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A theoretical analysis �Angelani et al., Phys. Rev. Lett. 96, 065702 �2006�� predicts glassy behavior of light
in a nonlinear random medium. This implies slow dynamics related to the presence of many metastable states.
We consider very general equations �that also apply to other systems, like Bose-Condensed gases� describing
light in a disordered nonlinear medium and through some approximations we relate them to a mean-field
spin-glass-like model. The model is solved by the replica method, and replica-symmetry breaking phase
transition is predicted. The transition describes a mode-locking process in which the phases of the modes are
locked to random �history and sample-dependent� values. An extended discussion of possible experimental
implications of our analysis is reported.
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I. INTRODUCTION

In a nutshell, laser action in a stochastic resonator �SR�
defines a random laser �RL�. Following the original Lethok-
ov’s article,1 a SR is a disordered medium sustaining a large
number of electromagnetic modes with overlapping reso-
nances. The modes are not necessarily localized �in the
Anderson sense�, but can be extended modes in a random
medium; they have typically a finite lifetime and are some-
times referred to as “quasimodes.” Generally speaking, we
will refer to a RL as a multimode laser system that displays
some disorder; this will be described by a probability distri-
bution and we will then consider different realizations of the
system. Such a general definition not only embraces the ex-
periments addressed below, but also include standard lasers
with a disordered cavity, or integrated devices, as, for ex-
ample, ordered photonic crystals2 infiltrated by some active
�i.e., doped� soft material, like liquid crystals or polymers,
that induces a given amount of disorder, or even intentionally
disordered photonic crystals enriched by quantum wells pro-
viding optical gain.

In the early developments, the theoretical framework at
the basis of a RL has relied on light diffusion.3–5 These stud-
ies stimulated many investigations concerning photon dy-
namics in a disordered medium, up to considering the quan-
tum transport of photons.6–12 Subsequent detailed numerical
studies revealed how important for RLs is the nature and the
distribution of localized modes in random amplifying media,
in particular, in the strongly scattering regime.13,14 Experi-
ments were reported on the emerging of many coupled oscil-
lation modes while increasing the pump energy and the con-
sequent nontrivial dynamics of the resulting optical
signals.15–18 Coupling of modes was addressed in Ref. 18, as
the fact that the maximum observed number of modes in-
creases with the pumping intensity and with the sample
volume.19,20 Recent results pointed out new key issues con-
cerning the physics of random lasers, as the role of extended
modes,21,22 or the presence of specific fluctuations.23,24

When considered from a semiclassical perspective, a mul-
timode random laser strikingly displays those ingredients
which are typical of the physics of complexity: i.e., random-
ness and nonlinearity. The latter is due to typical mode-
interaction processes, like mode-competition and mode-
locking.25–29 Complex processes in laser physics, including
nonlinear optics, are well-known and studied �see, e.g., Refs.
30 and 31�, up to recent investigations in multimode
systems32–34 and successful reformulations of standard laser
thermodynamics.35–39 The extension of these approaches to a
RL immediately leads to the application of the statistical
theory of disordered systems, of which spin glass theory is a
paradigm,40 and which is the subject of the present paper.

We show that, in the presence of a large number of
coupled modes �extended or not�, a mode-locking �ML� pro-
cess can be observed. ML is related to the relative phases
between resonant states, which in some cases become locked
at the same value. For a standard laser it can be realized by
an active device, like an acusto-optic modulator, or can be
self-starting as in the presence of a nonlinearly mediated
mode interaction.41 We can expect that RL-ML appears when
many modes are put into oscillations, and their amplitudes
are clamped at the oscillation values, which are random vari-
ables. The temporal dynamics of the emitted signal is indeed
strongly related to the phases,42 given the fact that the mode
amplitudes vary on a much longer time scale. The latter cir-
cumstance favors the consideration of the mode amplitudes
as “quenched” �i.e., random but slowly varying� variables,
and the phases are to be taken as the relevant dynamical
variables. The mode-locking process in standard lasers is
now recognized as a thermodynamic phase transition;35–39 it
is expected, therefore, that the mode-locking transition for a
RL takes the form of a phase transition in a disordered sys-
tem.

This paper follows a recent letter43 and furnishes exten-
sive details on the derivation of the analytical results �includ-
ing the stability analysis that was previously not reported�; a
discussion of the underlying working hypotheses; a discus-
sion on the nature of the considered electromagnetic modes;
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and the analysis of possible experimental frameworks where
glassy behavior of light can be observed. The paper is struc-
tured as follows. In Sec. II, we will review coupled mode
theory in a dielectric resonator in the presence of a nonlinear
susceptibility; in Sec. III we will specialize the approach by
deriving the leading model for our analysis; in Sec. IV we
will apply the methods used in spin glass theory to solve the
model; Sec. V is focused on a discussion of the physical
meaning of our results, using real-world units, and of pos-
sible experimental setups; and conclusions are drawn in Sec.
VI.

II. COUPLED MODE THEORY EQUATIONS

The physical system under consideration is an open elec-
tromagnetic cavity supporting modes at optical frequencies.
The cavity is characterized by the presence of disorder; for
example, randomly structured dielectrics in between a couple
of mirrors, or a mirrorless system �e.g., a distribution of di-
electric particles� such that there is a sufficiently high refrac-
tive index contrast, so that localized modes �which means
modes belonging to the discrete spectrum of the eigenvalue
problem given by the Maxwell equations, as detailed below�
do exist. This is the case, for example, of a disordered dis-
tribution of TiO2 particles, of semiconductor powders in a
liquid or a glassy matrix, or of a nanostructured microcavity
filled by a randomly fluctuating material like liquid crystals
or soft matter. The localized modes supported by these sys-
tems can be very different, depending on the degree of local-
izations, e.g., they can be distributed over all the dielectric
samples �as those investigated, for example, in the experi-
ments reported in Ref. 21� or correspond to well-localized
states �as those numerically analyzed in Ref. 14�; this dis-
tinction can influence the properties of the interaction be-
tween modes, leading to interesting effects, as will be dis-
cussed in the following. However, the physical picture we
will obtain is expected to be independent of the details of the
interaction.

Models for multimode nonlinear optical cavities have
been largely reported in literature �see, e.g., Refs. 2, 44, and
45�. Typically they result into coupled equations for complex
amplitudes, which can be obtained using various and equiva-
lent approaches. In order to fix the notation and for the ben-
efit of the nonexpert reader, here we will briefly report a
derivation based on a multiple scale approach. The electro-
magnetic cavity �a dielectric resonator �DR��, is described by
a �static� refractive index profile n�r�. Such a kind of system
may support the existence of resonance modes, which can be
either localized or distributed in the system. Maxwell’s equa-
tions are written as

��H = �0n2�r��tE ,

�� E = − �0�tH . �1�

The electric and magnetic fields can be expanded in normal
modes with angular frequencies �n and eigenvalues En�r�
and Hn�r� as

E = Re��
n

En�r�exp�− i�nt�� ,

H = Re��
n

Hn�r�exp�− i�nt�� . �2�

The latter quantities satisfy the generalized eigenvalue prob-
lem

LFs = �sMFs �3�

while being

L = � 0 i � �

− i � � 0
	 , �4�

M = ��0n2�r� 0

0 �0
	 , �5�

and

Fs = �Es

Hs
	 . �6�

Given a volume V much wider than the DR, over which
periodical �Born-Von Karman� boundary conditions are
posed, and introducing the complex valued scalar product

�A,B� = 

V

A* · BdV �7�

it turns out that L and M are self-adjoint operators. As a
result �n are real valued and the eigenvectors are orthogonal
with weight M. Furthermore, since �En ,Hn� and �En

* ,−Hn
*�

correspond to the same eigenvalue �n, En can be taken as
real valued.

The average electromagnetic energy for each unnormal-
ized mode is given by

Es =
1

4



V

�0n2�r��Es�2 + �0�Hs�2dV =
1

4
�Fs,MFs� . �8�

In the following the modes are normalized in such a way

1

4
�Fs,MFq� = �sq. �9�

Next we consider the perturbed Maxwell equations in the
presence of a nonlinear polarization PNL, such that the over-
all dielectric displacement vector is given by D=�0n2�r�E
+PNL and J=�tPNL a generalized current:

��H = �0n2�r��tE + �J ,

�� E = − �0�tH , �10�

� is a bookkeeping perturbation parameter to be set equal to
one at the end of the derivation. Our aim is to write the
solution of the nonlinear Maxwell equations as a superposi-
tion of modes such that the leading order has the form

E = Re��
n

��nan�t�En�r�exp�− i�nt�� ,
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H = Re��
n

��nan�t�Hn�r�exp�− i�nt�� , �11�

and the complex amplitudes as are such that the total energy
stored in the DR is

E = �mEm = �m�m�am�2. �12�

There are various techniques to derive the leading equa-
tions for the as, here we adopt the multiple scale method
�see, e.g., Ref. 46�. The perturbative expansion is written as
�with obvious notation�

E = Re�
n

���nan��t,�2t, . . . �En + �En
�1� + ¯ �

�exp�− i�nt�� ,

H = Re�
n

���nan��t,�2t, . . . �Hn + �Hn
�1� + ¯ �

�exp�− i�nt�� , �13�

where the amplitudes are taken to be dependent on the slow
scales tn=�nt, as the first and higher order corrections like
En

�1�, the fastest scale is t0= t and the temporal derivatives are
written as �t=�t0

+��t1
+¯ . Letting

PNL = Re��
n

Pn�t1,t2, . . . �exp�− i�nt0�� �14�

and

J = Re��
n

Jn�t1,t2, . . . �exp�− i�nt0�� = �tPNL �15�

with

Pn = Pn
�0� + �Pn

�1� + ¯ ,

Jn = Jn
�0� + �Jn

�1� + ¯ , �16�

it is

Jn
�0� = − i�nPn

�0�. �17�

Using the previous machinery in the nonlinear Maxwell
equations at the first order in � it is found for the term
oscillating with exp�−i�st0�

LFs
�1� − �sMFs

�1� = Bs, �18�

while having

Fs
�1� = �Es

�1�

Hs
�1� 	 �19�

and

Bs =�i�0n2�r���s
das

dt1
Es + iJs

�0�

i�0
��s

das

dt1
Hs

� . �20�

The Fredholm theorem applied to Eq. �18� states that the
solvability condition is the orthogonality with the kernel so-
lution, i.e., Fs: �Fs ,Bs�=0. Hence

��s
das

dt1
=

i�s

4
�Es,Ps

�0�� . �21�

Going back to the original variables, we have the desired
result

das�t�
dt

= −
��s

4i



V

Es
*�r� · Ps�r�dV . �22�

III. NONLINEAR SUSCEPTIBILITY AND MODE
INTERACTIONS IN ACTIVE RANDOM CAVITIES

We consider the case in which many modes are put into
oscillations and interact due to the nonlinearity of the ampli-
fying medium. In resonant systems the nonlinear optical re-
sponse can be found from the density matrix equations in a
two-level system, as originally investigated by Lamb.26 The
component of the nonlinear susceptibility oscillating at �s is
modeled as usual47 and is written as

Ps
	 = �

�s+�p=�q+�r


	�����s;�q,�r,− �p,r�

�Ep
��r�Eq

��r�Er
��r���p�q�raqarap

*, �23�

where 
 is the third order response susceptibility tensor,
which in general depends on the positions in the DR. Using
Eq. �23� the coupled mode theory equations �22� read as

das

dt
= −

1

2�
pqr

gspqraqarap
*, �24�

while being

gspqr =
��s�p�q�r

2i



V


	�����s;�q,�r,− �p,r�

�Es
	�r�Ep

��r�Eq
��r�Er

��r�dV . �25�

A. Mode interactions and the role of localized modes

Our treatment follows early works on multimode
cavities26,28 and consistently, in the previous equations, inter-
mode frequencies and higher harmonics are neglected be-
cause they have in general a lower Q-factor if compared to
those of the supported cavity modes. Additionally, since the
sum in Eq. �24� is extended to all the modes combinations
satisfying the condition �s=�q+�r−�p, we recall that the
frequencies satisfying this relation can be divided into three
categories:28 �a� �s=�q and �r=�p; �b� �s=�r and �q=�p;
and �c� �s=�q+�r−�p excluding �a� and �b�. Categories �a�
and �b� were shown to determine the oscillation values of the
energies of the modes Es, and provide terms like self and
cross-saturation, as also recently considered in Ref. 20 with
reference to RLs. The third group are the “combination tone
terms”28 which were originally neglected, even if it was later
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recognized, through numerical calculations, to have a role
when the number of modes increases.48 We are interested in
the regime in which a large number of modes is put into
oscillation in a limited spectral range around a given carrier
wavelength �0 �which can be taken as the resonant angular
frequency of the active medium� and we will show below
that in RLs, the combination tone terms provide a complex
structure to the laser dynamics, as due to the fact that for an
increasing number of modes they couple almost all the cavity
resonances.

In general, the resonant condition for the mode-locking
processes �s=�q+�r−�p, does not need to be satisfied ex-
actly but in such a way that the mode combination tone �q
+�r−�p lies within the linewidth at �s �this is discussed,
e.g., in Ref. 29 with reference to three modes mode-locking�.
In the presence of many modes oscillating in a small band-
width, and such that the linewidths are overlapping, as it is
typically the case for RLs �see the cited references� and �by
definition� for SRs, many mode combination tones will
couple to �s, for which we have taken �s��q+�r−�p in
Eq. �24�. This opens the way to a “mean field theory” where
all the modes are coupled, i.e., the sum in Eq. �24� is over all
the possible values of pqr. We will describe this regime,
moreover, considering the thermodynamic limit as the num-
ber of modes goes to infinity.

However, it is worth to observe that the coupling gspqr in
Eq. �25� is related to the spatial overlap of the four modes Es,
Ep, Eq, Er that enter in the integral. In the case of extended
modes, all the modes will have large spatial overlap and
gspqr�0 for all spqr, so the “mean field limit” above is ex-
pected to be a very good approximation. On the contrary, in
the case of strongly localized modes with localization length
, it is reasonable to expect that only a finite number of
modes will be supported in a localization volume �,3,11,14,18

so that the coupling gspqr will be nonzero only for those
modes which are large in the same �or in adjacent� localiza-
tion volumes. In this case the interaction will be short range,
i.e., in the sum �24� only quadruplets of “nearby” modes will
appear. Many intermediate situations between the extended
and the strongly localized ones might happen in random
lasers11,14,18,21 and indeed the precise nature of the modes in
these systems is not completely clear.

In the short range case, the basic phenomenology of the
glass transition we will find �slow dynamics, random mode-
locking� remains the same, but the physics of the system is
strongly affected by activated processes �nucleation, barrier
crossing, etc.� which are negligible in the mean field limit.
Indeed the nature of the glass phase of short range spin
glasses is still a debated problem.49 Note that the localization
length �and thus the interaction range� may vary on many
orders of magnitude and can be experimentally controlled,11

at variance to what happens in spin glasses and molecular or
colloidal glasses, where the interaction range is fixed by the
property of the material and is always of the order of the
interparticle distance. This observation opens the way toward
the possibility of an experimental investigation of the cross-
over between the mean field limit and the short range case
that might be crucial for the theoretical understanding of the
glass phase in short range systems.

To summarize, we will assume that �i� all the lasing
modes have frequency �s��0, �0 being the resonant fre-

quency of the active medium, so that the constraint �s=�q
+�r−�p can be released, and that �ii� the spatial overlap of
the modes is large, so that the integral in Eq. �25� will not be
negligible for any quadruple of modes. Under these hypoth-
eses a “mean field” treatment in which all quadruples of
modes interact will be a very good approximation. Neverthe-
less, we expect the physical picture we will find in the fol-
lowing to hold under much more general assumptions on the
interaction between modes. Its modifications due to the vio-
lation of the hypotheses above will be very interesting for the
theory of spin glass systems.

B. The “quenched” approximation: A Langevin equation
for the phases

Letting as�t�=As�t�exp�i�s�t��, we take As as slowly vary-
ing with respect to �s. Indeed, the facts that the temporal
variation of the phases is on a time scale faster than that of
the amplitudes and that fluctuations in a cavity take place
because of the random interference between modes and not
because of the intensity fluctuations of individual modes are
well-established from the theory of mode-locking of standard
multimode lasers.27,42,44 Previous analytical, or semianalyti-
cal, studies26–28 �the RL case has been recently considered in
Ref. 20� relied on the so-called “free run approximation,”
i.e., the phases are taken to be rapidly varying and indepen-
dent and can be averaged out �see Appendix A�. This turns
out into removing all phase-dependent terms in Eq. �24� and
the resulting equations determine the amplitudes As, and
hence the energy into each mode Es, which stays clamped at
this value after that the corresponding mode has been put
into oscillation. As far as the phases can be taken as inde-
pendent, the output laser signal displays small oscillations
around an equilibrium value because the noises into each
mode amplitude are independent. It is clear that in this ap-
proximation the combination tone terms in Eq. �24� will dis-
appear due to the averaging over the phases. However, since
the beginning26,28 �and later also confirmed by detailed nu-
merical investigations48� it has been known that this regime
holds as far as beating between modes due to the mode com-
bination tones, being negligible; and this is valid if a few
modes with nonoverlapping resonances are excited. Con-
versely, the mode combination terms are known to be re-
sponsible of “mode locking” processes that in standard laser
provide a fruitful approach to the generation of ultrashort
pulses.42,44

Gain �described by an amplification coefficient �s� and
radiation losses �measured by 	s� are included in the equa-
tion of motion for the complex amplitudes following a stan-
dard approach:44

das

dt
= −

1

2�
pqr

gspqraqarap
* + ��s − 	s�as + �s�t� , �26�

having introduced, as usual, a complex noise term, mainly
due to spontaneous emission �see, e.g., Refs. 50 and 51�,
with ��p�t��q�t���= ��p

*�t��q
*�t���=0 and ��p�t��q

*�t���
=2kBTbath�pq��t− t��, with kB the Boltzmann constant and
Tbath an effective temperature, whose expression will be re-
ported in a later section. In Eq. �26�, the sum has been ex-
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tended over all the modes, as discussed above, and the con-
tribution of each possible combination tone to the amplitude
as is given by the relevant coupling coefficient gspqr.

The tensor g is a quantity symmetric with respect to the
exchange of s↔p, q↔r, while under �s , p�↔ �q ,r� one has
gspqr=gqrsp

* , see Eq. �23� and Refs. 28 and 47. Introducing the
real-valued potential function

H =
1

4
Re��

spqr

gspqraqarap
*as

*�
=

1

4 �
spqr

gspqr
R aqarap

*as
* −

1

4i
�
spqr

gspqr
I aqarap

*as
*, �27�

and letting H=�s�	s−�s��as�2+H, the resulting model �26� is
rewritten as

das

dt
= −

�H
�as

* + �s�t� , �28�

where

�

�a* =
1

2
� �

�aR + i
�

�aI� . �29�

The previous equation can be cast in the form of a standard
Langevin equation for a system of N “particles” moving in
2N dimensions �represented by �as

R ,as
I�s=1,. . .,N�36,51 and its in-

variant measure is given by exp�−H /kBTbath�.
The simplest case is attained when g can be taken as real

valued. Indeed, considering Lamb theory for a two level
system,26 which is the only approach providing an explicit
expression for the susceptibility tensor 
, one can show that
the imaginary part of g vanishes as all the resonant frequen-
cies are packed around a given value �0. The generalization
to a complex g is discussed in Appendix A.

Finally, the phases �s can be taken as the relevant dy-
namic variables, due to the quenched approximation for the
amplitudes As, see Appendix A, and the Hamiltonian is writ-
ten as

H�G,�� = Ho + �
�sp�,�qr�

Gspqr cos��s + �p − �q − �r� ,

�30�

where Ho=�s�	s−�s�As
2 is an irrelevant constant term �as

long as the amplitudes As are constant� and Gspqr
=2gspqrAsApAqAr is the real-valued coupling. Note that the
couplings Gspqr are symmetric under internal permutations of
the sets �s , p� and �q ,r� and also under exchange
�s , p�↔ �q ,r�. Indeed the couplings have the same symmetry
of the interaction term cos��s+�p−�q−�r�. To count each
term only once, the sum ��sp�,�qr� in Eq. �30� has been re-
stricted only to the values of spqr which are not related by
the symmetries above, and correspondingly a factor of 8 has
been added in the coupling.

Hereafter we will consider these G coefficients as
“quenched” �due to the slow t dependence of As�, and the
relevant phase space is reduced to that spanned by �s. The

pump energy which controls the average energy into each
mode �and hence the amplitudes As� fixes the amplitude of
G.

C. Gaussian random couplings

If the cavity is realized by a random medium, as described
above, the coupling coefficients g are random variables, i.e.,
they will depend on the specific sample one is considering.
For a given cavity realization, the values of the coupling
coefficients g are determined by the specific nonlinear
mechanism, i.e., by the function 
 in Eq. �23�, the mode
frequencies �s and amplitudes As, and by the mode profiles
Es�r� as expressed in Eq. �25�. All these are sources of ran-
domness in the computation of g. However, as we cannot
compute the properties of the model for a specific choice of
the g, we will assume that the couplings are drawn from a
given probability distribution and compute average proper-
ties of the system with respect to this distribution. It is pos-
sible to show that, in the thermodynamic limit, these average
quantities will be representative of many of the properties of
a given sample �e.g., the free energy�, see the discussion in
the next sections and Ref. 40.

Given the fact that the fields are real-valued functions
with positive and negative values at each point in the me-
dium, and additionally, parity of the modes may eventually
make some coupling vanish, a possible choice, in order to
simplify the problem as much as possible, is to consider the
signs of these coupling coefficients �those corresponding to
the mode-combination tones� as random and treat them as
Gaussian independent variables with zero mean, as detailed
below. This choice is further supported by the fact that, in
general, the mode frequencies are symmetrically distributed
with respect to the resonant frequency �0, and correspond-
ingly the sign of the nonlinear susceptibility largely varies.47

The hypothesis of zero mean can be removed by generalizing
the treatment reported below,40 leading to a very rich phase
diagram;52 different distributions of the couplings can also be
investigated but the problem becomes more difficult.

Additionally, it is important to point out the scaling prop-
erties of the Hamiltonian �30�. Recalling that Es

	=O�V−1/2�
�due to the normalization� and 
	���=O�1� are random vari-
ables, one has, from Eq. �25�, g�V−2�VR�r�dV�V−3/2, as
R�r�=V2
EEEE is an O�1� random variable whose integral
scales as V1/2. The coupling G’s then scale as �A2�2g0V−3/2.
By a simple rescaling, the invariant measure can be written
as exp�−�H�J ,���, where Jspqr=Gspqr / �g0�A2�2� has standard
deviation 1/V3/2�1/N3/2, as the number of modes is propor-
tional to the volume of the cavity, see, e.g., Ref. 18: then,
conventionally we will set �J2�=8/N3 and include all the
system-dependent constants in the definition of �. Note that
this scaling of the J’s guarantees that the Hamiltonian is
extensive, i.e., the average energy is proportional to
volume.40,53 The parameter that controls the phase transition
is then �=1/T=P2 /kBTbath, where P2= �A2�2g0. We recall
that �0�A2� measures the average energy per mode, while g0

is a material-dependent constant. Then P is proportional to
the energy stored on average into each mode. Hence the
relevant parameter for the lasers model is the adimensional
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“temperature” T: lowering T can be obtained both lowering
the bath temperature Tbath �e.g., acting on the noise, as done
in recent experiments on the thermodynamics of standard
lasers37� or increasing “the pumping rate” P.

IV. REPLICA ANALYSIS OF THE MODEL

Our interest here is to draw a mean-field statistical de-
scription for random lasers, which enables one to go beyond
the “free run approximation” and unveil the complex struc-
tures of the states of these systems, due to “random mode-
locking” processes. We can do this by computing the ther-
modynamic properties of the Hamiltonian �30� describing the
stationary states of the system.

Summing up, the random laser studied in the above sec-
tions is described by the disordered mean-field Hamiltonian

H = �
�pr�,�sp�

Jspqr cos��s + �p − �q − �r� , �31�

where ��s� are angular variables, �s� �0,2��, and Jspqr are
independent Gaussian random variables with zero mean and
variance J2=�J

2=8/N3. The sum in Eq. �31� is restricted to
the values of spqr that are not related by the symmetries of
the interaction term, see the discussion after Eq. �30�. Our
purpose is to study the thermodynamics of this model. In
particular we are interested in average properties of the
model considering the variables J’s as quenched: that means
we will average the free energy, and not the partition func-
tion, over the distribution of the couplings: averaging the
partition function correspond to considering the J’s as dy-
namical variables evolving on the same time scale of the
phases. The average of the free energy can be done by means
of the replica trick.40 Here we report the calculation in full
detail, even if it is very similar to the replica calculation for
the p-spin model, see, e.g., Ref. 53.

A. Replicated partition function

The partition function is

ZN��,J� =
 d���e−�H�J,��, �32�

with free energy

fN��,J� = −
T

N
ln ZN��,J� . �33�

We want to calculate the free energy averaged over the dis-
order

− �f��� = lim
N→�

1

N
ln ZN��,J� = lim

N→�
lim
n→0

�ZN��,J��n − 1

nN
,

�34�

where the overbar denotes the average over the random cou-
pling J’s and, as usual in the replica method, one uses the
formula ln Z=limn→0�Zn−1� /n, introducing the partition
function of n independent replicas Zn�J���ZN�� ,J��n with

the same random couplings J’s. It is possible to show40 that
the free energy is self-averaging, i.e., one has

lim
N→�

fN��,J� = f��� �35�

with probability one with respect to the distribution of the
couplings J’s; in other words, in the thermodynamic limit the
free energy of a given sample is given, with probability 1, by
the average of the free energy over the disorder that we are
able to compute.

In the following we will neglect all the multiplicative con-
stants growing as powers of N in the partition function as
they do not contribute to the free energy. The J’s have dis-
tribution P�J�=�N3 /16� exp�−J2N3 /16�: by the relation


 dJP�J�eAJ = exp� 4

N3A2� , �36�

for integer n, one has

Zn�J� =
 ��
a=1

n

d��a�	e�
2/2Hef f��i

a�, �37�

with

Hef f =
8

N3�
a,b

�
�sp�,�qr�

cos��s
a + �p

a − �q
a − �r

a�

�cos��s
b + �p

b − �q
b − �r

b�

=
8N−3

2�4

2
!	2�

a,b
�
spqr

1,N

cos��s
a + �p

a − �q
a − �r

a�

�cos��s
b + �p

b − �q
b − �r

b� =
N

2 �
a,b

��Qab�4 + �Rab�4� ,

�38�

where in the second line the constraints on the sets �s , p�,
�q ,r� have been released. In the above expression we have
introduced the quantities:

Qab = N−1�
i

ei��i
a−�i

b�, �39�

Rab = N−1�
i

ei��i
a+�i

b�. �40�

Note that Qaa�1 and Qba=Qab
* , while Rba=Rab. Also note

that the effective Hamiltonian Hef f depends only on the glo-
bal variables Qab and Rab.

Using the notation ��z�=��zR���zI�, the partition function
can be written as

ANGELANI et al. PHYSICAL REVIEW B 74, 104207 �2006�

104207-6



Zn�J� =
 �
a�b

dqab �
a�b

drabe�
2/2Hef f�qab,rab�

�
 �
a=1

n

d��a��
a�b

��qab − Qab��
a�b

��rab − Rab� ,

�41�

and the second integral can be easily evaluated introducing
the integral representation for the complex �-function

��z� =
 d�

�2��2eRe�z�*�, d� = d�Rd�I �42�

and the integral is done on the imaginary axis of the complex
�R, �I planes �i.e., one has to consider both �R and �I as
complex numbers�. With some algebra one gets, with the
convention that �ab�→a�b and �ab�→a�b, and summing
over the repeated indexes,


 d��a��
�ab�
��q�ab� − Q�ab���

�ab�
��r�ab� − R�ab��

=
 d��ab�d��ab� exp�N Re���ab�
* q�ab� + ��ab�

* r�ab��

+ N ln Z���ab�,��ab��� , �43�

where

Z���ab�,��ab�� =
 d��a�exp�− Re���ab�
* ei��a−�b�

+ ��ab�
* ei��a+�b��� �44�

�note the difference between d��a�=�a,id�i
a and d��a�

=�ad�a�. The partition function then has the form

Zn�J� =
 dq�ab�d��ab�dr�ab�d��ab� exp�− Nh�q,�,r,��� ,

�45�

where the function h is given by

h�q,�,r,�� = −
�2

4 ��
a

�raa�4 + n + 2�
�ab�

��qab�4 + �rab�4��
− Re��aa

* raa + ��ab�
* q�ab� + ��ab�

* r�ab��

− ln Z���ab�,��ab�� . �46�

We have extracted the diagonal part in the effective Hamil-
tonian reminding that qaa�1 is fixed �this is why we did not
include the relative �-function�.

The integral �45� can be evaluated at the saddle-point. The
derivatives with respect to q and r yield

��ab� = − 2�2�q�ab��2q�ab�,

�aa = − �2�raa�2raa,

��ab� = − 2�2�r�ab��2r�ab�. �47�

Substituting these equations into Eq. �46�, h is

h�q,r� = −
n�2

4
+

3�2

4 ��
a

�raa�4 + 2�
�ab�

�qab�4 + �rab�4�
− ln Z�q�ab�,r�ab�� . �48�

To perform the analytic continuation to n→0 one has to
make an ansatz on the structure of the matrices q and r. The
free energy is then computed using Eq. �34�. Using the rela-
tion

lim
N→�

Zn � e−N min�h�q,r�� �49�

and assuming that min�h�q ,r���n �i.e., it is small� we have
for the free energy

�f = − lim
n→0

e−N min�h�q,r�� − 1

nN
� lim

n→0

N min�h�q,r��
nN

= min�lim
n→0

n−1h�q,r�� = min����q,r�� . �50�

Note that the limits n→0 and N→� have been exchanged.40

A reasonable ansatz that we will make is that rab�0 at the
saddle point. Indeed, we are looking for disordered states
that are usually characterized by a nonzero overlap q and a
vanishing magnetization, i.e., the rotational symmetry is not
broken. As r is not invariant under rotations, we will set r
=0 in the following. Then we have to minimize

���q� = −
�2

4
+

3�2

2n
�
a�b

�qab�4 − n−1 ln Z�q� ,

Z�q� =
 d�a exp�Re �
a�b

2�2�qab�2qab
* ei��a−�b�� , �51�

for n→0. This function is very similar to the one that de-
scribes the Ising p-spin glass.

The vanishing of the derivative with respect to qab of
���q� gives the saddle point equation

qab = �ei��a−�b�� , �52�

where the average is on the measure that defines Z�q�. In-
deed, performing the derivative with respect to the real and
imaginary part of qab, one obtains two equations that can be
written in a single saddle point equation for qab

3qab = �ei��a−�b�� + 2
qab

�qab�2
Re qab

* �ei��a−�b�� . �53�

It is easy to show that Eq. �52� is the solution of Eq. �53�.
The replica symmetric �RS� solution corresponds to qab

�q; in particular q=0 is a solution of the saddle point equa-
tions and is the stable one in the high temperature phase.
Another solution appears at low temperatures but is always
unstable �see below�. The RS free energy is simply fRS=
−� /4 as in the Ising p-spin glass �neglecting irrelevant con-
stants�.

B. One step replica symmetry breaking (1RSB)

The 1RSB ansatz is the following: we divide the matrix
qab in n /m blocks of side m. The elements in the off-diagonal
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blocks are set to 0 while in the diagonal blocks RS is as-
sumed and qab=q. The simplest choice is to assume that q is
real. This is very reasonable due to the rotational symmetry,
see, e.g., the discussion in Ref. 54, p. 894, and moreover in
this way the constraint qab=qba

* is respected. For instance, we
have for n=6 and m=3

�qab� =��
1 q q

q 1 q

q q 1
� 0

0 �1 q q

q 1 q

q q 1
�� . �54�

Then one has

lim
n→0

n−1 �
a�b

qab
4 =

1

2
�m − 1�q4, �55�

and, as the variables �a in different blocks become uncorre-
lated,

Z�q� = �
 �
a=1

m

d�ae�
2q3�a�bei��a−�b��n/m

= �
 �
a=1

m

d�ae�
2q3���aei�a

�2−m��n/m

= �e−m�2q3
 �
a=1

m

d�a
 D�e��2q3 Re �*�aei�a�n/m

,

�56�

where � is a complex variable and D�= d Re � d Im �
2� e−1/2��*. De-

fining also �=�2q3 one has

n−1 ln Z�q� = − �2q3 + m−1 ln
 D��
 d�e�� Re �*ei�	m

.

�57�

Introducing the modified Bessel function of the first kind of
order 0

I0������� =
1

2�



0

2�

d�e�� Re �*ei�
, �58�

and noting that it depends on the modulus z= ��� one finally
gets �apart from constant terms�

��1RSB�m,T� = −
�2

4
�1 + 3�1 − m�q4 − 4q3�

−
1

m
ln 


0

�

DzI0
m���z� , �59�

where Dz=ze−z2/2dz. The value of q is determined by the
condition �q�1RSB=0 that gives �see Appendix B for details�

q =



0

�

DzI0
m���z�� I1���z�

I0���z��2



0

�

DzI0
m���z�

, �60�

where I1�x�= I0��x� is the modified Bessel function of order 1.
This expression is similar to the 1RSB free energy for the
p-spin model with p=4, the only difference being the pres-
ence of the Bessel functions instead of the hyperbolic cosine
in the integrals, the domain of integration in z, and a z in the
integrand.

The equilibrium value of m is the solution of �m�1RSB
=0. At high temperature the solution q=0 and m=1 �para-
magnetic state� is the stable one, while for T�Tc a new
solution with q�0 and m�1 �spin glass� becomes stable.
The temperature Tc �also called Kauzmann temperature TK�
marks the appearance of the thermodynamic glassy phase.

C. Phase space structure of the model

Starting from Eq. �59� one can repeat the analysis of Ref.
55 to derive the full phase space structure of the model at the
1RSB level. Again, we will reproduce in some details the
original derivations for the reader who is not familiar with
these methods.

In this class of mean field disordered models, at low tem-
perature, the phase space in disconnected in many metastable
states, i.e., local minima of the free energy. The number of
states of given free energy density f is ��f�=exp N��f�. The
function ��f� vanishes continuously at f = fmin and drops to
zero above f = fmax �see, e.g., Ref. 53�. The main peculiarity
of these models is that an exponential number of metastable
states is present at low enough temperature.

One can write the partition function Z, at low enough
temperature and for N→�, in the following way:

Z = e−�NF�T� � �
	

e−�Nf	 = 

fmin

fmax

dfeN���f�−�f� � eN���f��−�f��,

�61�

where f�� �fmin , fmax� is such that ��f�= f −T��f� is mini-
mum, i.e., it is the solution of

d�

df
=

1

T
, �62�

provided that it belongs to the interval �fmin , fmax�. Starting
from high temperature, one encounters three temperature re-
gions.

�1� For T�Td, the free energy density of the paramag-
netic state is smaller than f −T��f� for any f � �fmin , fmax�, so
the paramagnetic state dominates �in this region the decom-
position �61� is meaningless�.

�2� For Td�T�Tc, a value f�� �fmin , fmax� is found, such
that f�−T��f�� is equal to fpara. This means that the para-
magnetic state is obtained from the superposition of an ex-
ponential number of states of higher individual free energy
density f�. The phase space is disconnected in this exponen-
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tial number of regions: however, no phase transition happens
at Td because of the equality f�−T��f��= fpara which guar-
antees that the free energy is analytic on crossing Td.

�3� For T�Tc, the partition function is dominated by the
lowest free energy states, f�= fmin, with ��fmin�=0 and
F�T�= fmin−T��fmin�= fmin. At Tc a phase transition occurs,
corresponding to the one-step replica symmetry breaking
transition found in the replica computation.

In the range of temperatures Td�T�Tc, the phase space
of the model is disconnected in an exponentially large num-
ber of states, giving a contribution ��T����f��T�� to the
total entropy of the system. This means that the entropy per
particle S�T� for Td�T�Tc can be written as

S�T� = ��T� + Svib�T� , �63�

Svib�T� being the individual entropy of a state of free energy
f�. The task is then to compute the function ��f� at fixed T
and the equilibrium complexity ��T�=��f��T��.

To this aim, the idea56 is to consider m copies of the
original system, coupled by a small attractive term added to
the Hamiltonian. The coupling is then switched off after the
thermodynamic limit has been taken. For T�Td, the small
attractive coupling is enough to constrain the m copies to be
in the same state. At low temperatures, the partition function
of the replicated system is then

Zm = e−�N��m,T� � �
	

e−�Nmf	 = 

fmin

fmax

dfeN���f�−�mf�

� eN���f��−�mf��, �64�

where now f��m ,T� is such that ��m , f�=mf −T��f� is mini-
mum and satisfies the equation

d�

df
=

m

T
. �65�

If m is allowed to assume real values by an analytical con-
tinuation, the complexity can be computed from the knowl-
edge of the function ��m ,T�=mf��m ,T�−T��f��m ,T��. In-
deed, it is easy to show that

f��m,T� =
���m,T�

�m
,

��m,T� = ��f��m,T�� = m2��m−1���m,T��
�m

= m�f��m,T� − ���m,T� . �66�

Thus the function ��f� can be reconstructed from the para-
metric plot of f��m ,T� and ��m ,T� by varying m at fixed
temperature. The equilibrium complexity is simply ��T�
=��m=1,T�.

Using the replica trick to compute the free energy,

��m,T� = −
T

N
log Zm = −

T

N
lim
n→0

�Zm�n − 1

n

= −
T

N
lim
n→0

Zmn − 1

n
, �67�

one obtains the partition function of nm copies of the system,
with the constraint that each block of m replicas has to be in
the same state, i.e., the replicas must have nonzero overlap.
This leads naturally to the 1RSB structure for the overlap
matrix �with m fixed�, see Eq. �54�, and

��m,T� = −
T

N
lim
n→0

�exp�− �nmN�1RSB�m, q̄,T�� − 1�/n

= m�1RSB�m,T� . �68�

Note that the hypothesis that the m replicas are in the same
state implies that for any value of �m ,T� one has to substitute
in �1RSB the nonzero solution of Eq. �60�, q��m ,T�. Above Td

this solution disappears as a vanishing coupling cannot con-
strain the replicas to stay close to each other.

Using Eqs. �66� and �68� the complexity as a function of
m is

T��m,T� = m2�m�m−1��m,T�� = m2�m�1RSB�m,q�,T� ,

�69�

and the equilibrium complexity is

��T� = ��1,T� = −
3�2�q��4

4
+ ln 


0

�

DzI0����z�

−



0

�

DzI0����z�ln I0����z�



0

�

DzI0����z�
, �70�

where ��=�2�q��3.

D. Phase diagram in the „m ,T… plane

For a given value of T, we can identify four relevant
values of m. They are reported in Fig. 1 and are defined as
follows.

�1� A solution q��m ,T��0 of Eq. �60� is present for m
�mmin�T�. Thus in the region m�mmin�T�, ��m ,T� is well-
defined and we can compute the complexity ��m ,T� and the
free energy f��m ,T� using Eq. �66�.

�2� The value m��T� such that ��m ,T�=0 corresponds to
the solution of the thermodynamics and f��m� ,T�
=�1RSB�m� ,T� is the free energy in the spin glass phase. The
temperature Tc is defined by m��Tc�=1.

�3� The function f��m ,T� has a maximum for m=md�T�.
This means that f��md ,T� is the maximum possible free en-
ergy fmax�T�. The states with f = fmax are called threshold
states.53,55

�4� Finally, one can investigate the stability of the 1RSB
solution with respect to further steps of replica symmetry
breaking, following the analysis of Ref. 57. We report the
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details of the calculation in Appendix C. It turns out that the
1RSB solution is stable toward further steps of replica sym-
metry breaking for m�ms�T�.

The thermodynamic phase diagram of the model is easily
deduced from Fig. 1. The paramagnetic solution is stable for
T�Tc. The temperature Tc is the thermodynamic glass tran-
sition temperature, at which a downward jump of the specific
heat is observed, as in standard first-order transition. Below
this temperature the 1RSB spin glass solution is stable, and
remains such down to T=0, as m��T��ms�T� for all T. Thus
in this model no Gardner transition �transition to a full RSB
solution57� is observed.

Some information on the dynamics of the model can also
be obtained from Fig. 1. Indeed, at Td �defined by md�T�=1�
a dynamical transition takes place:53 correlation functions
are expected to develop an infinitely long plateau and the
system becomes dynamically trapped in one of the exponen-
tially large number of states that appears at Td, as discussed
above.

Between the static transition temperature Tc and the dy-
namic one Td the phase space has a nontrivial shape: it is
disconnected in an exponential number of states N�T�
=exp N��T�, where � is the configuration entropy �or com-
plexity� of the system. In Fig. 2 the quantity � is reported as
a function of T. The point Tc at which the complexity van-
ishes ��Tc�=0 signals the appearance of the thermodynamic
phase transition.

However, it is not clear what is the dynamic behavior of
the model if quenched from T=� to T�Td. Indeed, as al-
ready observed in the Ising p-spin glass model, the threshold
states always lie into the 1RSB-unstable region, i.e., md
�ms for T�Td. This means that the 1RSB ansatz is unable
to give the correct prediction for these states below Td and
one need to consider further steps of replica symmetry break-
ing. The investigation of the dynamics of the model after a
quench below Td will be the object of future investigation.

V. ROUTE TO THE EXPERIMENTAL OBSERVATION
OF THE GLASSY TRANSITION

The investigated model exhibits a dynamical transition at
Td and a thermodynamic phase transition at a lower tempera-
ture Tc �characterized by a one-step replica symmetry break-
ing scenario�, very similar to p-spin glass models. Let us turn
our attention to the physical interpretation of these transi-
tions. We recall that the “temperature” T introduced in the
model is defined as the ratio between the bath temperature
Tbath, measuring the optical noise in the system, and the
pumping rate P, so we can vary the latter to explore the
phase diagram of the system.

Starting from low pump intensity �high temperature� and
increasing P �decreasing T�, different interesting phenomena
take place. The relevant quantities to look at in experiments
are correlation functions in time domain, i.e., the self-
correlation functions of a specific frequency ��m� component
of the electric field in the cavity �for example, via heterodyne
experiments, see below�:

C�t,�m� = �am�t + ��am
* ����� = Am

2 �exp�i��m�t + �� − �m�������,
�71�

where the �¯�� is the average over the time origin �. At high
T, because of the fast dynamics of the phases, C�t ,�m� de-
cays to zero on short times. On lowering T the dynamics of
phase variable �m�t� becomes slower and slower and
C�t ,�m� is expected to decay towards zero in longer and
longer times. At the dynamic transition point Td, the dynam-
ics of the �’s becomes nonergodic, they are no longer able to
explore the whole phase space and the function C�t ,�m� de-
cays towards a plateau: the mode’s phases �m�t� are locked
to some fixed random values �“random mode-locking”� and
oscillate around these values. The fact that the complexity �
is different from zero at the dynamic transition point implies
that there is an exponentially large number of possible values
for the locked phases and, correspondingly, many different
time structures of the electric field in the random laser.

FIG. 1. �Color online� Phase diagram of the model in the �m ,T�
plane �see Sec. IV D in the text�.

FIG. 2. The equilibrium complexity ��T� as a function of the
temperature.

ANGELANI et al. PHYSICAL REVIEW B 74, 104207 �2006�

104207-10



More technically, the region between Td and Tc is dynami-
cally not-accessible, due to the mean-field character of the
interactions. Only for short range models, where activated
processes become possible, this interesting region can be ex-
plored. We can expect that, if the mean-field approximation
is not fully verified by the random lasers, see the discussion
in Sec. III A, the system would be able to enter in the acti-
vated �or Vogel-Fulcher� regime �to use a terminology famil-
iar in the liquid-glassy physics� and the correlation functions
decay to zero at long times after the plateau. In this region
the relaxation time is found to scale as �=�0 exp�D / �T
−Tc�� and only at the thermodynamic phase transition point
Tc the system is really locked in the ideal glassy state �the
relaxation time becomes infinite�. Similarly to what happens
in p-spins and structural glasses, interesting phenomena as
aging, memory effects, and history dependent responses are
expected to take place for Tc�T�Td, see, e.g., Refs. 49, 58,
and 59 for recent reviews.

It is worth remarking that in the region where these phe-
nomena are expected to happen, the relaxation time of the
system is larger, by many orders of magnitude, than the typi-
cal microscopic time scales. For instance, in molecular
glasses where the typical time scale is �0�10−12 s, the relax-
ation time of the system can be as large as 100 s already for
Tg�1.5Tc. These systems cannot be equilibrated close to Tc
because of the exponential divergence of the relaxation time
for T→Tc. In random lasers, the typical time scale for pho-
ton dynamics is �0�10−14 s, so one will gain orders of mag-
nitude in time. This should allow one to equilibrate the sys-
tem closer to Tc. Even if the decrease in T−Tc that one can
achieve in this way will not be substantial, it could be
enough to test the predictions of some recent theories of the
glass transition in the presence of short range interac-
tions.49,58

Moreover, we recall that, as discussed in Sec. III A, in
random lasers it is possible, in principle, to tune the interac-
tion range �by tuning the localization length�, and thus the
relevance of the activated processes. This is similar to what
has been done theoretically by considering the Kac limit for
spin glasses60 and might allow one to explore the crossover
between the mean field and the activated regime and to shed
light on some debated issues concerning the nature of the
spin glass phase in real systems. Before concluding, it is
important to provide an order of magnitude estimate of
physical quantities involved in the experiments and to ad-
dress some possible experimental frameworks.

A. Order of magnitudes

For the sake of concreteness we will focus, as an example,
on recent experiments in random lasers realized by scatterers
�e.g., zinc oxide powder dispersed in a solvent doped with a
dye, as, e.g., in Ref. 21�. These experiments employed
pumped source beams �see below�, for the moment we show
that the glassy transition can be expected for the currently
employed pump power levels. We stress once again that our
model is sufficiently general to embrace a much wider vari-
ety of disordered amplifying systems.

We start from the coupling coefficients, which are given
by Eq. �25�; the fields are real valued numbers, their modulus

scale as �E��2V−1/2 /��0n0
2 due to the normalization �n0 is an

average refractive index�; their sign can be “embedded” in
the sign of the 
 coefficients; additionally �s��0�2�c /�.
Hence, omitting indexes, �g�=0 and

g �
8�0

2

V2�0
2n0

4

V


�r�dV . �72�

We need �g2�, and we assume

�
�r�
�r��� = 
0
2Lr

3�̂�r − r�� �73�

with 
0 a typical nonlinear susceptibility value, Lr a charac-

teristic length for the disorder, and �̂ the coarse grained
Dirac delta. Thus

�g2� � � �0
2

2V2�0
2n0

4	2�

V


�r�dV

V


�r��dV��
= � 8�0

2

V2�0
2n0

4	2


0
2Lr

3V . �74�

We have then for the standard deviation

��g2� �
8�0

2
0Lr
3/2

�0
2n0

4

1

V3/2 . �75�

For the sake of simplicity, let us consider a box with volume
V: the number of modes per unit of volume and unit of
frequency is given by �this is just an estimate, as in nano-
structured optical cavities the density of modes can be en-
hanced or depressed with respect to a standard box2�

���� =
8�n0

3�2

c3 , �76�

hence for N modes in a wavelength range �� ��=c /�� it is

N =
8�n0

3��

�4 V . �77�

Equation �77� is used in Eq. �75� and gives

��g2� �
85/2�3/2n0

1/2�0
2
0Lr

3/2

�0
2n0

4

����3/2

�6

1

N3/2 , �78�

which scales as N−3/2 as anticipated. Next we have to con-
sider the coefficients Gspqr=gspqrAsApAqAr:

��G2� �
85/2�3/2�0

2
0Lr
3/2n0

1/2

�0
2

����3/2

�6

�A2�2

N3/2 , �79�

and the coefficients J=G / �g0�A2�2� with variances 8/N3. We
can hence determine g0 as

g0 �
8�3/2n0

1/2�0
2
0Lr

3/2

�0
2

����3/2

�6 �80�

and, finally, the adimensional �=1/T is given by
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��
8�3/2�0

2
0Lr
3/2

�0
2

����3/2

�6

�A2�2

kBTbath
. �81�

Remembering that the average energy per mode is �0�A2�,
we obtain, at the transition, the threshold value �denoting
Td�0.435 the normalized temperature at the dynamic tran-
sition, see Fig. 2�

ERSB = �0�A2� =� kBTbath�0
2�6

8�3/2n0
1/2Td
0�Lr���3/2 . �82�

The noise temperature can be taken as due to the spontane-
ous emission, which is typically the dominant contribution:
following Ref. 42, 2kBTbath=��N2 / �N2−N1��t /��� /�, with
� the average lifetime per mode, and �N2 / �N2−N1��t the
population inversion at lasing threshold. Taking typical val-
ues from the reported experiments ���=100 nm, �
=630 nm, n0=2, Lr=10 nm, �=100 fs� and for the suscepti-
bility 
0=10−27 CmV−3,47 it is ERSB�10−16 J. Assuming a
pumping beam with peak power PRSB�NERSB /�, gives
PRSB�0.1 W with N=100, which focused on the typical area
of 100 �m2 provides the typical values for the peak pump
intensities used in the experiments ��100 kW/cm2�. Thus
we expect that the “glass transition” can be observed within
the currently available experimental framework.

B. Continuous-wave random lasers

All the theory reported in this paper makes reference to
continuous-wave �cw� RLs, hence we start discussing this
kind of systems. Experimental investigations of cw-RL were
already reported in nanopowders �see Ref. 61 and references
therein�; alternative experimental geometries include disor-
dered photonic crystals2 as membranes or multilayered sys-
tems with gain provided, e.g., by quantum wells in semicon-
ductor materials. In these integrated high-index contrast
geometries multimode random-cavity lasers can in principle
operate in the cw regime, and this opens the way to a com-
prehensive experimental analysis of the dynamics of the la-
ser emission. The experimental setup can follow previous
investigations of the noise figure of standard semiconductor
lasers �see, e.g., Ref. 62�. RL emission is collected and fil-
tered in a narrow band in order to select one or few modes.
At the mode locking transition the intensity signal I�t� is
expected to switch from a random noise superimposed to a
cw value, to a largely modulated line-shape displaying a ran-
dom sequence of disordered pulses. Heterodyne measure-
ments are employed to extract phase and amplitude noise
from which the dynamics of the amplitudes of the modes and
their phase are extracted, as well as the coherence function
C�t ,��. As discussed above, the fact that amplitude fluctua-
tions make a negligible contribution to the field autocorrela-
tion is well-known from laser theory,62 hence C�t ,�� gives
information on the phase-dynamics.

Specifically, before the glassy transition �low pumping
rate� the linewidth of the laser modes is wide and the auto-
correlation C�t ,�� of the mode signal is expected to decay
with a single exponential time constant, corresponding to a
Lorentzian line shape of the noise spectrum of the field. At

the glass transition the laser dynamics slows down, and this
results into a slower decaying of C�t ,��, with the appearance
of multiple time scales, and eventually to an ergodicity
breaking corresponding to a plateau in the C�t ,�� signal �as
sketched in Fig. 3�a��.

Further information is retrieved by phase demodulation
�e.g., by employing the usual combination of a limiter and a
discriminator62� whose output is the instantaneous frequency
d�m /dt, whose power density spectrum can be determined
by a spectrum analyzer. When the phase of the filtered modes
are locked, they oscillate around one of the many equilib-
rium values. Correspondingly, the spectrum of the phase
noise for each mode is expected to switch from a wide line to
a narrow one displaying modulation sidebands, which are
due to the fact that the phases display small oscillations
around one of the many phase-locked states �as sketched in
Fig. 3�b��.

C. Pulsed random lasers and speckle patterns

Most of the reported experiments on RLs have been done
by using pumped laser beams, with pulse duration from tens
of picoseconds to tens of nanoseconds. One could argue if
the mentioned mode-locking transition can be actually ob-
served in these regimes.

First of all we observe that our theory deals with the
phase-dynamics of the �quasi-�modes of a RL. As far as the
laser reaches a steady state for the amplitudes �and this is
expected to happen in the leading edge of a nano-second
pump pulse, taking into account typical lifetimes; see, e.g.,
Ref. 20 for an extensive discussion of the mode amplitude
dynamics�, the phases are expected to vary on the �0
�10 fs time scale. Indeed, in the framework of the Lamb’s
two level theory, they are affected by the dynamics of the
resonant medium polarization, i.e., by the time-constant of
the off-diagonal density matrix elements, whose inverse is
the “dipole dephasing rate” which is around 1014 s−1 �see,
e.g., Ref. 34�. The latter time scale is the “elementary” time
scale for the dynamics of the phases, that corresponds in
molecular systems to the typical time scale of atomic vibra-
tions �0�10−12 s.

FIG. 3. �Color online� Sketch of two experimental signatures of
the onset of a glassy transition of light in random lasers: �a� The
mode coherence function develops a plateau at high pumping rates,
denoting ergodicity breaking. �b� The power density spectrum of
the mode instantaneous frequency displays modulation sidebands;
this corresponds to the transition from random-mode-phases to
phase-locking in one of the metastable states; the sidebands are due
to small oscillations in these minima that result in frequency shifts
of the mode resonances.
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In a first approximation, the arrival of a pulse produces a
fast variation of the “temperature” from T�� �before the
pulse� to a value of T�Td �subsequently after the arrival of
the pulse�. This corresponds, in the language of molecular
glasses, to an instantaneous �i.e., on the scale of �0� quench
of the system from infinite �or very high� temperature to
below Td. On a very general ground, it is expected that the
system will then start to age49,59 in the sense that the relax-
ation time � of C�t� will increase with the time tw elapsed
after the arrival of the pulse �the quench�. For systems that
are in the class of the p-spin model it is generally found that,
for tw �0, ��tw�� tw �see as a striking example Fig. 5 in Ref.
63�. This means that for a pulse duration tw �0�10 fs, the
relaxation time of the phases will be of the same order of the
pulse duration and they will appear to be frozen on this time
scale. Hence the mode-locking process should be observable
in a standard random laser for ns pump pulses. Note that,
incidentally, the validity of the cw approximation has been
thoroughly discussed in a recent paper for a nanosecond
pulsed laser.24

Additionally, the pulsed regime favors the investigation of
the correlation between different laser shots with fixed dis-
order. In the presence of many modes, due to mode interfer-
ences and complex phase modulations, the peaks in the spec-
trum are expected to largely vary from pulse to pulse. This is
also due to the fact that with a pulsed pump, in a thermody-
namic language, the system is first “cooled” �i.e., the average
energy per mode is increased as the pump power increases�
and then “heated” �as in the trailing edge of the pump pulse�.
Between two subsequent pulses the system is at infinite tem-
perature and will rapidly loose memory of the previous state:
as a result, in the presence of an exponentially large number
of thermodynamically equivalent states, the system settles in
a different minima from pulse to pulse and correspondingly
the phases will largely vary from shot to shot. During the
laser oscillation, the phase-modulation corresponding to the
mode-locking process should be visible. Similar phenomena
�namely a large variation of the emitted spectrum from pulse
to pulse� were already reported in the literature �as in Ref.
21�.

A note on the speckle pattern of the emitted light is in
order. Indeed the speckle pattern is determined by the phase
difference between the modes, hence the spatial distribution
of the emitted light is expected to largely vary from one shot
to another of the random laser, when the pump power is
above the threshold for the glass transition. It is important to
emphasize that other authors predicted an exponentially large
number of speckle patterns in nonlinear random media,64

however, in that case, the leading mechanism was the non-
resonant Kerr effect �incidentally, our model Eqs. �31� also
applies for Kerr media as will be discussed elsewhere�.

VI. CONCLUSIONS

We derived a statistical model for the mode phases in a
random laser. The obtained Hamiltonian resembles that of
some spin glass model �the p-spin model with p=455,57,65,66�,
and can also be thought of as a generalization to the disor-
dered case of a toy model Hamiltonian recently studied �the

k-trigonometric model67�. The relevant parameter for explor-
ing the phase diagram is a scaled temperature T, the ratio
between the “true” bath temperature and the square pumping
rate �the energy stored on average in each mode�. Using
standard statistical mechanics techniques of disordered sys-
tems �i.e., replica method�, we predict the existence of a
dynamic transition at Td and of a thermodynamic phase tran-
sition at Tc, characterized by a one-step symmetry breaking
scenario. Between the two temperatures, the appearance of
an exponentially large number of states is expected. This
corresponds to the existence of a random-mode locking tran-
sition in random lasers: looking at self-correlation functions
of a specific frequency component of the electric field in the
cavity, one should observe a nonergodic behavior at Td, i.e.,
the decay towards a plateau, where the phases are locked at
random values. The mode-locking will happen in a configu-
ration of the phases that depends on the history for a given
sample because the system will reach a different metastable
state depending on the initial state, with large sample-to-
sample fluctuations. This can be observed by looking at the
frequency fluctuation spectrum or at the speckle pattern of
the emitted light.

The logarithm of the number of these possible random
configurations of the phases is given by the complexity �see
Fig. 2� times the number of active modes. As long as the
physical realization of the random laser is well-described by
the mean-field Hamiltonian, the system is not dynamically
able to explore the phase space for temperature T�Td �or
pumping rate higher than that corresponding to the dynamic
transition� and remains trapped always in the state reached at
Td. However, taking into account the fact that the mean-field
scenario could be a too “crude” approximation for real ran-
dom lasers, we expect that the system will be able to explore
on a long time scale Tc�T�Td region, where aging,
memory effects, and history dependent responses are ex-
pected to take place.

The expert reader in nonlinear optics or Bose-Einstein
condensation will certainly recognize in our model a typical
system for many-modes interaction processes �e.g., solitons,
parametric processes, supercontinuum generation,…�; we be-
lieve indeed that our results are also relevant in many
branches of modern nonlinear physics involving disordered
systems. Spin glasses have been defined as the “most com-
plex kind of condensed state,”68 we are convinced that there
is no difficulty in accepting the emission of random lasers as
the “most complex kind of light.”
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APPENDIX A: EQUATIONS FOR THE AMPLITUDES
AND FOR THE PHASES

Here we will show that the Hamiltonian �30� can be de-
rived also directly from the equation of motion for the com-
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plex amplitudes as, Eq. �26�, by assuming that the dynamics
of the phases is much faster than that of the As.

After Eq. �26�, using gspqr=gspqr
R + igspqr

I and �s=�s
R+ i�s

I,
the equations for the amplitudes are

dAs

dt
= −

1

2�
pqr

ApAqAr�gspqr
R cos��s + �p − �q − �r�

+ gspqr
I sin��s + �p − �q − �r�� + ��s − 	s�As

+ �s
R cos��s� + �s

I sin��s� . �A1�

By assuming the phases as rapidly varying with respect to
the amplitudes, these can be averaged out and the “free run
approximation” equations20,26,28 are retrieved, providing the
average energy in each mode Es:

dEs

dt
= 2��s − 	s�Es −

gssss
R

�s
Es

2 + Es�
r

gsrsr
R + gssrr

R

�r
Er.

�A2�

Note that Eq. �A1� takes into account random cross- and
self-saturation effects, by the terms weighted by gsrsr

R +gssrr
R

and gssss
R , respectively, as well as the fact that the decay rates

and gains are expected to be different for each mode. We
model this circumstance in the text by taking the amplitude
dependent G-coefficients as Gaussianly distributed.

Next, we find the ruling equation for the phases after Eq.
�26�:

As
d�s

dt
= −

1

2�
pqr

ApAqAr�gspqr
I cos��s + �p − �q − �r�

− gspqr
R sin��s + �p − �q − �r�� + �s

I cos��s�

− �s
R sin��s� . �A3�

Denoting E0=�0�A2� the average energy per mode, we mul-
tiply Eq. �A4� by �0As and take �0As

2�E0 �while being �s
��0, as outlined above�.

The equation for the phases �A3� are equivalent to the
following:

d�s

dt
= −

�H�
��s

+ �s
���, �A4�

with �s
������s

I cos��s�−�s
R sin��s�� /As and

H� =
1

8 �
spqr

�0AsApAqAr

E0
�gspqr

I sin��s + �p − �q − �r�

+ gspqr
R cos��s + �p − �q − �r�� , �A5�

where we exploited the symmetries for the real part which
are the same as discussed above, and where the imaginary
part satisfies gspqr

I =−gqrsp
I .

Equation �A5� is cast in the form H�=�0H /2E0 with

H =
1

4 �
spqr

AsApAqAr�gspqr
R cos��s + �p − �q − �r�

− gspqr
I sin��s + �p − �q − �r��

=
1

4
Re��

spqr

gspqraqarap
*as

*� . �A6�

Equation �A4� is a Langevin system for the phases, and be-
ing �due to the fact that the noise � is assumed to vary on a
much faster scale than the phases �� ��p

����t��q
����t���

=�0kBTbath�pq��t− t�� /E0, its invariant measure is
exp�−2H�E0 /�0kBTbath�=exp�−H /kBTbath�, which is identical
to the previous one. In the case of a complex coupling the
Hamiltonian will include also the second term in Eq. �A6�.
The replica analysis of the generalized model is a generali-
zation of the one concerning Eq. �27� �see Sec. IV� and pro-
vides the same outcome for what concerns the existence of a
RSB transition.

APPENDIX B: SELF-CONSISTENCY EQUATION
OF 1RSB SOLUTION

Here we derive the self-consistency equation for q, Eq.
�60�. It is obtained imposing that the derivative of the free
energy in Eq. �59� with respect to q vanishes, �q�
��1RSB�m ,q�=0:

3�2q2��1 − m�q − 1� = −
1

m



0

�

Dz�qI0
m���z�



0

�

DzI0
m���z�

. �B1�

Now, �qI0
m=mI0

m−1�qI0 and �qI0= ��	I0���q	�= I1�q	, where
	=��z=��2q3/2z. Then we can write

m−1

0

�

Dz�qI0
m =

3�q1/2

�2



0

�

DzzI0
m−1I1

=
3�q1/2

�2



0

�

dze−z2/2�z�zI0
m−1I1� , �B2�

having used the identity ze−z2/2=−�ze
−z2/2 and integrating by

part. Performing the derivatives and using �z= ��z	��	 and
the property of Bessel functions �	I1= I0− I1 /	, we have

m−1

0

�

Dz�qI0
m = 3�2q2


0

�

DzI0
m�1 + �m − 1�

I1
2

I0
2� .

�B3�

Substituting in Eq. �B1� we then obtain the self-consistency
equation:

q =



0

�

DzI0
m���z�� I1���z�

I0���z��2



0

�

DzI0
m���z�

. �B4�
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APPENDIX C: STABILITY OF 1RSB SOLUTION

In this Appendix we discuss the stability of the 1RSB
solution. First we have to compute the Hessian of ��q�
evaluated in a solution that verifies the saddle point equa-
tions qab= �cos��a−�b��, where we assume that qab is real.
This assumption is motivated by the analysis of Ref. 54, p.
894, where it is shown for the case of a two spin interaction
that even the full RSB solution verifies qab real for all ab.
Still this is an assumption as in principle there could be
solutions such that qab has an imaginary part for a�b, see
again Ref. 54.

Considering a perturbation �qab around the solution, one
has, differentiating Eq. �51�:

Gab,cd =
d2��

dqabdqcd
=

6�2

n
qab

2 ��ab,cd − 6�2qcd
2

���cos��a − �b�cos��c − �d�� − qabqcd�� . �C1�

The condition qab=qba
* implies �qab=�qba. The matrix G is

symmetric under the exchanges a↔b, c↔d. When the ma-
trices G are evaluated in the 1RSB solution, it is easy to see
that it becomes a block matrix that has nonvanishing ele-
ments only if �ab� and �cd� belong to the same diagonal
block related to one of the diagonal blocks of the matrix qab.
Thus we can restrict one to consider perturbations of one
single block. With this restriction, substituting the 1RSB

structure of qab, and neglecting the irrelevant prefactor
6�2n−1q2, G has the following elements:

P � Gab,ab = 1 − 3�2q2

��1 +

 D�I0�������m−2I2�������2


 D�I0�������m

− 2q2� ,

Q � Gab,ad = − 3�2q2

��q +

 D�I0�������m−3I2�������I1�������2


 D�I0�������m

− 2q2� ,

R � Gab,cd = − 6�2q2�
 D�I0�������m−4I1�������4


 D�I0�������m

− q2� .

�C2�

Following the analysis of Ref. 69, the relevant eigenvalue of
G that eventually becomes unstable is != P−2Q+R, i.e., the
stability condition is

! = 1 − 6�2q2

 D�I0�������m1

2
�1 −

I1�������2

I0�������2�2

+
1

2
� I2�������

I0�������
−

I1�������2

I0�������2�2�

 D�I0�������m

� 0, �C3�

that is

1

6�2q2 �


 D�I0�������m1

2
�1 −

I1�������2

I0�������2�2

+
1

2
� I2�������

I0�������
−

I1�������2

I0�������2�2�

 D�I0�������m

. �C4�

Once the solution of the saddle point Eq. �B4� is substituted in the expression above, one obtains the condition m�ms�T�, see
Fig. 1.
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