY model by the constraint
on the spin directions.

As mentioned before, the Potts glass with p�2 develops
ferromagnetic correlations at low temperatures even with
J0=0. To see the extent of this, we have performed additional
simulations, with the parameters shown in Table II, for
J0=−1 as well as J0=0. We have calculated the ferromag-
netic susceptibility, defined by


FM = N���m�2�	av, �17�

where m=N−1�iSi, and show the data in Fig. 4. For J0=0,
the ferromagnetic susceptibility grows slowly with tempera-
ture, seems to be bounded from above, and only displays a
small system-size dependence. We therefore think that ferro-
magnetic correlations should not seriously affect the results
presented earlier in this subsection. For J0=−1, the absolute
value of 
FM is smaller, but shows stronger size and tempera-
ture dependence. It seems that 
FM initially increases as T is
reduced, but then is strongly suppressed as spin-glass corre-
lations develop for T→Tc�0.27. The spin-glass correlation
length for both J0=0 and J0=−1 is shown in Fig. 5. The
slope of the J0=−1 data varies nonmonotonically with tem-

perature, reflecting the nonmonotonic behavior of the ferro-
magnetic correlations. By contrast, the J0=0 data vary much
more smoothly. We further plot �L /L for J0=−1 in Fig. 6.
The observed nonmonotonic behavior of the slope suggests
that corrections to finite-size scaling will be large and that
the data in Fig. 2 should be more reliable in estimating Tc.
Nonetheless, the J0=−1 data do have an intersection point,
although at a lower temperature, T�0.20, than the value of
0.273 for the J0=0 case. We interpret these data to indicate
that Tc�0.20 for the J0=−1 model �of course the value of Tc
can vary with J0�. However, data on a larger range of sizes

FIG. 4. �Color online� Ferromagnetic susceptibility 
FM against
T for the three-state Potts glass with Gaussian couplings in three
dimensions. The upper curves plotted with solid symbols corre-
spond to J0=0 while the lower curves with open symbols corre-
spond to J0=−1, where J0 is the mean of the Gaussian interactions.

FIG. 5. �Color online� Graph of �L vs T for the three-state Potts
glass with Gaussian couplings in three dimensions. The solid sym-
bols correspond to J0=0 while the open symbols correspond to J0

=−1.

FIG. 6. �Color online� Graph of �L /L vs T for the three-state
Potts glass with Gaussian couplings in three dimensions where the
mean of the Gaussian distribution is J0=−1. The vertical line is
drawn at the transition temperature Tc=0.273 of the J0=0 case �see
Fig. 2�.
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at lower temperature would be needed to confirm this.
Unfortunately, equilibration times are very long at such low
temperatures, so these calculations were not feasible.

B. Bimodal disorder „d=3…

We expect that the value of the lower critical dimension
and other universal quantities such as critical exponents
are independent of the distribution of the interactions. To
verify this we present in this subsection data for the three-
state Potts glass in three dimensions with a bimodal �±J�
distribution for comparison with the above results for the
Gaussian distribution. The simulation parameters are shown
in Table III.

Our results for �L /L are shown in Fig. 7. The data inter-
sect at Tc�0.38, indicating a spin-glass transition. Fitting the
data for �L for 0.34�T�0.44 and L6, we obtain

Tc = 0.377�5�, � = 1.18�5� . �18�

The scaling plot according to Eq. �12� is shown in the inset
of Fig. 7.

Similar to the data with Gaussian disorder, the fits for 
SG
give a different value for Tc from that obtained from data for
�L /L. Since we argue that the latter is more accurate, we

have fitted 
SG with Tc fixed to the value 0.377. This gives
�=0.91�2� and

� = 0.02�2� . �19�

These results are shown in Fig. 8.
If we allow Tc to fluctuate, the fits to the data for 
SG give

Tc=0.390�21�, �=0.87�7�, and �=0.14�17�. The error bars
are larger than in the analysis when Tc is fixed, but the results
are consistent with the previous analysis. Note that for the
Gaussian case, Tc estimated from �L /L is greater than that
from 
SG, whereas it is lower for the ±J distribution. How-
ever, these differences are within the statistical errors and so
are not significant. As discussed in Sec. III C, the results

TABLE III. Parameters of the simulation for the three-state
Potts glass with bimodal interactions and J0=0 in three dimensions.
For further details see the caption of Table I.

L Tmin NT Nsamp Nsw

4 0.2 18 10000 5120

6 0.2 18 4971 40960

8 0.2 20 2046 1310720

12 0.320 20 550 4194304

FIG. 7. �Color online� Graph of �L /L vs T for the three-state
Potts glass with a bimodal coupling distribution in three dimen-
sions. The curves intersect at Tc�0.377. The inset shows a scaling
plot according to Eq. �12� using Tc=0.377 and �=1.18.

FIG. 8. �Color online� Scaling plot of 
SG according to Eq. �13�
with Tc fixed to 0.377 �determined from the data for �L /L shown in
Fig. 7� for the three-state Potts glass with bimodal �±J� interactions
in three dimensions. The fit to Eq. �13� then gives �=0.02 and �
=0.91.

FIG. 9. �Color online� Graph of 
FM vs T for the three-state
Potts glass with Gaussian couplings with J0=0 in four dimensions.
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from �L /L are expected to be more accurate than those from

SG. We can also analyze the 
SG data by fixing both Tc and
� to the values obtained from �L /L and so obtain just �. This
gives �=0.03�2� which is consistent with the result in Eq.
�19�.

Comparing our results in this subsection with those above
for the Gaussian distribution, we see that in both cases we
obtain a finite Tc, showing that dl�3. This is in contrast to
the T=0 domain-wall renormalization group calculations of
Banavar and Cieplak7,8 who find dl�3 for the Gaussian dis-
tribution and dl�3 for the ±J distribution. One possible rea-
son for this difference is the larger range of sizes that we are
able to treat in the present study.

Furthermore, the values for the exponent � agree within
the statistical errors and those for � almost agree; see Eqs.
�15�, �16�, �18�, and �19�. The small additional difference in
the values for � can be attributed to systematic corrections to
scaling. Hence our results are consistent with universality.

C. Gaussian disorder „d=4…

For the three-state Potts glass in four dimensions we first
show data for 
FM with J0=0 in Fig. 9 to see whether sig-

nificant ferromagnetic correlations develop. The behavior is
very similar to the case in d=3 �see Fig. 4� since 
FM re-
mains small and relatively size independent. This indicates
that ferromagnetic couplings, while present, are relatively
weak; thus, we set J0=0 in the simulations of the three-state
model in d=4. The simulation parameters are presented in
Table IV.

Next we plot �L /L in Fig. 10, where the data intersect at
Tc�0.54. Fitting the data for �L for 0.49�T�0.59 and L
4, we obtain the best fit as

Tc = 0.536�3�, � = 0.81�2� . �20�

The scaling plot according to Eq. �12� is shown in the inset
of Fig. 10.

Our value for Tc is very different from that of Scheucher
and Reger17 who estimate Tc=0.25�5�. However, in the vi-
cinity of their estimate for Tc they could equilibrate only two
small sizes L=3 and 4. Furthermore, they used the Binder
ratio28 �a ratio of moments of the order parameter� which
even fails to intersect29 at the known transition temperature
in the mean-field Potts model. Hence we feel that our ap-
proach, using the correlation length, is more reliable, espe-
cially since we are able to use parallel tempering to simulate
larger sizes at lower T than was possible for Scheucher and
Reger in the “pre-parallel tempering days.”

We next discuss the data for 
SG. First we fix Tc to be the
value 0.536 obtained from �L /L. Fitting to Eq. �13� then
gives �=0.70�1� and

� = − 0.08�2� . �21�

This is shown in Fig. 11. We can also analyze the 
SG data by
fixing both Tc and � to the values obtained from �L /L, and so
obtain just �. This gives �=−0.08�2� which agrees with the
result in Eq. �21�.

TABLE IV. Parameters of the simulation for the three-state Potts
glass with Gaussian interactions and J0=0 in four dimensions. For
further details see the caption of Table I.

L Tmin NT Nsamp Nsw

3 0.2 18 1044 40960

4 0.2 18 2691 40960

5 0.350 17 1000 524288

6 0.408 18 700 327680

8 0.490 22 623 524288

FIG. 10. �Color online� Correlation length �L /L vs T for the
three-state Potts glass with Gaussian couplings in four dimensions.
The curves intersect at Tc�0.54. The inset shows a scaling plot
according to Eq. �12� using Tc=0.536 and �=0.81.

FIG. 11. �Color online� Scaling plot of 
SG for the three-state
Potts glass with Gaussian interactions in four dimensions according
to Eq. �13� with Tc fixed to the value 0.536, which is obtained from
the data for �L /L shown in Fig. 10. The fit to Eq. �13� then gives
�=−0.08 and �=0.70.
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However, if we allow Tc to vary, as well as � and �, we
obtain Tc=0.505�14�, �=0.75�3�, and �=−0.46�16�. We see
that Tc is substantially lower than in Eq. �20�. The resulting
value of � is not very different than that obtained in Eq. �20�
but the value of � is significantly more negative than that
obtained in Eq. �21�. These differences are due to corrections
to finite-size scaling. A related problem of different expo-
nents from 
SG and �L /L was also found23 for the Ising spin
glass �although there the main discrepancy involved � rather
than ��. They argued that the data for �L /L is the most ac-
curate way to determine Tc and �. Since it is dimensionless,
the data give clean intersections without having to divide by
an unknown power of L. Reference 23 confirmed this sup-
position by reanalyzing their data in an alternative way pro-
posed in Ref. 30. The results from �L /L did not change sig-
nificantly, but the value for � from 
SG changed considerably
and became much closer to the value found from �L /L.

Hence, for the present case, we feel that the values of � in
Eq. �20� �obtained from �L /L� and � in Eq. �21� �obtained
from 
SG with Tc fixed at the value from �L /L� are the most

accurate ones. An estimate for the order parameter exponent
� is then obtained from the scaling relation

� = �d − 2 + ��
�

2
, �22�

which gives

� = 0.78�3� . �23�

This is very different from the value ��0 obtained by
Scheucher and Reger.17 Therefore, we find that the transition
in the three-state Potts glass in four dimensions is actually
not in the mean-field universality class3 for p�4.

IV. TEN-STATE POTTS GLASS IN d=3
(GAUSSIAN DISORDER)

Finally, we turn our attention to the ten-state Potts glass in
three dimensions with Gaussian interactions. We set the
mean of the Gaussian interactions to J0=−1 in order to sup-
press ferromagnetic ordering.20 The effectiveness of this is
shown in Fig. 12, where the ferromagnetic susceptibility 
FM
is seen to be very small and does not exhibit measurable
finite-size effects. However, if we take J0=0, which is also
shown, 
FM becomes large and size dependent, indicating
that ferromagnetic ordering probably takes place. The simu-
lation parameters used for the ten-state Potts glass for J0
=−1 are shown in Table V. The second set of parameters for
L=6 and 8 is for additional runs to probe the very-low-
temperature behavior.

A plot of �L �not divided by L� against temperature for
J0=−1 is shown in Fig. 13. The correlation length shows no
size dependence and stays very small, less than one lattice
spacing, even at extremely low temperatures. We conclude,
in agreement with Brangian et al.,20 that there is clearly no
spin-glass transition in this model.

TABLE V. Parameters of the simulation for the ten-state Potts
glass with Gaussian interactions with J0=−1 in three dimensions.
The second set of parameters for L=6 and 8 is for additional runs to
probe the very low-temperature behavior of the model.

L Tmin NT Nsamp Nsw

4 0.2 14 1000 81920

6 0.2 17 1000 131072

8 0.2 19 998 262144

12 0.2 26 343 20480

6 0.02 28 469 262144

8 0.08 18 600 131072

FIG. 12. �Color online� Ferromagnetic susceptibility 
FM vs T
for the ten-state Potts glass with Gaussian couplings in three dimen-
sions. For J0=−1, represented by the open symbols, 
FM remains
small and size independent. In contrast, 
FM for J0=0 �solid sym-
bols� becomes very large and shows substantial finite-size effects.

FIG. 13. �Color online� Correlation length �L �not �L /L� vs T for
the ten-state Potts glass in three dimensions. The main panel shows
the case for J0=−1 where there are hardly any finite-size effects.
The inset shows the same for J0=0 showing the size dependence of
�L in this case.
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Since the nearest-neighbor ten-state Potts glass does not
even come close to having a transition down to T=0, its
behavior is very different from the mean-field �infinite-
range� case, which has two transitions. Although the mean-
field version provides a plausible model for supercooled liq-
uids as they are cooled down towards the glass transition, the
nearest-neighbor model does not. It might therefore be inter-
esting to investigate a Potts glass that has somewhat longer-
range interactions20 to see if its behavior corresponds more
closely to that of supercooled liquids.

V. CONCLUSIONS

We show a summary of our results for the various models
in Table VI. We find strong evidence for a finite transition
temperature Tc in the three-state Potts glass in three dimen-
sions, with universal critical exponents. This differs from
several earlier studies which claimed that the lower critical
dimension is equal or close to 3. In four dimensions, the
three-state Potts glass has a transition which is quite different
from that proposed by Scheucher and Reger17—namely the
discontinuous transition found in mean-field theory for p
�4. The ten-state Potts glass in three dimensions, which in
its mean-field incarnation is often used to describe structural
glasses, is very far from having a phase transition into a

glassy phase at any temperature since its correlation length
remains very small even down to extremely low tempera-
tures, in agreement with the work of Brangian et al.20
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