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We study the electric quadrupole �E2� contribution to resonant x-ray scattering �RXS�. Under the assumption
that the rotational invariance is preserved in the Hamiltonian describing the intermediate state of scattering, we
derive a useful expression for the RXS amplitude. One of the advantages the derived expression possesses is
the full information of the energy dependence, lacking in all the previous studies using the fast collision
approximation. The expression is also helpful to classify the spectra into multipole order parameters which are
brought about. The expression is suitable to investigate the RXS spectra in the localized f electron systems. We
demonstrate the usefulness of the formula by calculating the RXS spectra at the Ce L2,3 edges in Ce1−xLaxB6

on the basis of the formula. We obtain the spectra as a function of energy in agreement with the experiment of
Ce0.7La0.3B6. Analyzing the azimuthal angle dependence, we find the sixfold symmetry in the �-�� channel
and the threefold one in the �-�� channel not only in the antiferro-octupole �AFO� ordering phase but also in
the antiferroquadrupole �AFQ� ordering phase, which behavior depends strongly on the domain distribution.
The sixfold symmetry in the AFQ phase arises from the simultaneously induced hexadecapole order. Although
the AFO order is plausible for phase IV in Ce1−xLaxB6, the possibility of the AFQ order may not be ruled out
on the basis of azimuthal angle dependence alone.
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I. INTRODUCTION

Resonant x-ray scattering �RXS� has recently attracted
much attention, since strong x-ray intensities have become
available from the synchrotron radiation. It is described by a
second-order process that a core electron is excited into un-
occupied states by absorbing incident x rays and that electron
is recombined with the core hole by emitting x rays. RXS
has been recognized as a useful probe to investigate spatially
varying multipole orderings, which the conventional neutron
scattering is usually difficult to detect.

For probing the spatial variation of order parameters,
x-ray wavelengths need to be order of the variation period. In
transition metals, the K edges in the dipole �E1� transition
are just fitting for this purpose. Actually, by using the K
edge, the possibility of the orbital ordering has already been
explored in transition-metal compounds.1,2 The RXS intensi-
ties are observed at superlattice Bragg spots, which are inter-
preted as originating from the modulation in the 4p band,
since the process involves the excitation of a 1s electron to
unoccupied 4p states.

Because the ordering pattern is usually controlled by elec-
trons in the 3d band, the mechanism which causes the modu-
lation is not necessarily trivial. Actually, for most transition-
metal compounds, both experimental studies and theoretical
studies based on electronic structure calculations have re-
vealed that the RXS intensities are brought about by the
hybridization between the 4p band and the 2p band of the
neighboring anions rather than the direct Coulomb interac-
tion between the electron in the 4p band and electrons in the
3d band.3,4 This result is reasonable because of the extended
nature of the 4p state.

On rare-earth metal compounds such as CeB6, DyB2C2,
the L2,3 edges in the E1 transition are used because of the
requirement for x-ray wavelength.5–8 The RXS spectra in the
E1 transition from the antiferroquadrupole �AFQ� phase of
CeB6 were studied both experimentally5 and theoretically.9,10

Although the experiments and the theory give sufficiently
consistent results, the relation to the multipole orderings
which 4f electrons mainly involve is rather indirect, since the
resonance is caused by the excitation of a 2p electron to 5d
states. This shortcoming may be overcome by using the
quadrupole �E2� transition at the L2,3 edges, where a 2p elec-
tron is promoted to partially filled 4f states. Using the E2
transition has another merit that octupole and hexadecapole
orderings are directly detectable. This contrasts with the E1
transition, where only dipole and quadrupole orderings are
detectable. Of course, intensities in the E2 transition are usu-
ally much smaller than those in the E1 transition.

In this paper, we derive a general formula of the RXS
amplitudes in the localized electron picture, in which the
electronic structure at each atom is assumed to be well de-
scribed by an atomic wave function under the crystal electric
field �CEF�. Historically, the research in such a direction was
started by using the framework borrowed from resonant
�-ray scattering.11 Following the works by de Bergevin and
Brunel,12 Lovesey,13 and Blume and Gibbs14 to summarize
the nonresonant cross section, Hannon et al. have started the
investigation on the scattering amplitude of RXS.15 Since
then, several theoretical treatments have been devel-
oped.16–19 The RXS amplitude can be summarized into an
elegant form by using vector spherical harmonics. Unfortu-
nately, it has little practical usage because it is difficult to
deduce meaningful information when there is no restriction
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on the intermediate state of the scattering process. A widely
adopted approximation for practical use is the so-called “fast
collision approximation” �FCA�. This replaces the interme-
diate state energy in the energy denominator of the RXS
amplitude by an averaged value, allowing the denominator
out of the summation.15–19 Thereby, the multiplet splitting of
the intermediate state is neglected, leading to an assumed
form �usually a Lorentzian form� for the energy profile.

However, recent experiments show deviation from the
Lorentzian form in several materials.20,21 We improve the
situation by taking the energy dependence of the intermedi-
ate state under the assumption that the intermediate Hamil-
tonian describing the scattering process preserves spherical
symmetry. This assumption is justified when the CEF energy
and the intersite interaction are much smaller than the mul-
tiplet energy in the intermediate state as is expected in many
localized electron materials. We have already reported the
formula for the E1 transition, having successfully applied to
the analysis of the E1 RXS spectra in URu2Si2 and
NpO2.22–24 This paper is an extension of those works to the
E2 transition. The obtained formula makes it possible to ana-
lyze the energy profiles of the spectra in contrast with the
FCA. In addition, the formula is suitable to discuss the rela-
tion of the RXS spectra to multipole order param-
eters,20,21,25–28 because it is expressed by means of the expec-
tation values of the multipole order parameters.

We demonstrate the usefulness of the formula by calcu-
lating the RXS spectra in multipole ordering phases of
Ce1−xLaxB6. Both Ce1−xLaxB6 and its nondiluted material
CeB6 are known to crystallize in the cubic CsCl-type struc-

ture �Pm3̄m� with the lattice constant a=4.14 Å.29 First, we
investigate the E2 RXS spectra at the Ce L2,3 edges from the
AFQ ordering phase �phase II� in CeB6. Analysis utilizing
our formula reveals that the E2 RXS spectra in phase II
consist of a mixture of the quadrupole and hexadecapole en-
ergy profiles. The calculated intensities suggest the possibil-
ity that the E2 signal at the Ce L2,3 edges can be detectable
in this material. Note that the ratio of the peak intensities of
the spectra at the L2 and L3 edges is about a factor 2 smaller
than that by the FCA.30 The reason for such differences is
that the FCA is hard to treat properly the interference effect
between the energy profiles of rank 2 and rank 4.

For the intermediate doping range x�0.3–0.5,
Ce1−xLaxB6 falls into a new phase �phase IV� whose primary
order parameter is not well established yet.31 Recently, the
E2 RXS signals at the Ce L2 edge have been detected for an
x=0.3 sample.27 From the azimuthal angle ��� dependence
of the peak intensity, it was claimed that the antiferro-
octupole �AFO� ordering phase is the most probable candi-
date because the symmetry of the � dependence, sixfold and
threefold in the �-�� and �-�� channels, respectively, is de-
duced from the theory in good agreement with the
experiment.27,32 However, the relative intensity between two
channels depends strongly on the domain distribution, and
deviates about a factor 2 from the experimental one if the
contribution from four domains are added with equal weight.
The origin of this discrepancy is still unanswered. It will be
pointed out that the RXS peak intensity from the AFQ phase
concomitant with the induced hexadecapole contribution also

gives rise to the same symmetry of the � dependence as
obtained from the AFO phase. Thus although the AFO order
is plausible in many respects, it seems difficult to rule out the
AFQ order on the basis of the azimuthal angle dependence
alone. In addition, we calculate the energy dependence of the
RXS spectra at the Ce L2,3 edges. Assuming both the AFO
and AFQ orders, we obtain the spectral shapes at the L2 edge,
which agree with the experimental one for Ce0.7La0.3B6.27 On
the other hand, the spectral shapes at the L3 edge are found
slightly different between two phases, with intensities the
same order of magnitude of the reported one at the L2 edge.

The present paper is organized as follows. A general ex-
pression for RXS amplitudes is obtained in Sec. II. Analysis
of RXS spectra in Ce1−xLaxB6 are presented in Sec. III. Sec-
tion IV is devoted to concluding remarks. In the Appendices,
we show several expressions required to obtain the RXS am-
plitude formula.

II. THEORETICAL FRAMEWORK OF RXS

A. Second-order optical process

RXS is described by a second-order optical process,
where a core electron is excited to unoccupied states by ab-
sorbing x rays and that electron is recombined with the core
hole by emitting x rays. Since the wave function of core
electron is well localized, the RXS amplitude may be given
by a sum of contributions from individual ions. Using a geo-
metrical arrangement shown in Fig. 1, we express the RXS
amplitude f�� ,�� ,k ,k� ,�� for the incident x ray with mo-
mentum k, polarization �, and the scattered x ray with mo-
mentum k�, polarization ��, as

f��,��,k,k�,�� = �
n=1

f �n���,��,k,k�,�� , �2.1�

f �n���,��,k,k�,�� �
1

�N
�

j

e−iG·rjMj
�n���,��,k,k�,�� ,

�2.2�

with

sample

ψ

z

x

θ

θ

y
k

k'

π

π'

σ

σ'

incident photon

scattered photon

scattering plane

G (scattering vector)
k'

k

FIG. 1. Geometry of the RXS experiment. Photon with polar-
ization � or � is scattered into the state of polarization �� or �� at
the Bragg angle 	. The azimuthal angle � describes the rotation of
the sample around the scattering vector G. The �112� surface is in
the scattering plane at �=0.
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Mj
�1���,��,�� = �


,
�

�
��
��
�

��0�x
,j������x
�,j��0�

� − �E� − E0� + i�
,

�2.3�

Mj
�2���,��,k,k�,�� =

k2

9 �

,
�

q
�k̂�,���q
��k̂,��

� �
�

��0�z̃
,j������z̃
�,j��0�

� − �E� − E0� + i�
,

�2.4�

where G �=k�−k� is the scattering vector, and N is the num-
ber of sites j. The ��0� represents the ground state with en-
ergy E0, while ��� represents the intermediate state with en-
ergy E�. The � describes the lifetime broadening width of
the core hole. Equation �2.3� describes the E1 transition,
where the dipole operators x
,j are defined as x1,j =xj, x2,j
=yj, and x3,j =zj in the coordinate frame fixed to the crystal
axes with the origin located at the center of site j. Equation
�2.4� describes the E2 transition, where the quadrupole op-
erators are defined by z̃1,j =

�3
2 �xj

2−yj
2�, z̃2,j =

1
2 �3zj

2−rj
2�, z̃3,j

=�3yjzj, z̃4,j =�3zjxj, and z̃5,j =�3xjyj. Factors q
�k̂ ,�� and

q
�k̂� ,��� with k̂=k / �k� and k̂�=k� / �k�� are defined as a
second-rank tensor,

q
�A,B� 	 

�3

2
�AxBx − AyBy� for 
 = 1,

1

2
�3AzBz − A · B� for 
 = 2,

�3

2
�AyBz + AzBy� for 
 = 3,

�3

2
�AzBx + AxBz� for 
 = 4,

�3

2
�AxBy + AyBx� for 
 = 5.

�2.5�

Note that the quadrupole operators z̃
,j are expressed as
z̃
,j =q
�r j ,r j�.

B. Energy profiles

In localized electron systems, the ground state and the
intermediate state are described in terms of the eigenfunc-
tions of the angular momentum operator �J ,m� at each site.
At the ground state, the CEF and the intersite interaction
usually lift the degeneracy with respect to m. We write the
ground state at site j as

��0� j = �
m

cj�m��J,m� . �2.6�

In the intermediate state, however, the CEF and the intersite
interaction may be neglected in a good approximation, since
their magnitudes of energy are much smaller than those of
the intra-atomic Coulomb interaction and the spin-orbit in-

teraction �SOI� which give rise to the multiplet structure.
Thus the Hamiltonian describing the intermediate state is
approximated as preserving the spherical symmetry. In such
a circumstance, the intermediate states are characterized by
the total angular momentum at the core-hole site, that is,
���= �J� ,M , i� with the magnitude J� and the magnetic quan-
tum number M. The corresponding energy is denoted by
EJ�,i, where we introduce the index i in order to distinguish
multiplets having the same J� value but having different en-
ergy.

In the following, we discuss only the E2 transition �Eq.
�2.4��, because the E1 transition has been fully analyzed in
our previous paper.23 First, we rewrite Eq. �2.4� as

Mj
�2���,��,k,k�,�� =

k2

9 �

,
�

q
�k̂�,���q
��k̂,��M

�
�2� ��, j� ,

�2.7�

M

�
�2� ��, j� 	 �

J�,M,i

Ei��,J����0�z̃
,j�J�,M,i�

� �J�,M,i�z̃
�,j��0� , �2.8�

with

Ei��,J�� =
1

� − �EJ�,i − E0� + i�
. �2.9�

Then, inserting Eq. �2.6� for the ground state into Eq. �2.8�,
we obtain

M

�
�2� �j,�� = �

m,m�

cj
*�m�cj�m��M

�

�2�m,m���� , �2.10�

with

M

�
�2�m,m���� = �

J�
�
i=1

NJ�

Ei��,J�� �
M=−J�

J�

�J,m�z̃
�J�,M,i�

��J�,M,i�z̃
��J,m�� . �2.11�

We have suppressed the index j specifying the core-hole site.
The number of the multiplets having the value J� is denoted
by NJ�. The selection rule for the E2 transition confines the
range of the summation over J� to J�=J, J±1, J±2.

Now we analyze the matrix element of the type
�J ,m � z̃
 �J� ,M� by utilizing the Wigner-Eckart �WE� theo-
rem for a tensor operator,33

�J,m�s
�J�M� = �− 1�J�+m−2�2J + 1J� 2 J

M 
 − m
��J��V2��J�� ,

�2.12�

with s±2= �z̃1±iz̃5� /�2, s±1= � �z̃4±iz̃3� /�2, and s0= z̃2. The
symbol �J � �V2 � �J�� denotes the reduced matrix element of the
set of irreducible tensor operator of the second rank. Because
of the nature of the quadrupole operators, a condition �m
−m� � �4 has to be satisfied for nonvanishing M



�
�2�m,m����.

After a straightforward but tedious calculation with the help
of the WE theorem, we obtain nonzero M�2�m,m����’s. Then,
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we perform the summation over m and m� in Eq. �2.10�. The
result is summarized by introducing the expectation values
of the components of the multipole operators as follows:

M
,
�
�2� �j,�� = �

�=0

4

�E2
������ �

�=1

2�+1

�M�
����
,
���0�z�

�����0� ,

�2.13�

where the �th component of rank � tensor z�
��� in real basis

�1���2�+1� is defined in Table I. The z�
��� is constructed

from the irreducible spherical tensor T�
�n� through the unitary

transformation U���. The definitions of Tn
��� and U��� as well

as the energy profile �E2
������ are given in Appendix A. The

matrix element of M�
��� is expressed as

�M�
����
,
� =

�− ��

�2�T��2�
�2� + 1

5 �
�=−2

2

�
��=−2

2

U
�
�2�

� �
n=−�

�

U�n
�����Tn

��������
*�U�2�†���
�

= �− ���2� + 1 �
�=−2

2

�
��=−2

2

�− ��U
�
�2�

� �
n=−�

�

U�n
��� 2 � 2

�� n − �
��U�2�†���
�,

�2.14�

with

�2�T��2� =
1

2�
� �5 + ��!

5�4 − ��!
. �2.15�

Finally, inserting Eq. �2.13� into Eq. �2.7� and using Eq.
�2.14�, we obtain the final expression,

Mj
�2���,��,k,k�,�� =

k2

9 �
�=0

4

�E2
������ �

�=1

2�+1

P�
�����,��,k̂,k̂��

���0�z�
�����0� , �2.16�

where P�
���’s are the geometrical factors defined as

P�
�����,��,k̂,k̂�� = �2� + 1 �

n=−�

�

�− �nU�n
���

� �
m=−�

�  2 2 �

m n − m − n
�

� qm���,k̂��qn−m��,k̂� . �2.17�

Those for �=0, 1, and 2 are expressed as relatively simple
forms:

P1
�0���,��,k̂,k̂�� =

1
�5

��k̂� · k̂���� · �� + �k̂� · ����� · k̂�� ,

�2.18�

P

�1���,��,k̂,k̂�� = − i

1
�10

���� · ���k̂� � k̂�


+ �k̂� · k̂���� � ��
 + �k� · ����� � k̂�


+ ��� · k̂��k̂� � ��
,� , �2.19�

P

�2���,��,k̂,k̂�� = −

3

2

1
�14

���� · ��q
�k̂,k̂��

+ �k̂� · k̂�q
��,��� + q
�k̂� � k̂,�� � ��� .

�2.20�

For �=1, indices 
=1, 2, and 3 serve as the Cartesian com-
ponents x, y, and z, respectively. The corresponding expres-

TABLE I. Definition of the operator equivalence of the multi-
pole order components. The overline denotes the symmetrization,
for instance, X2Y =X2Y +XYX+YX2.

z1
�1�=Jx

z2
�1�=Jy

z3
�1�=Jz

z1
�2�=Ox2−y2 =

�3
2 �Jx

2−Jy
2�

z2
�2�=O3z2−r2 = 1

2 �3Jz
2−J�J+1��

z3
�2�=Oyz=

�3
2 �JyJz+JzJy�

z4
�2�=Ozx=

�3
2 �JzJx+JxJz�

z5
�2�=Oxy =

�3
2 �JxJy +JyJx�

z1
�3�=Txyz=

�15
6 JxJyJz

z2
�3�=Tx

�= 1
2 �2Jx

3−Jx�Jy
2+Jz

2��

z3
�3�=Ty

�= 1
2 �2Jy

3−Jy�Jz
2+Jx

2��

z4
�3�=Tz

�= 1
2 �2Jz

3−Jz�Jx
2+Jy

2��

z5
�3�=Tx

�=
�15
6 Jx�Jy

2−Jz
2�

z6
�3�=Ty

�=
�15
6 Jy�Jz

2−Jx
2�

z7
�3�=Tz

�=
�15
6 Jz�Jx

2−Jy
2�

z1
�4�=H4

0= 5
4
� 7

3
�Jx

4+Jy
4+Jz

4− 3
5J�J+1��J�J+1�− 1

3
��

z2
�4�=H4

2=−
�5
4
� 7

6 �Jx
2−Jy

2�Jz
2−�J�J+1�− 5

6
��Jx

2−Jy
2��

z3
�4�=H4

4=
�5
48�35Jz

4−30J�J+1�Jz
2+3J�J+1��J�J+1�−2�

+25Jz
2−7�Jx

4+Jy
4−Jx

2Jy
2��

z4
�4�=Hx

�=
�35
8 �Jy

3Jz−JyJz
3�

z5
�4�=Hy

�=
�35
8 �Jz

3Jx−JzJx
3�

z6
�4�=Hz

�=
�35
8 �Jx

3Jy −JxJy
3�

z7
�4�=Hx

�=
�5
8 �2Jx

2JyJz− �Jy
3Jz+JyJz

3��

z8
�4�=Hy

�=
�5
8 �2Jy

2JzJx− �Jz
3Jx+JzJx

3��

z9
�4�=Hz

�=
�5
8 �2Jz

2JxJy − �Jz
3Jy +JxJy

3��
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sion of P

���’s for �=3,4 have complicated forms, which are

summarized in Appendix B.
An expression similar to Eq. �2.16� has been derived by

the FCA.15–19 However, this scheme has to put by hand the
energy dependence. Therefore it is practical only to the sym-
metrical aspect of the azimuthal angle dependence of the
RXS peak intensity when a single profile is involved. If more
than two profiles belonging to the different ranks are in-
cluded in a single spectrum, the interference effect among
them makes it hard to get physically precise information on
the azimuthal angle dependence by the FCA.

The present theory gives an explicit expression of the en-
ergy dependence, which is separated from the factor relating
to the order parameter. Thus the choice of the CEF param-
eters in the ground state does not affect the shape of energy
profiles �E2

������. The applicability of our result depends on
how the localized electron picture is justified in the investi-
gated systems. Since the picture is considered reasonable in a
variety of the f electron compounds, we can find lots of
candidates suitable to be analyzed by the present theory. For
instance, the pre-edge E2 signals near L2,3 edges of CeB6 and
DyB2C2, the signals near M2,3 edges of NpO2, U0.75Np0.25O2,
and so on.

III. APPLICATION TO MULTIPOLE ORDERING
PHASES IN Ce1−xLaxB6

In this section, we demonstrate the usefulness of Eq.
�2.16� by analyzing the RXS spectra in the E2 transition at
the Ce L2,3 edges from Ce1−xLaxB6.

A. Phase II in CeB6

The parent material CeB6 experiences two-step phase
transitions. It undergoes the first transition from paramag-
netic �phase I� to an AFQ state �phase II� at TQ=3.2 K and
the second transition to an antiferromagnetic �AFM� state
�phase III� at TN=2.4 K under no external magnetic field.
The AFQ order is known to be a Néel type with a propagat-
ing vector Q0= � 1

2
1
2

1
2

�. On the other hand, the AFM state is
double-k structure characterized by the modulation vectors
k1=� 1

4 , 1
4 ,0� and k2=� 1

4 ,− 1
4 ,0�.34,35

These phase transitions have been theoretically studied in
a localized electron scheme, where each Ce ion is assumed to
be trivalent in the 4f1 configuration. Its ground multiplet is a
�8 quartet confined within the J= 5

2 subspace under the cubic
symmetry. Using states ��Jz=m��, the four bases �± ,�� ��
= ↑ , ↓ � may be expressed as

� + ,↑� =��5

6
��+ 5

2
� +��1

6
� −�3

2
� , �3.1�

�− ,↑� = � +
1

2
� , �3.2�

and �± , ↓ � by replacing �m� with �−m�. The intersite interac-
tion may lift the fourfold degeneracy, leading to multipole
orderings. Shiina et al. have derived such interaction from a

microscopic model and obtained the phase diagram in agree-
ment with experiments.36,37

Instead of pursuing this direction, we simply assume the
ordering pattern, and calculate the RXS spectra. The as-
sumed ordering pattern selects a particular energy profile ac-
cording to Eq. �2.16�. Note that the quartet �8 consists of 16
degrees of freedom, which are exhausted by three compo-
nents of dipole, five components of quadrupole, and seven
components of octupole operators as well as an identical op-
erator. Thereby the hexadecapole operators H4

0, H4
2, H4

4, Hx
�,

Hy
�, and Hz

� are equivalent to identical operator, Ox2−y2,
O3z2−r2, Oyz, Ozx, and Oxy, respectively, while Hx,y,z

� =0.
Therefore as long as a contribution from �E2

�2���� exists, that
from �E2

�4���� automatically exists.
The order parameter in phase II is believed to be the Oxy

type. Operator Oxy has two degenerate eigenstates of eigen-
value −1 and two degenerate eigenstates of eigenvalue +1,
that is,

Oxy =�
− 1 0 0 0

0 − 1 0 0

0 0 1 0

0 0 0 1
� , �3.3�

within the bases of eigenfunctions. The AFQ phase may be
constructed by assigning two degenerate eigenstates with ei-
genvalue −1 to one sublattice and those with eigenvalue +1
to the other sublattice. The degeneracy of the Kramers
doublet would be lifted in the AFM phase with further re-
ducing temperatures. Within the same bases in order, typical
dipole and octupole operators are represented by

Jz =�
−

7

6
0 0 −

2

3

0
7

6
−

2

3
0

0 −
2

3

7

6
0

−
2

3
0 0 −

7

6

� , �3.4�

Tz
� =�

0 0 0 i3�5

0 0 − i3�5 0

0 i3�5 0 0

− i3�5 0 0 0
� . �3.5�

These forms indicate that the Oxy order could accompany
neither the Jz order nor the Tz

� order. Therefore the Oxy order
selects the energy profiles �E2

�2���� and �E2
�4���� according to

Eq. �2.16�.
In the actual calculation of energy profile, we take into

account full Coulomb interactions between 2p and 4f elec-
trons, between 2p electrons, and between 4f electrons in the
configuration �2p�5�4f�2. The spin-orbit interaction �SOI� of
2p and 4f electrons are considered too. The Slater integrals
necessary for the Coulomb interactions and the SOI param-
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eters are evaluated within the Hartree-Fock approxima-
tion.38,39

Figure 2 shows the RXS spectra as a function of photon
energy, calculated with the core-hole lifetime width �=2.0
and 1.0 eV. The energy of the Ce 2p-core level is chosen
such that the peak of the RXS spectra at the Ce L3 edge
coincides with the experiment for CeB6. We find that the
absolute value of �E2

�4���� is much smaller than that of
�E2

�2����. However, the smallness is compensated by a large
value of ��0 �z�

�4� ��0�, and thereby both terms contribute to
the intensity. The calculated spectra show asymmetry and
some structures, which depend on the � value. It may be
appropriate to use �=2.0 eV.40 Here, it may be helpful to
compare the results obtained by our present theory with
those derived by the FCA; the ratio of the maximum peak
intensities of the spectra at the L2 and L3 edges with G
= � 5

2
3
2

3
2

� is found to vary around two with ��2 eV, which is
about a factor 2 smaller than that by the FCA.30

When the Oxy order is realized, the Oyz and Ozx orders are
also possible to be realized. In actual crystals, three orders
may constitute domains, whose structure affects the azi-
muthal angle dependence of the RXS spectra. Figure 3
shows the peak intensity as a function of � for the scattering
vector G= � 3

2
3
2

3
2

�. The origin of � is defined such that the
scattering plane includes the a axis. It depends strongly on
domains. An incoherent addition over the contributions from
three domains is performed. In the �-�� channel, the term of
�=2 in Eq. �2.16� is independent of � so that the sixfold
symmetry comes from the term of �=4. On the other hand,
the threefold symmetry in the �-��channel arises from both
the term of �=2 and that of �=4.

B. Phase IV in Ce1−xLaxB6

The La diluted material Ce1−xLaxB6 with x�0.3–0.5 has
an additional phase IV whose order parameter is not well
understood yet.31 Although a large discontinuity in the
specific-heat curve suggests the existence of the long-range
order,41 no neutron-scattering experiment has found an evi-
dence of long-range magnetic order.42,43 It is suggested44,45

that the AFO order characterizes phase IV, which is sup-
ported by the observation of the trigonal distortion.46 Re-
cently, Mannix et al. measured the RXS spectra at the L2
edge in the E2 transition in Ce0.7La0.3B6, claiming that the
signal arises from the AFO order.27 The analysis of the azi-
muthal angle dependence by Kusunose and Kuramoto sup-
ports the AFO order in phase IV.32 However, there exists at
least one prominent discrepancy between the experiment and
the theory about the azimuthal angle dependence which we
shall address later.

Keeping two possibilities, the quadrupole and octupole
orders, for phase IV, we analyze the spectra on the basis of
Eq. �2.16�. Since the trigonal distortion is observed along the
body-diagonal direction, we assume that the order parameter
is of T111

� type �T111
� 	�Tx

�+Ty
�+Tz

�� /�3� or O111 type �O111

	�Oxy +Oyz+Ozx� /�3�. The T� type can be ruled out because
this type carries a substantial antiferromagnetic moment,
which is against the experimental finding. Since
�T111

� ,O111�=0, both operators are simultaneously diagonal-
ized. Within the bases of eigenfunctions, they are represented
as

T111
� =�

− 3�10 0 0 0

0 3�10 0 0

0 0 0 0

0 0 0 0
� , �3.6�
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O111 =�
− 1 0 0 0

0 − 1 0 0

0 0 1 0

0 0 0 1
� . �3.7�

Within the same bases, the dipole operator J111 �	�Jx+Jy

+Jz� /�3� is represented as

J111 =�
0 z1 0 0

z1
* 0 0 0

0 0 −
7

6
0

0 0 0
7

6

� , �3.8�

where z1=
�3
18�1+i11�2�.

1. AFO order

The AFO order may be constructed by assigning the
eigenstate of the T111

� with eigenvalue −3�10 to one sublat-
tice and that with 3�10 to the other sublattice. Then, the
order-parameter vector ��Tx

�� , �Ty
�� , �Tz

��� is pointing to the
�111� direction. Equation �3.8� indicates that the AFO order
could carry no magnetic moment, which is consistent with
the experiment. Equation �3.7� indicates that the AFO order
accompanies the ferroquadrupole order, not the AFQ order.
Therefore, according to Eq. �2.16�, the RXS energy depen-
dence is purely characterized by ��E2

�3�����2.
Figure 4 shows the calculated ��E2

�3�����2 as functions of
the incident photon energy � at the Ce L2 and L3 absorption
edges with �=2.0 and 1.0 eV, in comparison with the ex-
periment of Mannix et al. �the background contribution is
subtracted from the data�.27 In the calculation, we use the
same Slater integrals and the SOI parameters as in phase II.
The spectral shapes depend strongly on the absorption edge
they are observed. In particular, the tail part of the spectra at
the L3 edge is drastically different from that at the L2 edge.
This fact might be helpful to identify the character of the
ordering pattern if the spectrum at the L3 edge is experimen-
tally available. Since the peak intensity at the L3 edge is
about 20% of that at the L2 edge, it can be said that experi-
mental observation has a legitimate chance at the former
edge. The L2 spectral shape reproduces well the experimental
one showing broad single peak structure with a hump in the
high-energy region. On the other hand, it slightly deviates
from the experiment in the tail parts. Such a deviation may
be remedied by choosing the better values of � and/or the
screening multipliers. However, we do not try to get the best
fitting curve to changing these parameters. This is because
we notice several factors for shaking the reliability of the
precision of the tail of the experimental data. First, the tail
parts of the data consist of the very weak signal, about one or
two orders of magnitude smaller than the peak intensity. Sec-
ond, the experimental spectrum in the �-�� channel includes
a fair amount of the background contribution, which may
cause a relatively large error in the tail part of the spectrum
when subtracting that contribution.

The energy profile ��E2
�3�����2 looks similar to the spectral

shape in phase II �Fig. 2� for �=2 eV. One difference is a
dip found at the L3 edge in ��E2

�3�����2, which is absent in Fig.
2. If the � is as small as 1 eV, the differences are emphasized
around the tail part of the high-energy region, because mul-
tiplet structures of the intermediate state are emphasized.22

Note that, although ��E2
�3�����2 is about two orders of magni-

tude smaller than ��E2
�2�����2, the smallness is compensated by

the large factor of ��Tx,y,z
� ��2�90, resulting in the same order

of magnitude of the spectral intensity as in phase II �Fig. 2�.
If the octupole order-parameter vector ��Tx

�� , �Ty
�� , �Tz

���
can point to the �111� direction, it is also possible to point to
the �111�, �111�, and �111� directions. These four orders
usually constitute domains. The azimuthal angle dependence
is different for different domains, as shown in Figs. 5�a� and
5�b�. If you collect the contributions from domains with
equal weight, the maximum intensity in the �-�� channel
becomes nearly equal to that in the �-�� channel. The ex-
perimental data show that the maximum intensity in the �-��
channel is about half of that in the �-�� channel, as shown in
Fig. 5�c�. This may be attributed to the slightly different
setup for different polarizations and/or to the extrinsic back-
ground from the nonresonant contribution, as discussed by
Kusunose and Kuramoto.32 They reduced the intensity in the
�-�� channel by simply multiplying a factor 0.6. Another
possibility is that domain volumes are different among four
domains. Collecting up the contributions with ratio 3:1 :1 :1
from the �111�, �111�, �111�, and �111� domains, we have
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FIG. 4. Energy profile ��E2
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Ce0.7La0.3B6, in which the background contributions are subtracted
as explained by the authors �Ref. 27�.
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the result similar to that simply multiplying a factor 0.6 to
the intensity in the �-�� channel, as shown in Fig. 5�c�. Thus
the sixfold and threefold symmetries in the �-��and �-��
channels are well reproduced in comparison with the experi-
ment.

2. AFQ order

The AFQ order may be constructed by assigning the
eigenstates of O111 with eigenvalue −1 to one sublattice and
those with +1 to the other sublattice. The AFQ order accom-
panies no AFO order. The difference from phase II is that the
order parameter ��Oyz� , �Ozx� , �Oxy�� is pointing to the �111�
direction. Therefore the spectral shape as a function of en-
ergy is nearly the same as in phase II. The azimuthal angle
dependence depends strongly on domains, which is shown in
Figs. 6�a� and 6�b�. The sixfold symmetry in the �-�� chan-
nel mainly comes not from the �111� domain but from the
other domains, since the contribution from the former do-
main is constant with varying the azimuthal angle. Collecting
the contributions from four domains with equal weight, and
reducing the intensity in the �-�� channel by multiplying a

factor 0.6 in the same way as Kusunose and Kuramoto
adopted,32 we obtain the result in agreement with the experi-
ment at least in a symmetrical point of view. Although the
amplitude of the oscillation in the �-��channel is too small
compared with the experimental one, the situation may be
changed if the subtraction of the background contribution in
the �-�� channel and/or that of the enigmatic E1 contribu-
tion in the �-�� channel are/is reevaluated. Actually, the dis-
crepancy about the relative intensity between two channels
may be attributed to the consequence of this subtraction pro-
cess.

We now turn our attention to the energy dependence of
the spectra. Owing to our formula Eq. �2.16�, the spectral
shapes from the AFQ order with O111 type in phase IV are
the same as those with Oxy type in phase II �Fig. 2�. There-
fore the energy dependence is similar to that obtained from
the AFO order at the L2 edge, while it is different from that
from the AFO order at the L3 edge. The difference is particu-
larly conspicuous in the higher energy part of the spectra; the
spectrum from the AFQ order exhibits a rather monotonic
and gradual decreasing away from the peak, while that from
the AFO order shows a sharp drop of the intensity with Fano-
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FIG. 5. Peak intensities of the RXS spectra at the Ce L2 edges in
the AFO phase as functions of the azimuthal angle. Panels �a� and
�b� display the peak intensities in the �-�� and the �-�� channels,
respectively, where the solid �D1�, broken �D2�, dotted �D3�, and
broken-dotted �D4� lines represent the peak intensity of the domains
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�111�, �111�, and �111� with ratio 3:1:1:1. The solid and broken
lines represent the intensities in the �-�� and �-�� channels, re-
spectively. Filled and open circles are the experimental data for
Ce0.7La0.3B6 in the �-�� and �-�� channels, respectively �Ref. 27�.
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the �-�� and �-�� channels, respectively �Ref. 27�.

TATSUYA NAGAO AND JUN-ICHI IGARASHI PHYSICAL REVIEW B 74, 104404 �2006�

104404-8



dip-like structure. Note that the difference is emphasized
when the smaller value of �=1 eV is taken as shown by the
broken lines in Figs. 2 and 4.

Since the symmetry consideration in the azimuthal angle
dependence cannot distinguish the AFO and the AFQ orders
without information on the domain distribution, spectral
shape analysis of the E2 spectrum at the L3 edge may help
the identification of the ordering pattern realized in this ma-
terial. The experimental detection is highly desired.

IV. CONCLUDING REMARKS

We have derived a general formula of the RXS amplitude
in the E2 transition. The derivation is based on the assump-
tion that the Hamiltonian describing the intermediate state of
the scattering process preserves the spherical symmetry. The
obtained formula is applicable to many f electron systems
where a localized scheme gives a good description. Although
similar formulas have already been obtained,15–19 the present
formula has two prominent advantages. One is that it is able
to calculate the energy profile of the RXS spectra, because
our treatment is free from the fast collision approximation
adopted in the previous works. The other is that it is conve-
niently applicable to the systems possessing multipole order
parameters.

We have demonstrated the usefulness of the derived for-
mula by calculating the E2 RXS spectra in Ce1−xLaxB6.
Phase II is believed to be an AFQ order of Oxy type, and our
formula dictates that the energy dependence is given by a
combination of �E2

�2���� and �E2
�4����. We have obtained the

RXS intensity in the same order of intensity as obtained by
assuming the AFO order. This suggests that the E2 signal is
detectable from phase II, although only the E1 signal has
been reported in phase II of CeB6.5,6 Subsequently, we have
calculated the RXS spectra by assuming the T111

� -type AFO
order, in order to clarify the order parameter of phase IV. The
energy dependence ��E2

�3�����2 has been obtained at the L2

edge in agreement with the experiment in Ce0.7La0.3B6.27 Un-
fortunately this is not used to discriminate between the AFO
and AFQ orders, because the spectral shapes are nearly the
same in the two ordering phases. On the other hand, the
spectral shape at the L3 edge has been found slightly differ-
ent from the L2 edge, which might help the identification of
the ordering pattern. For the azimuthal angle dependence, we
have reproduced the sixfold and threefold symmetries by as-
suming the AFO order, in agreement with the previous the-
oretical analysis and the experiment.27,32 The intensity in the
�-�� channel becomes nearly equal to that in the �-�� chan-
nel with the equal volume for four domains, while in the
experiment the intensity in the former channel is found
nearly half of that in the latter. This discrepancy may be
removed by assuming uneven volumes among four domains.
We have also analyzed the azimuthal angle dependence by
assuming the O111-type AFQ order. It is found that the simul-
taneously induced hexadecapole order gives rise to the six-
fold and threefold symmetries. Although the agreement with
the experiment is quantitatively not good, it may be difficult
to rule out the AFQ order from phase IV on the basis of the
azimuthal angle dependence alone. Since it depends strongly

on the domain distribution, experiments controlling the do-
main distribution, if possible, might be useful to clarify the
situation.
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APPENDIX A: DEFINITIONS OF SOME QUANTITIES
USED IN SEC. II

Let us define irreducible tensor operator of rank � with the
spherical basis. The nth component �−��n��� Tn

��� is de-
fined recurrently as

T�
��� = �− ����2� − 1� ! !

�2�� ! !
J+

� , �A1�

�J−,Tn
���� = ��� + n��� − n + 1�Tn−1

��� . �A2�

Expressions for Tn
���’s are listed in Table II up to rank 4.

We can find �2�+1�� �2�+1� unitary matrix which connects
the tensor operator with the spherical component Tn

��� and
that with the Cartesian component z�

��� which satisfies

TABLE II. Irreducible tensor operator Tn
��� with the spherical

basis.

Rank
� n Tn

���

1 ± 1 �
1
�2

J±

0 Jz

2 ± 2 1
2
� 3

2J±
2

± 1 �
1
2
� 3

2J±�2Jz±1�

0 1
2 �3Jz

2−J�J+1��

3 ± 3 �
�5
4 J±

3

± 2
�15
2�2

J±
2�Jz±1�

± 1 �
1

4�3
J±�15Jz

2±15Jz−3J�J+1�+6�

0 1
2 �5Jz

3−3J�J+1�Jz+Jz�

4 ± 4
�35
8�2

J±
4

± 3 �
�35
8 J±

3�2Jz±3�

± 2
�5

4�2
J±

2�7Jz
2±14Jz−J�J+1�+9�

± 1 �
�5
8 J±�14Jz

3±21Jz
2+19Jz

−6J�J+1�Jz�3J�J+1�±6�

0 1
8 �35Jz

4−30J�J+1�Jz
2+25Jz

2

+3J2�J+1�2−6J�J+1��
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z�
��� = �

n=−�

�

U�n
���Tn

���, �A3�

and inversely,

Tn
��� = �

�=1

2�+1

�U���†�n�z�
���. �A4�

Explicit form of U��� is summarized in Table III.
Finally, we show the explicit forms of the functions

�E2
������, which give the energy profiles coupled to the expec-

tation value of the rank-� multipole operator,

�E2
�4���� = 8� 2

35 �
J�=J−2

J+2

FJ���� , �A5�

�E2
�3���� = 4�2

5
�− �2J − 3�FJ−2 − �J − 2�FJ−1

+ 2FJ + �J + 3�FJ+1 + �2J + 5�FJ+2� , �A6�

�E2
�2���� = 2�2

7
�4�2J − 3��J − 1�FJ−2 + �J − 5��J − 1�FJ−1

−
1

3
�2J − 3��2J + 5�FJ + �J + 2��J + 6�FJ+1

+ 4�2J + 5��J + 2�FJ+2� , �A7�

TABLE III. Unitary matrix which connects the tensor operator with the Cartesian basis and that with the
spherical basis.

U�0� 1

U�1� �− 1
�2

0 1
�2

i
�2

0 i
�2

0 1 0
�

U�2� �
1
�2

0 0 0 1
�2

0 0 1 0 0

0 i
�2

0 i
�2

0

0 − 1
�2

0 1
�2

0

− i
�2

0 0 0 i
�2

�
U�3� �

0 − i
�2

0 0 0 i
�2

0

−
�5
4

0
�3
4

0 −
�3
4

0
�5
4

−
�5
4 i 0 −

�3
4 i 0 −

�3
4 i 0 −

�5
4 i

0 0 0 1 0 0 0
�3
4

0
�5
4

0 −
�5
4

0 −
�3
4

−
�3
4 i 0

�5
4 i 0

�5
4 i 0 −

�3
4 i

0 1
�2

0 0 0 1
�2

0

�
U�4� �

�30
12

0 0 0
�21
6

0 0 0
�30
12

0 0 − 1
�2

0 0 0 − 1
�2

0 0

−
�42
12

0 0 0
�15
6

0 0 0 −
�42
12

0 − i
4 0 −

�7
4 i 0 −

�7
4 i 0 − i

4 0

0 1
4 0 −

�7
4

0
�7
4

0 − 1
4 0

− i
�2

0 0 0 0 0 0 0 i
�2

0
�7
4 i 0 − i

4 0 − i
4 0

�7
4 i 0

0
�7
4

0 1
4 0 − 1

4 0 −
�7
4

0

0 0 − i
�2

0 0 0 i
�2

0 0

�

TATSUYA NAGAO AND JUN-ICHI IGARASHI PHYSICAL REVIEW B 74, 104404 �2006�

104404-10



�E2
�1���� 	 −�2

5
�4�J − 1��2J − 1��2J − 3�FJ−2 − �J − 1�

��2J − 1��J + 3�FJ−1 + �2J − 1��2J + 3�FJ

+ �J + 2��J − 2��2J + 3�FJ+1 − 4�J + 2��2J + 3�

��2J + 5�FJ+2� , �A8�

�E2
�0���� 	

2

3�5
�6J�J − 1��2J − 1��2J − 3�FJ−2

− 3J�J − 1��J + 1��2J − 1�FJ−1

+ J�J + 1��2J − 1��2J + 3�FJ

− 3J�J + 1��J + 2��2J + 3�FJ+1

+ 6�J + 1��J + 2��2J + 3��2J + 5�FJ+2� . �A9�

The energy dependence is contained in the functions FJ����
as

FJ���� = 4CJ−J�+2
��2J + 1��2J� + 1�

�J + J� − 2�!
�J + J� + 3�!

���J�V2�J���2�
i=1

NJ�

Ei��,J�� , �A10�

where nCm= n!
m!�n−m�! represents the combination.

APPENDIX B: GEOMETRICAL FACTORS

The geometrical factors P

��� for �=3 and 4 in Eq. �2.16�

have rather complicated forms. For �=3, they are summa-
rized as follows:

P1
�3� 	 i

1

3�2
��k̂� � k̂� · q���,�� + ��� � �� · q�k̂�,k̂�

+ �k̂� � �� · q���,k̂� + ��� � k̂� · q�k̂�,��� , �B1�

P

�3� =

i

2
�5

2
��k̂� � k̂�
�
��
 + ��� � ��
k̂
� k̂


+ �k̂� � ��
�
� k̂
 + ��� � k̂�
k̂
��
� +
i

2�10
P


�1�

for 
 = 2, 3, and 4, �B2�

P

�3� =

i

4
�3

2
�k̂� � k̂�
 �


�,
�=5

7

�

�
���
�
� �
� − �
�

� �
��

+
i

4
�3

2
��� � ��
 �


�,
�=5

7

�

�
��k̂
�
� k̂
� − k̂
�

� k̂
��

+
i

4
�3

2
�k̂� � ��
 �


�,
�=5

7

�

�
���
�
� k̂
� − �
�

� k̂
��

+
i

4
�3

2
��� � k̂�
 �


�,
�=5

7

�

�
��k̂
�
� �
� − k̂
�

� �
��

for 
 = 5, 6, and 7. �B3�

Note that 
=2, 3, and 4 work as x, y, and z, respectively.
Similarly, 
=5, 6, and 7 work as x, y, and z, respectively.
The Levi-Civita tensor density �

�
� is introduced.

For �=4, the results are as follows:

P1
�4� =� 2

15
�5�k̂x�k̂x�x��x + k̂y�k̂y�y��y + k̂z�k̂z�z��z� − P1

�0�� ,

�B4�

P2
�4� = �14�k̂x�k̂x�x��x − k̂y�k̂y�y��y� − 2� 2

21
��k̂� · k̂�q1���,��

+ ��� · ��q1�k̂�,k̂� + �k̂� · ��q1���,k̂�

+ ��� · k̂�q1�k̂�,��� , �B5�

P3
�4� = − �14�k̂x�k̂x�x��x + k̂y�k̂y�y��y − 2k̂z�k̂z�z��z�

− 2�2

7
��k̂� · k̂�q2���,�� + ��� · ��q2�k̂�,k̂�

+ �k̂� · ��q2���,k̂� + ��� · k̂�q2�k̂�,��� , �B6�

P

�4� =

1

2�6
q
+1�k̂�,k̂� �


�,
�=4

6

�

�
���
�
� �
� − �
�

� �
��

+
1

2�6
q
+1���,�� �


�,
�=4

6

�

�
��k̂
�
� k̂
� − k̂
�

� k̂
��

+
1

2�6
q
+1�k̂�,�� �


�,
�=4

6

�

�
���
�
� k̂
� − �
�

� k̂
��

+
1

2�6
q
+1���,k̂� �


�,
�=4

6

�

�
��k̂
�
� �
� − k̂
�

� �
��

for 
 = 4, 5, and 6, �B7�

P

�4� =

1
�42

�7k̂
� k̂
 − 3�k̂� · k̂��q
−4���,��

+
1

�42
�7�
��
 − 3��� · ���q
−4�k̂�,k̂�

+
1

�42
�7�
� k̂
 − 3��� · k̂��q
−4�k̂�,��

+
1

�42
�7k̂
��
 − 3�k̂� · ���q
−4���,k̂�

for 
 = 7, 8, and 9, �B8�

where indices 4, 5, and 6 in the summations in Eq. �B7�
serve as x, y, and z, respectively. Similarly, indices 7, 8, and
9 appearing in the brackets in Eq. �B8� serve as x, y, and z,
respectively.
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