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We present electron paramagnetic resonance �EPR� and magnetotransport measurements for amorphous
RExSi1−x alloys �rare earth �RE� metals are Gd, Y; 0.1�x�0.2�, over a wide range of temperatures and
magnetic fields. To explain the experimental results, we use a model in which the structural disorder in the
system causes the appearance of regions with a higher electron concentration around nanoscale defects en-
riched with rare-earth ions �droplets�. It is shown that the observed EPR signal can be formed only in the
double-bottleneck regime. Then, the temperature dependences for the line position and the linewidth are
obtained. We also analyze recent measurements of the temperature- and magnetic-field dependence of the
electrical conductivity and Hall effect, and show that the spin polarization of the electron states in the droplets
favors a giant negative magnetoresistance and enhances the tendency towards the metal-insulator transition.
The ferromagnetic transition temperature and the number of Gd ions inside the nanoscale defect enveloped by
the droplet are evaluated from a comparison between the theory and the experimental data. We suggest that
amorphous RExSi1−x alloys are magnetic materials with unique properties of both strongly inhomogeneous
compounds and nanocomposites.
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I. INTRODUCTION

The properties of amorphous �a-� RExSi1−x alloys, with
rare-earth �RE� metals RE=Gd,Y and 0.1�x�0.2, have
been actively investigated and discussed in recent years.
Various changes occur in the electronic and magnetic struc-
ture of these alloys by varying the temperature T and the
magnetic induction B, and a giant negative magnetoresis-
tance is observed. The experiments1–5 indicate that dopant
magnetic ions in a heavily disordered semiconductor can
combine features of the usual doping-driven metal-insulator
transition, typical of amorphous systems, with features of the
temperature- and field-driven magnetic transformations.

Indeed, when magnetic Gd ions are doped into the a-Si
host, the transport properties are severely affected below
a characteristic temperature T*�10–100 K �Ref. 6�: for
T�T*, the electrical conductivity is almost linear with T,
like in samples doped with isovalent but nonmagnetic Y,
whereas for T�T*, the conductivity is strongly suppressed,
as compared to the Y-doped samples, and a giant negative
magnetoresistance is found. The low-field magnetization
obeys the Curie-Weiss law over a wide range 10 K�T
�300 K; at very low T, below the freezing temperature
Tf �5 K�T*, a spin-glass behavior is observed. Samples
that are metallic at high T show a tendency towards the
metal-insulator transition at low T.

These findings cannot be explained within simple mag-
netic interaction models. Some years ago, the competition
between structural and magnetic disorder in these alloys was
analyzed within a model for the Anderson-Mott transition
driven by spin disorder.7,8 The model seems very successful
in the low-temperature regime T�Tf, where the spin-glass
and the metal-insulator transitions occur. On the other hand,
the origin of the features observed in magnetic and transport
properties at high temperatures, and the strikingly different

behavior of Gd- and Y-doped samples, remained unex-
plained. In this paper, we specifically devote our analysis to
anomalies in the high-temperature regime, well above the
spin-glass and metal-insulator transitions.

Differently from previous approaches in which
a-RExSi1−x alloys were considered as completely disordered,
heavily doped magnetic semiconductors, we suggest that re-
cent detailed conductivity and tunneling measurements
clearly demonstrated the coexistence of metallic and semi-
conducting domains, identifying the percolative nature of
electron transport in these systems.5 Moreover, the role of
short-range structural and magnetic order was not seriously
discussed before, while, as a rule, different kinds of disorder
exist in amorphous alloys.9 The structural and compositional
disorder at the atomic-scale distances can be qualitatively
described within a model of point defects in a regular crystal
lattice. Experiments indicate, however, that the disorder at
the nanoscale distances has to be described differently,
within a model of continuous defects with short-range order,
embedded into a disordered effective medium �matrix�.

It was proposed10 that two different kinds of structural
and magnetic disorder coexist in these systems, resulting,
respectively, from isolated RE ions inside the a-Si host, and
from nanoscale defects with enhanced concentration of RE
ions, which cause a redistribution of the electron density, so
that regions with higher electron concentration enveloping
the nanoscale defects �“droplets”� appear inside the matrix.
Ferromagnetic ordering inside the droplets, more favorable
than in the matrix, has been theoretically described within
the “local phase transition” model.11 To probe the magnetic
state of the droplets, a “local” experimental method, electron
paramagnetic resonance �EPR�, was proposed, together with
magnetoresistivity, Hall effect, and neutron-scattering mea-
surements. Preliminary results12–14 allowed for a crude esti-
mate of some parameters of the droplets. As it was found for
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a-GdxSi1−x, e.g., with x=0.14, the typical droplet volume is
vD�400–800 Å3; the number of RE ions inside a droplet is
�D�10–20; the volume fraction occupied by the droplets is
f �0.05–0.1.

The paper is organized as follows. In Sec. II we analyze in
detail the EPR measurement, preliminarily reported in Ref.
13. Here, we show that the experimental data can only be
understood if the system finds itself in the so-called double-
bottleneck regime, so that our proposal, that two subsystems
�the matrix and the droplets� coexist, is crucial. In Sec. III we
analyze in detail the magnetoresistivity and Hall effect ex-
periments, previously reported in Refs. 12 and 14, providing
further support in favor of our proposal of droplet formation.
Here, we clearly demonstrate the percolative character of
magnetotransport and the strongly inhomogeneous distribu-
tion of the magnetization in the system, provided by the for-
mation of a network of droplets inside the matrix. In Sec. IV
we summarize the results obtained in this paper and discuss
their limit of validity, as well as the open problems. We also
discuss the effect of the finite size of the droplets on their
thermodynamics and explain the differences between the val-
ues of the droplet parameters calculated within our theory
and those extracted from EPR and magnetotransport experi-
ments. We finally explain the dependence of the critical tem-
perature for the onset of short-range ferromagnetic order
within the droplets on the alloy composition. In Appendixes
A and B, for the sake of self-containedness, we briefly recall
those aspects of our theoretical model11 which are necessary
to understand our interpretation of the experiments.

II. ELECTRON PARAMAGNETIC RESONANCE:
EXPERIMENTAL RESULTS AND DISCUSSION

Electron paramagnetic resonance �EPR� is a powerful
method to study the local spin arrangement in magnetic al-
loys, and is apt to detect the existence of droplets discussed
above �see also Appendixes A and B�. The complex mag-
netic properties of diluted a-GdxSi1−x alloys were analyzed
within ESR and Quantum Design superconducting quantum
interference device �SQUID� dc magnetometry, as their com-
position x varied in the range 0.002�x�0.1.15 It was shown
that Gd occurred in the trivalent state Gd3+ �4f7, S=7/2, L
=0�, with a spectroscopic splitting factor close to g=2. The
linewidth, determined as the field distance between peaks of
the derivative of the absorption curve, was independent of
the Gd concentration within the experimental accuracy and
was �Bpp=800±50 G, at not too low temperature �T
�30 K� and at the frequency �=9.48 GHz. Based on this
result, the conclusion was drawn that the majority of Gd
atoms enter into the composition of stable GdSi2 complexes.
The independence of the linewidth on the concentration of
Gd ions is rather surprising, because, for example, the
dipole-dipole broadening alone comprises more than 1.5 kG
at an atomic concentration of about 10%; however, this cir-
cumstance was not explained at all in Ref. 15. The complete
absence of any evidence for the fine structure, in spite of the
definitely noncubic structure of GdSi2 complexes and the
high spin S�1/2, is also not clear.

Hereafter, the magnetic properties of a-GdxSi1−x alloys
are studied by means of EPR. The measurements were per-

formed on an a-Gd0.14Si0.86 film 1.3 �m thick, fabricated by
electron beam coevaporation onto a crystalline NaCl
substrate.17 The film area was about 10 mm2. To perform the
experiments, after dissolving the NaCl substrate, the film
was fixed on a quartz holder installed in the goniometer of
the resonator. The accuracy of adjusting the angle between
the film plane and the magnetic-field direction was no worse
than 0.5°. The spectra were recorded on a Bruker ESP-300
EPR spectrometer equipped with a helium-flow cryostat �Ox-
ford Instruments�. The experiments were carried out for
4 K�T�300 K at the frequency �=9.46 GHz, both for a
magnetic field parallel and perpendicular to the film plane.
Conventionally, the first derivative of the absorption signal
was recorded.

The absorption spectrum, observed for either orienta-
tion of the magnetic field, consisted of a single line. At
T	30 K, the line shape was fairly Lorentzian. As T was
lowered below 30 K, the line shape changed, becoming close
to a Gaussian at T�20 K. The linewidth �Bpp �see Fig. 1�
depended rather weakly on the temperature, in the region T
	50 K, and was about 800 G, as in Ref. 15. However, at
variance with Ref. 15, a minimum in the linewidth, about
100 G deep, was found in the data analyzed in this work, in
the temperature range 120–180 K. As T was decreased be-
low 50 K, the line broadened rapidly, and its observation
became impossible at T�5 K. The resonance field for both
orientations �see Fig. 2�, at T	100 K, decreased almost
linearly with increasing T. The field strength for the perpen-
dicular orientation was higher over the entire tempera-
ture range under investigation. This separation increased

FIG. 1. Temperature dependence of the EPR linewidth �Bpp at
the frequency �=9.46 GHz when the magnetic field is perpendicu-
lar �black squares� and parallel �open circles� to the film plane. The
solid curves are obtained by Eqs. �28� and �29� for the optimal
values of the fitting parameters �see text�.
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with decreasing T, and reached a value Br�−Br� �300 G at
T�10–15 K. At T�300 K, the orientation-averaged field
strength corresponded to a g factor close to 2. The mag-
netic susceptibility, obtained by a double integration of
the spectra, satisfactorily obeyed the Curie-Weiss law

=C / �T−�� at T	100 K, with a small negative Curie tem-
perature ��−30 K. The absolute calibration of the sus-
ceptibility was performed in this region, where we took
C=S�S+1�gGd

2 �B
2nGd�3kB�−1. Here, S=7/2, gGd=2, and nGd

=7�1021 cm−3 are the spin, the g factor, and the concentra-
tion of Gd ions, respectively; �B is the Bohr magneton and
kB is the Boltzmann constant. In Fig. 3, the susceptibility is
expressed in terms of the magnetic moment per Gd ion in the
resonance field. As T was reduced below 100 K, � decreased
in absolute value, and even became positive ��5 K�. The
susceptibility itself reached a maximum at T�12 K, and
then sharply dropped. As it is known,18 the sign of the
Ruderman-Kittel-Kasuya-Yosida �RKKY� interaction de-
pends on the electron concentration and on the distance be-
tween Gd ions. For inhomogeneous systems, the change in
the sign of � can be due to a change in the relative contribu-
tion to the susceptibility from the regions with ferromagnetic
and antiferromagnetic interactions.

There are several sources of the EPR signal in the system
under study: Gd ions residing in the matrix and in the drop-
lets with higher electron concentration, as well as electrons.

The Gd ions experience a noncubic crystal field that must
lead to the fine splitting of the line since S=7/2�1/2. The
absence of signals of various types, the absence of the fine
structure, and the Lorentzian line shape, indicate that the
double-bottleneck �DBN� conditions are fulfilled.19 In this
case, first, the exchange interaction of Gd ions with electrons
leads to the disappearance of the fine structure and of the
separate signals from these ions and electrons inside each
subsystem �droplets and matrix�, and second, the interaction
between subsystems is sufficiently strong to promote the for-
mation of one common EPR signal. For the realization of the
first condition it is necessary that the inequality

��T es
−1 + T se

−1� + i�
e�s + 
s�e��� ��T eL
−1 − T sL

−1� + i��e − �s��

�1�

is fulfilled in each subsystem.19 Here

T es
−1 �

8�x

3�
S�S + 1��J2, �2�

T se
−1 �

4�

�
��J�2kBT , �3�

are the relaxation rate of electrons on ions �Overhauser rela-
tion�, and the Korringa relaxation rate of ions on electrons,
respectively; T eL

−1 and T sL
−1 are the spin-lattice relaxation rates

of electrons and ions; 
e and 
s are the spin susceptibilities
of electrons and ions, per lattice site; �e, �s, ge, and gs are
the resonance frequencies and g factors of electrons and ions;
x is the relative atomic concentration of magnetic ions, � is
the electron density of states �DOS� at the Fermi level per
lattice site, J is the exchange-coupling constant between

FIG. 2. Temperature dependence of the resonance-field strength
Br at the frequency �=9.46 GHz, when the magnetic field is per-
pendicular �black squares� and parallel �open circles� to the film
plane. The solid curves are obtained by Eq. �34� with the parameters
B0=3470 G, �=0.95, or �=−0.7 for the magnetic field perpendicu-
lar or parallel to the film plane, respectively, and �=−0.3 G/K. The
solid straight line corresponds to �=0.

FIG. 3. Temperature dependence of the magnetic moment per
Gd ion in the resonance field MGd, for two orientations of the mag-
netic field with respect to the film plane. The symbols for the ex-
perimental points have the same meaning as in Figs. 1 and 2. The
solid straight lines correspond to the Curie-Weiss law MGd

−1 �T−�.
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itinerant electrons and Gd ions �see Appendixes A and B for
detail�;

 =
2J

gsge�B
2 �4�

is the molecular field constant. Then, for each subsystem, a
single line is observed at a complex frequency

��

s�s + 
e�e


s + 
e
, �5�

where

�s � �s
0 + i	T sL

−1 +
M2

3T se
−1 + i
e�s

0
 , �6�

�e � �e
0 + iTeL

−1. �7�

�s
0 and �e

0 are the bare resonance frequencies of isolated Gd
spins and electrons, disregarding their interactions with the
lattice and with each other; M2 is the second spectral mo-
ment of magnetic ions due to nonisotropic spin-spin interac-
tions, fine and hyperfine structures, and other sources of in-
homogeneous broadening; a necessary condition for the
applicability of Eq. �6� is

�3T se
−1 + i
e�s

0�� �M2. �8�

Let us estimate the quantities appearing in Eq. �1�, and
find a temperature range in which the bottleneck regime is
possible. As we point out in Appendix A, the trivalent Gd3+

ion acts as a one-electron donor in the a-Si matrix. Assuming
a Si concentration nSi�5�1022 cm−3 �Refs. 14 and 17� and
for a relative Gd concentration, e.g., x=0.14, one can esti-
mate the DOS within the simplest free-electron model, kB�
�10−5 K−1. The characteristic value of the exchange integral
for RE elements is �J� /kB�103 K. The electron and ion sus-
ceptibilities can be estimated by means of the well-known
expressions


e � 1
2ge

2�B
2� , �9�


s �
xS�S + 1�gs

2�B
2

3kBT
. �10�

For ge�gs�2 and a resonance field Br�3.4 kG, one may
set �e��s�2��1010 s−1. Now, by means of Eqs. �2�–�4�,
�9�, and �10� we obtain the estimates T se

−1�108T s−1, T es
−1

�3�1013 s−1, �
e�s��5�108 s−1, and �
s�e�
�1014T−1 s−1. In the last expressions T must be expressed in
K. It is clear that at T�105 K, i.e., in the entire temperature
range under investigation, T se

−1�T es
−1, 
e�
s, and �
e�s�

� �
s�e�. Besides, if T is not below 5 K, the inequalities

T se
−1� �
e�s� , �11�

T es
−1� �
s�e� �12�

hold, and hence T es
−1+T se

−1� ��
s�e+
e�s��. The simulta-
neous fulfillment of this inequality and of Eq. �1� sets the

conditions for the so-called relaxation-dominated bottleneck
�RBN�. Let us assume that the inequality

T eL
−1� T sL

−1 �13�

for spin-lattice relaxation rates is fulfilled. Then, in view of
Eqs. �8� and �11�, and of the condition 
e�
s, by means of
Eqs. �6� and �7�, Eq. �5� yields for the resonance frequency
the expression

�� �s
0	1 +

M2
e

9T se
−2 
 + i	T sL

−1 +
M2

3T se
−1 +


e


s
T eL

−1
 , �14�

the real and imaginary part determining, respectively, the line
position and width. The effective relaxation rate correspond-
ing to the experimentally measured linewidth �Bpp�800 G
is20 T eff

−1 ��3g�B�Bpp / �2���1010 s−1. Each term in the
imaginary part of Eq. �14� cannot exceed this value. For T eL

−1

this restriction reads T eL
−1�1015T−1 s−1. Thus, in the tempera-

ture range under investigation, the rate T eL
−1 can exceed both

M2 / �3T se
−1� and TsL

−1, and a single restriction to its value can
be imposed by the requirement �1�. In view of the estimates
carried out so far, each subsystem will be in the RBN regime
if

T eL
−1� T es

−1 � 3� 1013 s−1. �15�

DBN conditions are fulfilled for subsystems, each of
which is in the RBN regime, if an additional inequality is
satisfied,19

T eM
−1 T De

−1 + T eD
−1T Me

−1

TeM
−1 + TeD

−1 � ��M − �D� , �16�

where, henceforth, the subscripts M ,D refer to the matrix
and the droplets, that represent the two subsystems for Gd
ions. When this condition holds, the complex frequency of
the common resonance is determined by an expression simi-
lar to Eq. �5�,

�* �

M�M + 
D�D


M + 
D
. �17�

The electron DOS in the droplets �D is higher than the
DOS in the matrix �M. The ratio �D /�M �3.6 is obtained in
Appendix B for a reasonable value of the parameters, con-
sidering that the volume fraction occupied by the droplets is
approximately f �0.1 and the ratio of the total concentra-
tions of Gd atoms in the droplets and in the matrix is
xD /xM � f� / �1− f���0.5, where ��3.34 is the enhance-
ment factor measuring the ratio between the concentration of
Gd ions in the droplets and their nominal concentration �see
Appendixes A and B�. These values will also be used below
for various estimates. The left-hand side of Eq. �16�, once the
relations among the parameters � and x is taken into account,
reduces to �5T Me

−1 . In view of Eqs. �8� and �11�, by means of
Eq. �5�, it is easy to obtain ��M −�D��5�10−6TT eL

−1 and the
inequality �16� becomes T eL

−1�1014 s−1. The last requirement
is even weaker than the RBN condition �15�.
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Taking the real and imaginary parts of Eq. �17�, we ob-
tain, with the help of Eq. �14�, the expressions for the line
position and width,

�r = Re �* � �s
0�1 +




M + 
D
 �1 − f�M2M
e,M
M

9T Me
−2

+
fM2D
e,D
D

9T De
−2 �� , �18�

�� = Im �* � T sL
−1 +

�1 − f�
e,M + f
e,D


M + 
D
T eL

−1

+
1


M + 
D
	M2M
M

3T Me
−1 +

M2D
D

3T De
−1 
 . �19�

By virtue of Eqs. �8� and �11�, the line shift determined by
Eq. �18� turns out to be much smaller than the Knight shift19

���r /�s
0�� �
e����J��10−2, and according to Eq. �3�, the

shift rapidly decreases with increasing T. In the second term
of Eq. �19�, the numerator does not depend on T and the
denominator involves the total susceptibility 
exp=
M +
D,
which is inversely proportional to T to a rather good accu-
racy �see Fig. 3�. Hence, similar to the Korringa relaxation,
this term must make a contribution proportional to T to the
linewidth. The form of the temperature dependence and, cor-
respondingly, the contribution of the third term to the line
width are determined by the ratio of the second moments and
susceptibilities of the subsystems and can qualitatively differ
in different temperature ranges.

Since the electron concentration is relatively small, the
interaction of Gd ions in the matrix will be considered weak
over the entire temperature range; therefore for these ions


M �
xMS�S + 1�gs

2�B
2

3kBT
. �20�

In agreement with the model developed in Ref. 11 �see
Appendix B for detail�, a local ferromagnetic transition takes
place in the droplets at T=TD, given by Eq. �B2�. Therefore
for T�TD in the high-temperature paramagnetic phase, we
assume that the Gd susceptibility in the droplets is


D,HT �
xDS�S + 1�gs

2�B
2

3kB�T − TD�
. �21�

In the low-temperature region T�TD, the droplets con-
taining �D Gd ions will be considered as superparamagnetic
particles with spin �DS. The interaction between them, as
well as between separate Gd ions in the matrix, is realized
through electrons with DOS �M; therefore, similar to Eq.
�20�, their susceptibility can be estimated as


D,LT �
xDS��DS + 1�gs

2�B
2

3kBT
. �22�

The distinction of the subsystems in the paramagnetic re-
gion at T�TD is mainly determined by the difference in the
electron DOS, which does not directly affect M2; therefore in
this temperature range we take

M2,M � M2,D � M2. �23�

As T approaches TD, the relative contribution to the line-
width from the droplets increases in agreement with Eqs.
�20� and �21�. Because of the relations �3� and �23�, and
since �D��M, the contribution to the linewidth from the
third term in Eq. �19� decreases. Let us estimate the ratio of
the second moments for T�TD, assuming that the main con-
tribution to the M2 is due to a uniaxial anisotropy of the
crystal field21

H1 = − D�3 cos2 � − 1�Sz
2, �24�

where � is the angle between the direction of the magnetic
field and the local z axis of a crystallite and Sz is the spin
component. Under the assumption of a random distribution
of the local z axes, the value of the second moment of Gd
ions situated in the matrix, in the paramagnetic phase, is �see,
e.g., Ref. 22�

�2M2,M �
8D2

15
S�S + 1� −

3

4
� . �25�

The interaction of the �D ferromagnetically ordered spins
in the droplet with the crystal field of Eq. �24� may be cast in
the form

HD = − �
j=1

�D

D�3 cos2 � j − 1�Sz
2 = −

1

�D
2 �

j=1

�D

D�3 cos2 � j − 1�

���DSz�2 � − DKSK,z
2 . �26�

The mean square of DK, mediated over the sample, is equal
to

�DK
2 � =� 1

�D
2 �

j=1

�D

D�3 cos2 � j − 1��2� =
4D2

5�D
3 . �27�

Then, we may apply Eq. �25� to estimate M2,D. Assuming
�D�1 and using Eqs. �26� and �27�, the decision ratio in the
temperature range under consideration is M2,D /M2,M ��D

−1.
Relying on Eqs. �3�, �9�, and �19�–�23�, we obtain

�Bpp,HT = �BsL +
bHT


exp
+

P
T
	1 +

xD

xM

T

T − TD

−1

+ A−2	1 +
xM

xD

T − TD

T

−1� + �B0, �28�

in the high-temperature regime �T�TD�, and

�Bpp,LT = �BsL +
bLT


exp
+

PQ
T

+ �B0, �29�

in the low-temperature regime �T�TD�. Here, A��D /�M is
the ratio between the DOS at the Fermi level in the droplets
and in the matrix �see Appendix B�,

�BsL =
2
�3

�

g�BTsL
�30�

is the broadening due to spin-lattice relaxation,

bHT�LT� =
��Bge

2�M�1 + f�A − 1��
�3gTeL

, �31�
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P =
�2M2

6��3g�BkB��MJ�2
, �32�

Q = 	1 +
xD

xM

S

S + 1

	1 +

xD

xM

�DS

S + 1

−1

, �33�

and �B0 describes the line broadening due to all other
mechanisms that were neglected in our model.

The solid lines in Fig. 1 correspond to Eqs. �28� and �29�
with �BsL+�B0=607 G, bHT=8�10−5 �B, bLT=12
�10−5 �B, P=56 562 K G, TD=137 K, Q=0.134, xD /xM
=0.5, A=3.6. The last two parameters were estimated in
Refs. 11, 12, and 14 �see also Appendix B�, and the other
parameters were selected by a least-squares fit. It is evident
that the experimental curves are rather well described by
Eqs. �28� and �29�: the deviation does not exceed the scatter
of the experimental points in the entire temperature range
except for the narrow region 120 K�T�130 K �see Sec. IV
for a discussion�. The g factor in Eqs. �30�–�32� is deter-
mined from the value of the resonance field disregarding its
shift due to the demagnetization effect associated with the
shape of the sample. As will be shown below, it can be as-
sumed that g=2 with an accuracy not worse than 2–3 %, and
�MJ�−2.5�10−2 can be estimated from the line shift ex-
trapolated for T→0. As previously, we take kB�M
�10−5 K−1. The g factor for electrons usually differs only
slightly from ge=2 �the accuracy of this assertion will be
estimated after the evaluation of T eL

−1�. Now, Eqs. �30�–�33�
lead to the estimates: T sL

−1�1010 s−1, T eL
−1�1012 s−1,

�2M2 /kB
2 �0.16 K2, and �D�24.

It is evident that the assumptions �13� and �15� for the
relaxation rates are well fulfilled. Moreover, the inequality
�8� is fulfilled rather well at T�10–20 K; hence, the system
finds itself in the RBN, and Eqs. �5� and �17�–�19� are fully
justified. From electrical conductivity data12 it is possible to
estimate the typical electron relaxation rate for momentum,
T R

−1�1015–1016 s−1. The deviation of the electron g factor
from g=2 is �ge���T R /T eL, where ��0.1.23,24 It follows
that �ge�10−2, and this inequality assesses a precision for
the proximity of the electron g factor to 2.

For a specified concentration of Gd ions, the second mo-
ment, conditioned by the dipole-dipole interaction, can be
estimated as �2M2,dd /kB

2 �0.024 K2, which is almost an or-
der of magnitude smaller than the estimate that was obtained
here for the total M2. This circumstance explains the inde-
pendence of the linewidth on the Gd concentration up to an
atomic concentration of 10–20 %, and allows for the infer-
ence that the single-ion contribution to the resulting value of
M2 dominates. In other words, the main contribution to M2 is
not associated with the interaction of Gd ions with each other
but is due either to their interaction with the nearest local
environment, e.g., crystal field, or to hyperfine interaction.
The hyperfine coupling constants for 155Gd and 157Gd are
sufficiently small25,26 and yield a splitting �3–5 G, that is
much less than the characteristic linewidth. Moreover, the
total relative natural concentration of the two isotopes is less
than 30%. Thus, it is most likely that the second moment is
conditioned by the crystal field of the nearest neighbors only.

Under the assumption of a uniaxial anisotropy, Eq. �24�, the
parameter D /kB�0.14 K can be readily estimated by means
of Eq. �25� �for S=7/2, Eq. �25� gives �2M2�8D2�.

The change in the resonance field with decreasing T can
be related, among other things, to the increase of the sample
magnetization M.27 It depends on the shape of the sample
and on the arrangement of the ions—the sources of the EPR
signal—in the crystal-lattice. For ions located at the crystal-
lattice sites of a cubic symmetry, and also in the case of their
isotropic random arrangement, the additional shift of the
resonance field for the observation of EPR in a thin film
equals �Br�=4�M for the magnetic field perpendicular to
the film plane, and �Br� =−2�M for the magnetic field par-
allel to the film plane. Accordingly, and taking into account
the linear behavior, which is clearly seen at high tempera-
tures, an attempt was made to describe the temperature de-
pendence of the resonance field by the curve

Br = B0 + ��4�M� + �T . �34�

A comment on the meaning of the last term in the right-hand
side of Eq. �34� is postponed to the end of this section.

The solid lines in Fig. 2 are obtained by Eq. �34�, with
B0=3470 G, �=0.95 or −0.7 for the magnetic field perpen-
dicular or parallel to the film plane, respectively, and
�=−0.3 G/K. The magnetization M=nGdMGd was recalcu-
lated directly from the susceptibility data �see Fig. 3�. It is
evident that the experimental curves are rather well described
by Eq. �34�. A significant difference of the value of � from
−1/2 for the parallel orientation of the field most likely
points to the occurrence of short-range order of a noncubic
symmetry in the arrangement of Gd ions. This may indicate
that the formation of droplets and the ordering of Gd ions
inside these droplets are of a chemical nature. The straight
line in Fig. 2 corresponds to �=0, and characterizes the value
of the resonance field without its shift due to the magnetiza-
tion of the sample. This determination of the resonance field
yields a more accurate estimate for the g factor. The value B0
corresponds to the resonance field that would be observed at
T→0 K. The g factor in this case is g0=1.95�2. As was
already mentioned, the line shape approaches a Gaussian as
T decreases below 20 K. This fact points to the slowing
down of exchange fluctuations and to the escape of the sys-
tem from the bottleneck regime. The slowing down of ex-
change fluctuations is most likely related to the fact that the
system is approaching a phase transition to a spin-glass
state.2–4 In our work, the occurrence of a phase transition
is indicated by both the maximum of the susceptibility
�Tm�12 K� and the disappearance of the EPR signal at a
lower temperature �Tf �5 K�. Under these conditions, elec-
trons rather rapidly relax to the lattice and their magnetiza-
tion has time to follow the instantaneous value of the internal
field.19 This leads to a shift of the resonance field �Knight
shift�, whose value is determined by the well-known equa-
tion �g /g=
e= �ge /g��J. To an accuracy of a few tenths
of a percent, the g factor for noninteracting Gd3+ magnetic
ions does not differ from g=2.25 Hence, using the experi-
mental value �g=g0−2=−0.05, one can easily obtain the
estimate �MJ�−2.5�10−2 used above and, assuming that
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�MkB�10−5 K−1, the value of the exchange constant J /kB
�−2.5�103 K.

We point out that the strongly linear dependence of the
resonance field on T, as given by Eq. �34�, is not completely
clear. According to our model, in the strong bottleneck re-
gime the line shift �18� should fall off as T−2, i.e., faster than
observed in correspondence of the linear variation of the
resonance field. Such a T−2 variation can be easily obtained
by taking the real part of Eq. �14�. One possible reason for
the disagreement is, in our opinion, the weakening of the
inequality �8� in some temperature range. It is known that the
ratio of the various terms in this inequality defines the nar-
rowing of the linewidth due to exchange. In view of Eq. �11�,
the square of the narrowing factor defines in Eq. �14� the part
of the Knight shift that is due to the displacement of the
resonance field in the bottleneck regime. If the inequality �8�
is not strictly fulfilled, the exchange narrowing of the line
does not occur. Hence, the displacement of the resonance
field should be of the order of the Knight shift, and this
essentially implies a slower reduction of the line shift in the
temperature range considered here. We thus suggest that the
almost-linear dependence of the resonance field on the tem-
perature is somehow accidental, and is possibly connected
with a “gradual” inclusion of the Knight shift as the tempera-
ture is reduced.

III. MAGNETOTRANSPORT: EXPERIMENTAL RESULTS
AND DISCUSSION

While the x-ray studies of the local structure of
a-�Gd,Y�xSi1−x showed the absence of fluctuations at mac-
roscopic scales,28 detailed conductivity and tunneling
measurements5 have clearly demonstrated the coexistence of
metallic and semiconducting domains, identifying the perco-
lative nature of electron transport and the strongly inhomo-
geneous character of these alloys at nanoscale distances.

In this section, we consider some interesting results of
magnetotransport measurements that have been carried out in
the temperature range 5–300 K, in magnetic fields up to 4 T,
using Van der Pauw and the standard Hall bar technique, and
discuss their correspondence to the predictions of our theory.
We use the samples prepared in F. Hellman’s laboratory by a
technique described previously.17 Films of a-�Gd,Y�xSi1−x,
100–500 nm thick, were grown by e-beam coevaporation on
Si/SiN substrates.

We devote our analysis to the high-temperature regime,
neglecting all phenomena related to the spin-glass and metal-
insulator transitions, and assume that electron transport
occurs through the conducting network, which is formed
by metallic nanoclusters with enhanced Gd concentra-
tion enveloped by higher-density electron clouds �droplets�,
connected by semiconducting bridges with low Gd con-
centration. Experiments6 showed that the electrical conduc-
tivity ��T� increases almost linearly with the temperature
T in a-YxSi1−x at T�2–5 K and in a-GdxSi1−x at
T�50–70 K. Within the framework of our model, we ap-
proximate ��T� in the paramagnetic phase by the expression
��T�=�p�T���0+�itin,p�T�, where the “residual” conductiv-
ity �0 is almost independent of T and will not be discussed

here. It may be associated, e.g., with the simple shunting of a
principal conducting path by indirect hopping of electrons
through the matrix, or, in a more complex scenario, with the
indirect tunneling of electrons between metallic droplets
across semiconducting bridges. The term �itin,p�T� strongly
depends on T and can be expressed in the standard form
�itin,p�T�= �e�nitin,p�T��p�T�, where nitin,p and �p�T� are the
itinerant electron concentration and mobility in the paramag-
netic state, respectively.

To clarify the role of nitin,p in the temperature dependence
of the electrical conductivity, Hall-effect measurements were
carried out. In Fig. 4, we present the experimentally deter-
mined nitin�T��xitin,p for nonmagnetic a-YxSi1−x, which lin-
early increases with T, in the whole temperature range under
investigation.11,14 This implies that the dependence of �p�T�
on T is weak enough, as resulting from the scattering of
itinerant electrons on electrically neutral centers.11,12,14 The
temperature dependence of �itin,p is obtained by taking into
account the residual conductivity �0, which does not contrib-
ute to Hall effect. The data show that �itin,p�T� /�itin,p�0�
�nitin�T� /nitin�0� and confirm that the variation of �itin,p�T� is
produced by nitin�T�, which increases linearly with T.

For the a-GdxSi1−x magnetic alloys the increase of �p�T�
with T is strongly nonlinear for T below �50–70 K, and
becomes quasilinear only above this temperature �see Fig.
5�a��; we attribute this nonlinearity to complex magnetic
transformations in the system. Consistently with the theory
recalled in Appendixes A and B, short-range ferromagnetic
order occurs in the form of ferromagnetic nanoscale defects
enveloped by magnetically polarized higher-density electron
clouds �droplets� at T�TD �where TD is the temperature for
the onset of local magnetic order, see Appendix B�, in the

FIG. 4. Temperature dependence of the itinerant electron con-
ductivity �solid line� and concentration �open circles� for nonmag-
netic Y0.17Si0.83.
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alloys containing magnetic Gd ions. We write now ��T�
=� f�T���0+�itin,f�T�, where the subscript f denotes
here the phase with short-range ferromagnetic order in
the droplets, and is adopted for the sake of clarity. Two
factors modify the temperature dependence of � f�T�, as com-
pared to that of �p�T�. First, the exchange scattering of elec-
trons on the noncorrelated magnetic moments of the super-
paramagnetic droplets appears and shifts the electron
mobility edge upwards, �m→�m+��m, where ��m /�
���T����J�D�Sz��2 /U2, � is the ratio between the number
of droplets and the number of Gd ions, and U is the potential
which couples electrons to the local disorder component �see
Appendixes A and B for detail�. Thus the concentration of
itinerant electrons nitin,f�T� is decreased for T�TD.

Second, a dependence of the itinerant electron mobility
� f�T� on T appears, which is qualitatively described as a
superposition of the potential and exchange mechanisms for
electron scattering on the disordered ferromagnetic droplets.
Assuming that the characteristic droplet size is small, as
compared to the electron mean free path, we estimate
� f�T� /�p�T��1−��T�.

The parameter ��T� is zero for T�TD and may vary in
the range 0.01–0.1 for T�TD, if �JS�2 / �U2��0.01–0.1,
�D�10–20, ��0.01–0.03. From the data in Figs.
5�b�–5�d�, we conclude that the variation of the itinerant
electron concentration plays the major role in our system,
and the variation of the mobility can be neglected. In any
case, the appearance of short-range ferromagnetic order ob-
viously enhances the tendency towards the metal-insulator
transition.

Let us now discuss the variation of the conductivity
��B� in our system as a function of the average magnetic
induction B. From Fig. 6, we see that at T�50–70 K there
are two regimes of magnetic fields characterized by a differ-
ent behavior of ��B�. At B�BC, where BC is a character-
istic value, the conductivity only slightly depends on B. At
B�BC an exponential dependence is observed. Moreover,
BC increases with increasing temperature. Notice that BC is
determined by the intersection of the local fit of the experi-
mental ln���B� /��B=0��, as a function of B, with the line
ln���B� /��B=0��=1 at low temperatures. For high tempera-
tures we use BC as a scaling parameter.

FIG. 5. �Color online� �a� Con-
ductivity vs temperature depen-
dence at zero-magnetic induction
for GdxSi1−x samples. Conductiv-
ity vs inverse-temperature depen-
dence at various magnetic induc-
tions for �b� Gd0.135Si0.865; �c�
Gd0.125Si0.875; �d� Gd0.115Si0.885.
The activation energy as a func-
tion of the magnetic induction is
shown in the insets.
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Within the framework of our model of ferromagnetic
droplets, we suppose that BC corresponds to the field that
aligns the magnetic moments of different droplets. At B
�BC, the magnetic energy of an isolated droplet
�D�Sz��BgGdB is smaller than the thermal energy kBT, and
therefore the magnetic moments of different droplets are dis-
ordered. This leads to an additional fluctuation potential in
the system and raises the mobility edge, as discussed above.
For B�BC the magnetic moments of different droplets are
aligned and this scattering channel is eliminated. This effect
reduces the mobility edge and increases the itinerant electron
concentration, leading to an increase of the conductivity.

The value of the magnetic moment of the droplet ob-
tained from the low-temperature part of the curve BC�T�

allows us to roughly estimate the average number of Gd
atoms in a droplet �D from the condition �D�Sz��BgGdBC

�kBT. The experimentally determined function �D�Sz� /S
=kBT / �S�BgGdBC� is shown in Fig. 7. At low T, when the
saturation regime �Sz��S is reached, we obtain �D�10,
which is in a range consistent with our theoretical predictions
�see Appendix B�, but is smaller than the value �D�24 ob-
tained from EPR measurements �see Sec. II�. Note that all
the experimental values of �D are close for different samples.

It should be noted that the dependence ��B� has a univer-
sal form for different temperatures. The experimental curves
in Fig. 6, where the data for ��B� /��B=0� are plotted as
functions of B /BC for different temperatures, can be approxi-
mated at B�BC by the simple expression ��B� /��B=0�

FIG. 6. �Color online� �a� Conductivity vs magnetic-induction dependence for Gd0.125Si0.875 at different temperatures; �b� the same
dependence when the conductivity is rescaled by the zero-field value; �c� the same dependence when the magnetic induction is rescaled by
the characteristic value BC �see text� to put in evidence the data collapse.
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�exp�B /BC−1�. This gives for the concentration of itinerant
electrons at B�BC,

nitin�B�
nitin�B = 0�

� exp	 B

BC

 . �35�

Our explanation of this result is the following. We suppose
that the Zeeman splitting in the matrix leads to a downward
�upward� shift of the bottom of the itinerant electron spin-up
�spin-down� subband with respect to the Fermi level. At high
B the full-splitting regime sets in, when the spin-down sub-
band remains empty, the local Fermi energy measured from
the bottom of the spin-up subband rises linearly with B.
Within this assumption, the electron activation energy
EA�B ,T� may be easily obtained from the dependence of
��B ,T�. The slope of MM ��EA /�B is proportional to the
Zeeman splitting in the matrix and allows us to estimate the
effective magnetization of itinerant electrons in the matrix.
We analyzed the functions MM�B ,T� for various alloys in a
wide range of values for B and T and concluded that, for a
fixed alloy composition, they coincide at B�BC, when the

estimate �35� may be used. The values of MM�B ,T� vary in
the range �2–6��B for samples with different composition.

Thus our experiments have shown that a strong magnetic
induction B suppresses the tendency towards the metal-
insulator transition. This fact is naturally explained within
the model developed in Refs. 11, 12, and 14, if we take into
account the suppression of the electron-exchange scattering
on the magnetic droplets, provided by their coherent orien-
tation in the magnetic field. An exponential increase of the
itinerant electron concentration nitin�B� with B is obviously
caused by the spin-up subband lowering due to the Zeeman
splitting at high field.

The interpretation exposed above for magnetotransport
experimental results seems to be very rough, due to the
strongly inhomogeneous spin-density distribution in the sys-
tem, which was not taken into account. While the average
�over the sample� magnetization in a-�Gd,Y�xSi1−x alloys is
very small and we estimate B�H, where H is the external
magnetic field, the local magnetization inside the percolation
network containing ferromagnetic droplets strongly differs
from that in the matrix. As a result, the “internal” magnetic
induction inside the conducting regions �Bin� may signifi-
cantly exceed the average magnetic induction B.

In the following, we discuss in more detail the magnetic-
field dependences of transverse �Rxx� and Hall �Rxy� magne-
toresistances in our system. However, before analyzing the
experimental results, an important remark is mandatory.

We assume that the conductivity in a-�Gd,Y�xSi1−x alloys
is primarily associated with electrons moving in wide bands
formed by �s-p� hybridized Si orbitals. Each Gd ion enters
into the matrix of a-Si in the form of a trivalent ion that
closes the broken bonds between two neighboring Si ions,
giving two electrons to saturate these bonds.15 Owing to such
a specificity of the chemical bond, the “anomalous” contri-
bution to magnetotransport, due to the spin-orbit interaction
between itinerant �s-p� states of Si and localized f states of
Gd is likely to be not significant in a-�Gd,Y�xSi1−x.

For these reasons, we take into account only the “normal”
component of Rxy, and assume that the components �Rxx ,Rxy�
are related to the itinerant electron concentration and the “in-
ternal” magnetic induction inside the current-flowing regions
as 1/Rxx�nitin, RHall=Rxy /Bin�1/nitin. Excluding nitin from
these equations, we can plot the dependence of Bin
�Rxy /Rxx on the external field H�B in arbitrary units �see
Fig. 8�. It is seen that the dependence Bin�H� is strongly
nonlinear as a whole. However, in the region H�20 kG it is
almost linear and contains a constant contribution that, as we
believe, is attributed to the saturation magnetization Ms of
the sample. Taking into account the saturation of the magne-
tization in strong fields, we normalize the slope of the depen-
dence of Bin�H� for H�20 kG to unity and thereby deter-
mine the absolute value of Bin. This method allows us to
estimate the magnetization of the material, and also serves as
a Hall magnetometer, sensitive to the local magnetization of
the material in the region where the current flows.

From the approximate relation Bin�H�20 kG��H
+4�Ms

exp, we can roughly estimate the experimental value of
the saturation magnetization Ms

exp�2 kG. As it can be easily
shown, this value significantly exceeds the theoretical limit

FIG. 7. Mean number of Gd ions in a droplet evaluated as a
fitting parameter for the Bin�B� dependence �shown in Fig. 8�
through Eq. �37�, for Gd0.145Si0.855 �filled triangles�; Gd0.16Si0.84

�filled circles�. The open symbols show the mean spin of a droplet
in units of S, �D�Sz� /S, experimentally determined as �D�Sz� /S
=kBT / �S�BgGdBC� at low temperatures �when �Sz� /S�1� for
Gd0.115Si0.885 �diamonds�; Gd0.125Si0.875 �squares�; Gd0.135Si0.865

�stars�; Gd0.14Si0.86 �pentagons�; Gd0.145Si0.855 �triangles�.
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Ms
theo, obtained under the naive assumption of a uniform dis-

tribution of Gd ions over the sample volume, Ms
theo

=nGd�BSgGd�450 G. Thus, the simplest interpretation of
the experimental results falls down, and a finer analysis of
the situation is necessary.

Let us recall that electron transport in our system is of
percolative nature and occurs trough the network, which is
formed by droplets enveloping structural defects with an en-
hanced concentration of Gd ions. Thus the average magnetic
induction Bin for the current that flows along the network
may sizably differ from that in the matrix. For a thin-film
sample, in the presence of an external magnetic field perpen-
dicular to the film plane, we have

Bin = Hin + �4� − �c�Mc, �36�

where Hin=H− �8� /3�fMc is the average magnetic field in-
side the network, f is the volume fraction occupied by the
droplets, �c is the demagnetization coefficient, Mc
=McsL��D�BSgGdHin /kBT� is the average magnetization in-
side the network, Mcs�nGd

net�BSgGd is the saturation magne-
tization of the droplets, nGd

net is the average concentration of
Gd ions in the network, L�y�=coth�y�−1/y is the Langevin
function, and the semiclassic approximation is justified by
the large value of the spin of the superparamagnetic particles.
For randomly oriented droplets, which are not too aniso-
tropic in shape, the approximation �c�4� /3 is reasonable.
Taking into account that f�1 in all a-GdxSi1−x samples with
0.1�x�0.2, we obtain Hin�H, and Eq. �36� can be recast
in the form

Bin � H +
8�

3
McsL	�D�BSgGdH

kBT

 . �37�

The solid lines in Fig. 8 are plotted according to Eq. �37�,
with �D and Mcs used as fitting parameters. It is seen that
the experimental dependence Bin�H� is well approximated by
the model of the current that flows through ferromagnetic
droplets; the value Mcs�2.8 kG is obtained for the satura-
tion magnetization. Taking into account the range of possible
values of the demagnetization factor �c=0–2�, we estimate
the enhancement of the local density of Gd ions, �
=nGd

net /nGd�3–6, which agrees with the value predicted by
our theory �see Ref. 11 and Appendix B�.

The parameter �D, obtained by using Eq. �37� to fit the
experimental data, is compatible with that estimated from the
temperature dependence of BC �see Fig. 7�. Notice that the
saturation magnetization is approximately the same in
samples with different compositions. Therefore, the concen-
tration of Gd ions in the droplets is approximately the same
as well. The magnetization of the matrix varies significantly
for samples with different compositions, but remains too
small, as compared to the magnetization of the droplets, to
be detected.

IV. CONCLUSION

In this paper we devoted our analysis to the high-
temperature regime of the a-RExSi1−x alloys, i.e., far above
the metal insulator and paramagnet to spin-glass transitions.
Our theoretical approach is specifically appropriate to this
regime. We did not discuss quantum corrections associated
with electron correlations, weak-localization effects, and
spin-glass freezing, which are relevant to explain transport
properties at low temperature, and require a more refined
model for the frequency dependence of the electron self-
energy associated with disorder.

FIG. 8. �Color online� Local magnetic induction Bin inside the current-flowing regions vs average magnetic induction B�H in �a�
Gd0.145Si0.855 and �b� Gd0.16Si0.84 for various temperatures. The experimental data are normalized such that the slope of the asymptotic linear
dependence is equal to one. The solid lines are obtained by Eq. �37�. The resulting values for the fitting parameter �D are shown in Fig. 7.
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Our analysis of the EPR and transport properties of these
alloys was based on the proposal that �i� the formation of
nanoscale structural defects enriched with RE ions, envel-
oped by higher-density electron clouds �droplets�, is pro-
moted by the chemical tendency to the formation of stable
�RESi2�N complexes, and that �ii� when the RE has a nonzero
spin, the conditions for the onset of short-range ferromag-
netic order are met in the droplets, due to the higher electron
density. In our proposal, the presence of ferromagnetic drop-
lets in the magnetic a-GdxSi1−x alloys plays a crucial role in
the temperature regime under investigation and explains,
e.g., the differences observed with respect to the nonmag-
netic a-YxSi1−x alloys. These differences cannot be justified,
e.g., by electron-correlation effects, which would act in a
similar way in both Gd- and Y-doped alloys.

The effective number of Gd ions inside the droplet ��D�
and the typical droplet volume �vD� were estimated under
rather general theoretical assumptions11 �see also Appendixes
A and B�. The full agreement with EPR �Sec. II� and mag-
netotransport �Sec. III� results is possible, taking into ac-
count the various assumptions of our interpretation and the
experimental error bar. We point out that our theoretical re-
sults �recalled in Appendixes A and B� were obtained within
the mean-field approximation, which may be not fully cor-
rect for the system under consideration.

First, we assumed that all the droplets are equal and ho-
mogeneously distributed within the matrix, while in real al-
loys droplets with different �D and vD may coexist, and their
spatial distribution may be inhomogeneous. If we suppose
that the “rarefied” droplets with large vD and small �D form
continuous links of the conducting network, whereas the
“concentrated” droplets with small vD and large �D �i.e.,
large total spin �DS� form isolated superparamagnetic nano-
particles and play the main role in electron-spin relaxation,
then it is easy to understand the partial discrepancy between
the estimates obtained from EPR and magnetotransport re-
sults of Secs. II and III.

Second, analyzing these results, we assumed that the fer-
romagnetic transition in all the droplets takes place at the
same mean-field temperature TD=TD

MF, and the magnetic mo-
ment of each droplet is set at once such as though all the
spins in a droplet were strictly aligned in a ferromagnetic
arrangement. However, even in the mean-field approach,
there is a temperature range in which the spontaneous mag-
netization gradually grows from zero at T=TD, up to satura-
tion at T�TD. Besides, the relatively small volume of the
droplets enhances the role of spin fluctuations, which causes
a spread in the temperatures of magnetic ordering in the re-
gion �TD /TD

MF��rD /a�−2 around TD
MF �see, e.g., Ref. 29�.

For TD
MF�100K and �rD /a�−2�0.2–0.4 we estimate �TD

�20–40K; therefore, in the transition region, one should not
expect a full agreement between the experimental data and
the mean-field model, the discrepancy between theory and
experiment being quite natural.

As mentioned above, we identify TD with the characteris-
tic temperature T*, below which the electrical conductivity
sharply decreases with decreasing T, suggesting that the
strongly nonlinear reduction of ��T� observed experimen-
tally at T�T* is connected with complex magnetic transfor-

mations in the system, i.e., the appearance of short-range
ferromagnetic order inside the droplets.

From our theoretical and experimental studies, we esti-
mated the effective number of Gd ions �D in the character-
istic volume vD of the droplet, and found that the local com-
position of the droplet approximately corresponds to that of
gadolinium disilicide, GdSi2. In our opinion, this result re-
flects the “chemical” origin of the droplet and its stability in
the form of a molecular complex, similar to �GdSi2�N, with
N�10–20.

It is evident that the dependence of T* on the alloy com-
position gives very important information about the nature of
the droplets. Experiments6 revealed a strong decrease of
T*�x� with increasing nominal Gd content x in the range
0.11�x�0.24, which may be naturally explained in our
model. In fact, one has to consider the various parameters
that determine the local transition temperature TD �see Eq.
�B2� in Appendix B�. We assume that the droplet parameters
��D ,vD� depend only weakly on the nominal Gd concentra-
tion and are fixed by the conditions for the energy minimum
of Gd-Si chemical bonds. Obviously, these parameters
strongly depend on the details of the growing process.
Within such an assumption, only the variation of the local
DOS at the Fermi level �D leads to a change of TD �see Eq.
�B2��, with varying nominal Gd concentration. The potential
�p �defined by Eq. �A2��, with the parameter rD→rD,p cal-
culated in the paramagnetic phase, is proportional to the dif-
ference between the real and the nominal number of Gd ions
within a droplet ��=�D−�, i.e., it decreases when the nomi-
nal number � of Gd ions in the droplet increases with in-
creasing x. So, the local DOS at the Fermi level inside the
droplet decreases and tends to that in the matrix. In our
model of a semielliptic DOS, which is justified for a low
density of carriers, this decrease is very strong,11 and this
obviously leads to a suppression of the local transition tem-
perature TD.

In brief, using our theoretical estimates and various ex-
perimental methods, we argued that nanoscale structural de-
fects with a high concentration of RE ions enveloped by
higher-density electron clouds �droplets� play an important
role in a-RExSi1−x alloys in a wide range of temperatures and
magnetic fields. The existence of droplets with short-range
ferromagnetic order well explains the EPR experiments on
a-GdxSi1−x discussed in Sec. II and the magnetotransport
measurements on a-�Gd,Y�xSi1−x discussed in Sec. III. It is
also corroborated by neutron diffraction experiments,12 in
which ferromagnetic correlations with a correlation length
�5 Å have been observed, and the mean distance between
Gd ions was estimated to be about 2 Å. Thus, we think that
the a-RExSi1−x alloys are new magnetic materials with
unique properties of both strongly inhomogeneous com-
pounds and nanocomposites.
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APPENDIX A: THE MODEL FOR STRUCTURAL
NANOSCALE DEFECTS

As stated in Sec. I the disorder in a-RExSi1−x alloys at
atomic-scale distances is associated with Si dangling bonds
and isolated RE ions, within the a-Si network, similarly to all
amorphous alloys, whereas at nanoscale distances it is asso-
ciated with RE structural defects. Within a simplifying
scheme, we describe the system as a set of nanoscale defects
embedded into a weakly disordered matrix, which is quasi-
homogeneous over length scales larger than the interatomic
distances, but smaller than the nanoscale-defect sizes and
distances. We assume that the electronic structure of the ma-
trix, averaged over the realizations of the atomic-scale disor-
der, may be described in terms of quasiperiodic electron
states with a finite lifetime.

In Ref. 11, we adopted a one-band Hamiltonian

H = �
k,�

E�k�ck,�
† ck,� +� dr�

�,�
�U���r�

+��r����� �
†�r� ��r� , �A1�

where k is the quasimomentum, E�k� is the ideal band dis-
persion, ck,�

�†� annihilates �creates� a band electron, with spin
projection �= ↑ ,↓, and  �

�†��r� annihilates �creates� an elec-
tron at the point r, with spin projection �. The local disorder

potential is U���r�=�i�V���+JS� i ·�� �����r−ri�, where V
and J are the Coulomb and exchange coupling with impuri-

ties, S� i is the local spin vector, and �� is the vector of Pauli
matrices. The sum is carried over the random impurity sites
ri. The continuous disorder potential, ��r�=� j� j�r�, where
� j�r� is the potential energy of an electron in the effective
“envelope” Coulomb potential of the j th nanoscale defect, is
sizable only inside the droplets. We take for simplicity
� j�r�=−�, independent of r, inside the j th droplet, and zero
elsewhere. Within this approximation, � acts as a shift of the
bulk chemical potential � inside a droplet.

For the sake of clarity, we recall the droplet param-
etrization of Ref. 11. Hereafter, the subscripts D and M refer
to droplets and matrix. ND and NM are the total numbers
of RE ions in the two subsystems, the total number
Ntot=ND+NM being fixed. The volume of the system is
Vtot=VD+VM, where VD and VM are the volumes of the
two subsystems. The droplet volume fraction is f �VD /Vtot
�1. The RE concentration in the nanoscale defects is
nD�ND /VD=�n, where ��1 is the enhancement factor,
and n�Ntot /Vtot is the nominal concentration. Since VD
= fVtot, we have ND= f�Ntot, NM = �1− f��Ntot, and from VM

= �1− f�Vtot, we obtain the RE concentration in the matrix
nM �NM /VM = �1− f��n / �1− f�. For simplicity, we take the
droplets equal and spherical, with radius rD and volume vD.
The number of RE ions in a single defect is �D=nDvD and
the excess of RE ions with respect to the matrix is ��

��nD−nM�vD= ��−1�� / �1− f�, where ��nvD is the nomi-
nal number of RE ions in a defect. Thus we find �=1+ �1
− f��� /� and we take �� and � as parameters of our model
with �D=��=�+ �1− f���. Indicating with ND the total
number of droplets, we have fVtot=VD=NDvD, i.e., f
=NDvD /Vtot. Assuming that the number of droplets per unit
volume, ND /Vtot, is fixed during the growing process, f turns
out to be proportional to vD, i.e., to �. We write f =�� with
��ND /Ntot taken as a parameter. Observe that �n
=ND /Vtot is the number of droplets per unit volume.

The Coulomb shift in a nanoscale defect was estimated
as11

� =
Ze2��

!rD
, �A2�

where e is the electron charge, the RE ion is taken as a donor
with an effective uncompensated positive charge Z�e�, and !
is the dielectric constant. The ESR and dc magnetization data
show that RE enters as RE3+ in the a-Si matrix.15 Two �s
-d� electrons form saturated bonds with �s-p� electrons of the
neighboring Si, while the third �s-d� electron remains itiner-
ant; thus at nanoscale distances, each RE ion acts as an ef-
fective one-electron donor in the a-Si host. For a-GdxSi1−x,
Z�1, !�12–15, the width of the itinerant electron band is
W�6–8 eV, the average volume of the elementary cell is
a3�20 Å3, i.e., the average lattice spacing is a�2.7 Å. For
the nominal chemical composition x=0.14, the average con-
centration of RE ions is nGd=x /a3�7�1021 cm−3,4,5 and we
can estimate ���5–15, ��0.01–0.03 from the results of
Refs. 10–14.

APPENDIX B: SHORT-RANGE FERROMAGNETIC
ORDER

We recall here the description of both the paramagnetic
phase and the phase with short-range ferromagnetic order.11

We take W /2 as the unit energy and a as the unit length, and
attach the subscript p, labeling the paramagnetic phase, to all
quantities that have a different value in the two phases. The
local DOS is ����=�−1 Im�GA�r ,r ;���, where � is the elec-
tron energy and �GA�r ,r ;��� is the advanced one-particle
Green’s function associated with the Hamiltonian �A1�, av-
eraged over the realizations of the disorder. In the absence of

magnetic order, �S� i�=0 and ����=�−1 Im �−"
+"�0�z���−z

−#A����−1dz, where the energy � is measured from the center
of the ideal lattice band and �0�z� is the DOS of the ideal
lattice spectrum E�k�. For the sake of definiteness we adopt a
semielliptic form �0�z�=2�−1�1−z2, for �z��1, and �0�z�
=0, for �z��1. This assumption is particularly reasonable
when the number of doped carriers in the conduction band is
not too large and the effective-mass approximation is valid.

The advanced self-energy #A��� is obtained by averaging
over the realizations of the disorder within some scheme
�e.g., the coherent potential approximation16�. As customary,
�U�r�� is included in the chemical potential �. For uncorre-
lated impurities, the noncrossing Born approximation yields
��U�r��2�= �V2+S�S+1�J2�nimp, where nimp is the impurity
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concentration. Explicit results for #A��� were obtained for
different values of the parameter b= ��2U /W�2�.7,8 We as-
sume for simplicity a homogeneous broadening of the DOS,
with an inverse lifetime 2��b, and take #A���= i�. Al-
though this assumption seems very crude, and would be in-
adequate in the low-temperature regime where the metal-
insulator transition occurs, it becomes fairly reasonable when
describing the magnetic transformations occurring at higher
temperatures. Indeed, we point out that the droplets are char-
acterized by a large DOS at the Fermi level �see below�, so
that the description of short-range ferromagnetic order in the
droplets should not be significantly affected by neglecting
the frequency dependence of #A���. Then

���� =
2

�
��1

2
����2 − �2 − 1�2 + 4�2�2 − �2 + �2 + 1� − �� ,

�B1�

which obviously yields �0 when �→0.
We treated the exchange part of the Hamiltonian �A1� in

the mean-field approximation, taking �S� i�=0 in the matrix

and �S� i��0 inside the droplets. This is reasonable over a
wide temperature range, since the local DOS at the Fermi
level is larger in the droplets than in the matrix �see below�,
so that the condition for ferromagnetic ordering in the pres-
ence of an exchange coupling between magnetic RE ions and
electrons is more easily realized in the droplets. The mag-
netic RE ions inside a nanoscale defect experience an effec-
tive magnetic field Heff=J�−"

+"��=±1��D��+�m�F��−�
−��d�, where F�z�= �exp�z /T�+1�−1 is the Fermi function at
a temperature T �here we take kB=1 and �=1�, m
�JxD�Sz� is the exchange-band splitting, xD=�x is the con-
centration of magnetic RE ions per unit cell in a nanoscale
defect, the index z defines the local quantization axis, parallel
to the effective field, and the average value of the spin on the
RE site, �Sz�, is defined self-consistently as �Sz�
=SBS�SHeff /T�, where BS�y�=XS coth�XSy�−YS coth�YSy� is
the Brillouin function for a spin S, with XS= �2S+1� / �2S�
and YS=1/ �2S�. The typical value of the exchange potential
�in units of W /2� is �J�S�0.1–0.2�� �see below�.

The self-consistency equations must be solved together
with the equations for � and �, which enforce global particle
conservation and charge neutrality for an isolated droplet,

x = f�
−"

+"

�
�=±1

�D�� + �m�F�� − � − ��d�

+ 2�1 − f��
−"

+"

�M���F�� − ��d� ,

x = �−1�
−"

+"

�
�=±1

�D�� + �m�F�� − � − ��d� .

Here, the factor 2 accounts for spin degeneracy in the
matrix, and x=na3. We assume for simplicity that � is the
same in the matrix and in the droplets, i.e., �M���=�D���.
However, this assumption is only aimed at reducing the num-
ber of parameters, and we could not only take �D��M, but
even adopt a different functional expression for the DOS in
the matrix and in the droplets.

The chemical potential is the same in the two phases

��T�=�p�T�.11 In the paramagnetic phase �S� i�=0, m=0. The
self-consistency equations were numerically solved for typi-
cal parameters, x=0.14, W=8 eV, !=12, ��=9, ��0.029,
and ��0.1. This yielded, e.g., at T=0, �p=−1.0, �p�3.1,
and hence fp�0.091, �p�3.34, �D,p�10.4, vD,p�440 Å3,
rD,p�4.7 Å. The Coulomb shift is �p�0.51 ��2 eV�. The
local DOS at the Fermi level are �M��p��0.14 and �D��p

+�p��0.50, the maximum value being �max�0.58 for the
chosen set of parameters. Hence, A��D��p+�p� /�M��p�
�3.6. These values are indicative and can be varied by
changing the model parameters.

Our results for the paramagnetic phase are valid for both
a-GdxSi1−x �at temperatures larger than the temperature for
the onset of ferromagnetic order in the droplets, defined be-
low, Eq. �B2�� and a-YxSi1−x. For small fp the electron states
within the droplets are localized and separated from the ma-
trix by the surface-energy barrier and also the electron states
within the tail of the matrix DOS are localized on the scale
of interatomic distances. Therefore, the fraction of itinerant
electrons within the elementary cell can be estimated as
xitin,p=2�1− fp���m

+"�M���F��−�p�d�, where �m is the mobil-
ity edge, which depends on the scattering potential. For sim-
plicity, we assumed that it lays at the bottom of the ideal
band, so that the localized states are those that appear as tails
of the disorder-broadened DOS �Eq. �B1��. In any case, itin-
erant electrons are a tiny fraction of all the electrons in the
conduction band, the greatest part being localized: for a
nominal density of doped conduction electrons n�7
�1021 cm−3, the calculated density of itinerant electrons is
nitin,p�4�1019 cm−3 even at T�200K. In Ref. 11 it was
shown that xitin,p increases almost linearly with increasing T,
consistently with the experiments �see Fig. 4�.

We also studied the phase with short-range ferromagnetic
order, assuming m as a small expansion parameter, and look-
ing for solutions of the self-consistency equations close to
the paramagnetic phase. The characteristic temperature for
the onset of ferromagnetic order inside the droplets was
thereby obtained as

TD =
2a3

3vD
J2S�S + 1��D�D��p + �p� . �B2�

For the set of parameters suitable to a-Gd0.14Si0.86, and tak-
ing �J��0.026 ��0.1 eV, a typical exchange energy in
wide-band magnetic semiconductors� we obtained, e.g., TD
=0.0016 ��70K�.
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