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An analysis of the classical and quantum phase transitions of the Lipkin-Meshkov-Glick model is presented.
It is shown that the classical dynamics is ruled by the energy surface of the system. Applying the catastrophe
formalism to this energy surface the separatrix is obtained. It determines the regions in the control parameter
space where there are phase transitions. Special attention is given to the compositions of ground and first-
excited energy states, which are well described by the even and odd SU�2� coherent states. Phase transitions are
shown to be associated with a change in the wave functions from collective to single-particle behavior.
Evaluating the distribution of nearest-neighbor spacings it is shown that the separatrix of the system emerges
as a useful tool to describe the global behavior of the quantum-level structure and their corresponding wave
functions.
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I. INTRODUCTION

Spin squeezing has been receiving a great deal of atten-
tion both for the fact that it exhibits reduced fluctuations
below the fundamental spin noise in collections of atoms and
for the possibility of using it as a measure of entanglement in
multiatom systems.1

The Lipkin-Meshkov-Glick �LMG� model Hamiltonian,
in the field of quantum optics, allowed Kitagawa and Ueda2

the generation of spin-squeezed states. It appears as an effec-
tive Hamiltonian yielding a multiparticle entangled state,3 or
in the formation of entangled states of two-mode Bose-
Einstein condensates4 and, in some works, as a superposition
of two mesoscopic distinguishable states.5

Since the beginning of the 1980s,6 it has been known that
the LMG model represents an approximation to ferromag-
netic Ising models and by means of a semiclassical approach
that has second-order phase transitions in the limit of a large
number of particles. Phase transitions at the large-N limit
have been also studied more recently.7–9 In these works, ana-
lytical or numerical determinations of finite-size scaling ex-
ponents for thermodynamical quantities such as the energy
spectrum are established. In general, it has been found that
spin squeezing is a sufficient but not necessary condition for
entanglement, with different definitions of spin squeezing
giving also different predictions of entanglement in the two-
atom Dicke systems.10

In the interacting boson model of the nuclei,11,12 it has
been established that energy surfaces generated from the
most general one- and two-body central interactions have
only two essential control parameters.13 The classical theory
of phase transitions within the catastrophe formalism14,15

demonstrates that the associated energy surfaces can have
shape phase transitions of zero, first, and second order.13 In
this procedure, one considers the deformation parameters �
and � of the energy surface as the order parameters. A shape

phase transition occurs when the control parameters of the
Hamiltonian are varied and the deformation variables jump
from one critical branch to another. Quantum phase transi-
tions between spherical, prolate, oblate, and �-unstable
nuclear ground-state shapes have been found in the interact-
ing boson model �IBM�,16 with an analogy between the IBM
results and predictions of the Landau theory of phase transi-
tions in classical thermodynamics.17–19

A characterization of phase transitions and related acci-
dental degeneracies associated with the LMG model Hamil-
tonian by means of its associated separatrix was presented in
Ref. 20. Besides, for the first time the associated degenera-
cies of the LMG model Hamiltonian were presented in ana-
lytical form, as hyperbolas indicating the regions, in the
Hamiltonian parameters space, where there are degeneracies
between the energy levels.

In this contribution a detailed analysis of the behavior of
the classical trajectories and quantum properties in the vicin-
ity of the separatrix is presented. The composition of the
exact even and odd quantum solutions is compared with the
standard, even, and odd spin coherent states. Thus, the re-
gions in the control parameter space where the standard,
even, and odd spin coherent states best describe the ground
and first-excited states of the LMG model are established.
Also the distribution of nearest-neighbor spacings of the en-
ergy levels, the expectation value of the distribution of par-
ticles between the levels, and its corresponding fluctuations
are determined. The separatrix divides the parameter space
into three regions where the ground state exhibits quite dif-
ferent Dicke-state compositions. In nuclear physics they are
associated with either single-particle or collective behavior.
In optics they are related to the distribution of occupancies of
two-level atoms, ranging from all the atoms in the lower
level to atoms equally distributed in both levels. In the fer-
romagnetic Ising model the magnetization and the gap6 ex-
hibit a behavior which is closely related with the expectation
values of the population of the excited states in the two-level
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atom analyzed in this work. The asymptotic limit of the ex-
pectation value of the population operator is studied for a
very large number of particles. In this limit the standard spin
coherent state provides a very good approximation for the
exact solution.

In Sec. II a brief review of the model Hamiltonian and a
detailed analysis of the geometric interpretation of the model
is presented, starting with the definition of standard, even,
and odd spin coherent states. The corresponding energy sur-
faces are evaluated, which provide the Hartree-Fock descrip-
tions of the ground and first-excited states. Afterwards the
bifurcations and Maxwell sets are obtained, classifying the
regions in the control parameter space where there are phase
transitions in the energy surfaces. Through a time-dependent
variational principle the classical dynamical behavior of the
system is analyzed. In Sec. IV, a comparison of the compo-
sition of the exact even and odd quantum solutions with
those associated to the standard, even, and odd coherent
states, in the vicinity of the separatrix, is presented. Besides,
the behavior of the expectation value of the population op-
erator for a large number of particles and the nearest-
neighbor spacings of the energy levels in a region of the
control parameter space are presented. Finally the conclu-
sions are given.

II. LIPKIN-MESHKOV-GLICK MODEL

The LMG model was conceived as a test model in nuclear
physics. It is simple enough to be solved exactly but it is yet
nontrivial. For that reason, since it was established21 has
been used to validate many fermion approximation methods
like Hartree-Fock22 and the random phase approximation
�RPA�.23 The LMG model assumes that the nucleus is a sys-
tem of fermions which can occupy two levels with the same
degeneracy �, separated by an energy �. It can also describe
a system of interacting two-level atoms, or an anisotropic XY
Ising model in a transverse field with infinite-range constant
interactions.6 There are residual interactions which scatters
pairs of particles between the two levels without changing
the total number of particles occupying the shells. In the
quasispin formalism the model Hamiltonian is21

H = �J0 +
�

2
�J+

2 + J−
2� +

�

2
�J+J− + J−J+� . �1�

The angular momentum operators are realized in terms of
fermion creation c�n

† and annihilation operators c�n:

J0 =
1

2�
n=1

�

�c+n
† c+n − c−n

† c−n� ,

J+ = �
n=1

�

c+n
† c−n, J− = �

n=1

�

c−n
† c+n. �2�

The index �=± denotes the lower and upper single-particle
levels. These operators are the generators of the algebra of
the SU�2� group. Thus, in Hamiltonian �1�, the � term anni-
hilates pairs of particles in one level and creates pairs in the
other level while the � term scatters one particle up while
another is scattered down.

Exact eigenvalues and eigenvectors of the Hamiltonian
�1� can be obtained in the Dicke basis states:

�Nn� =� �N − n�!
�N� ! �n�!

J+
n�N0� , �3�

where n= j+m takes values between 0 and N. The state �N0�
is the unperturbed ground state—i.e., the ground state when
�=�=0, where all the particles occupy the lowest energy
level.

The eigenvalue equation for the system is easily solved by
diagonalizing the matrix Hamiltonian. As a reflection of its
parity symmetry, Hamiltonian �1� has only nonvanishing ma-
trix elements between states �3� with n→n and n±2. The
Hamiltonian matrix is broken into two blocks, each one as-
sociated with the parity of the number of particle-hole pairs,
n. For this reason the eigenfunctions can be written in terms
of linear combinations of states with even �e� or odd �o�
values of n: namely,

�s,e� = �
i=1

��N+1�/2�
Ci,e

s �N2i − 2� ,

�s�,o� = �
i=1

��N+1�/2�
Ci,o

s� �N2i − 1� , �4�

where the eigenvalue running indices take the values s
=1,2 , . . . , ��N+1� /2� and s�=1,2 , . . . , ��N+1� /2�. In these
expressions, the last terms indicate the minimum integer that
contains �N+1� /2 and the maximum integer which is con-
tained by �N+1� /2, respectively.

III. CLASSICAL ANALYSIS

We study the geometric interpretation of the nonlinear
spin Hamiltonian �1�. The classical limit of this system is
established by studying the expectation value of the Hamil-
tonian in the SU�2� coherent states. This expectation value
defines the energy surface, and it is analyzed using the ca-
tastrophe theory formalism. Once the critical points are
found, it is necessary to determine which of them belong to
bifurcation or Maxwell sets. The union of these sets is the
separatrix of the system, which classifies the regions in the
essential parameters space where there are phase transitions.
The order of these transitions is determined according to the
thermodynamic Ehrenfest classification.

A. Standard, even, and odd SU(2) coherent states

We use as trial states the normalized SU�2� coherent
states, which are defined as24

��� = �1 + ���2�−j���

= �1 + ���2�−jexp��*J+��N,0� , �5�

where ��� is the non-normalized spin coherent state, which
will play a fundamental role in defining a classical mechan-
ics, and the unperturbed ground state �N ,0� was defined in
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the previous section. The variable � represents a point in the
complex plane mapped by the stereographical projection of a
point on the sphere from its south pole,

� =
x + iy

1 + z
= tan��/2�exp�i	� , �6�

where x, y, and z are the Cartesian coordinates of a point
over the surface of the unit sphere, and � and 	 are its polar
and azimuthal angles, respectively.

These trial coherent states mix states with odd and even
powers of the number of particle-hole pairs, which are never
mixed in the exact eigenstates �4�, due to the parity symme-
try discussed in the previous section. Trial states with good
parity properties can be built as even and odd coherent states
�± �,25

���± = N±���� ± �− ��� , �7�

where N± are their normalization functions, defined as

N± =
��1 + ���2�2j

�2��1 + ���2�2j ± �1 − ���2�2j	
=

1
�2�1 ± �cos ��2j	

.

�8�

The expectation value of the Hamiltonian between coher-
ent states is given by

E��,	� = 
��H��� . �9�

For given values of the Hamiltonian parameters, it represents
the classical energy surface. After making a shift and a mag-
nification, the expectation value of the Hamiltonian between
coherent states can be written as26

E��,	� =

��H��� − �j


j

= − 2 cos � + �xsin2 � cos2 	 + �ysin2 � sin2 	 ,

�10�

where the parameters �x and �y are defined by

�x =
2j − 1

2

�� + ��, �y =

2j − 1

2

�� − �� . �11�

The expectation values of the Hamiltonian between even
�e� and odd �o� spin coherent states take the form

Ee/o��,	� = e/o
��H���e/o − �j


j

= E��,	�Fe/o��, j� � ��x + �y�Ge/o��, j� , �12�

where the functions F, G are given by the expressions

Fe/o��, j� =
1 ± �cos ��2j−2

1 ± �cos ��2j ,

Ge/o��, j� =
�sin ��2�cos ��2j−2

1 ± �cos ��2j . �13�

The same shift and magnification are chosen for the three
energy surfaces to allow a simple comparison between them.
When j→�, the functions Fe/o go to the unity and functions
Ge/o go to zero. The functions E, Ee, and Eo are called stan-
dard, even, and odd energy surfaces. In the asymptotic limit
j→� they are all equivalent.

Besides energy surfaces we can also evaluate other prop-
erties like the probability amplitude of the number of
particle-hole pairs, together with its corresponding probabil-
ity distribution function which is related to the population of
the two-level system. Thus for the spin coherent states we
get

P�n� = �
Nn����2 =
N!

�N − n� ! n!
�1 + z

2
�N−n�1 − z

2
�n

,

�14�

where z=cos � and P�n� is the probability of finding the
coherent state ��� in the Dicke state �Nn�. This is a binomial
distribution where p�1+z� /2 is the probability of finding
one particle in the ground-state level, while q�1−z� /2 is
the corresponding probability of finding a particle in the ex-
cited level.

For the even and odd spin coherent states the probability
distribution function of particle-hole pairs is given by

Pe/o�n� =
1 ± �− 1�n

1 ± zN P�n� , �15�

where the distribution function is zero if the number of
particle-hole pairs is odd, for even spin coherent state, or
even, for odd spin coherent state.

The expectation value of J0 is related with the population
of particles in the excited state of the two-level system. Thus
the expectation value of the operator of the number of par-
ticles in the upper level, which we called from here on the
population operator,

n̂ = N/2 + J0,

and its fluctuation n̂ are calculated for the standard, even,
and odd spin coherent states. The results for the expectation
value for the population operator are the following:


��n̂��� = j�1 − z� ,

e/o
��n̂���e/o = j�1 − z
1 ± z2j−2

�1 ± z2j�2� , �16�

where for the odd spin coherent state, when z→1, the appro-
priate limits of the given expression must be taken into ac-
count.

To determine the fluctuations of the population number
operator, it is necessary to calculate the expectation value of
n̂2 with respect to the standard, even, and odd spin coherent
states. The corresponding expressions are
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��n̂2��� = j2�1 − z�2 +
j

2
�1 − z2� ,

e/o
��n̂2���e/o = j� j +
1

2
� −

2j2z

1 ± z2j �1 ± z2j−2�

+
j�2j − 1�z2

2�1 ± z2j�
�1 ± z2j−4� , �17�

where again the odd case must be simplified properly when
the limit z→1 is taken.

B. Separatrix

A complete analysis of the normal energy surface �10�,
when the control parameters �x and �y are varied, allows the
determination of critical points, their degeneracy, the bifur-
cation sets of the energy surface, and the loci in the control
parameters space at which a phase transition occurs from one
local critical point to another. One can organize all the criti-
cal points according to their stability within the control pa-
rameter space.

The analysis of the critical points of the energy surface is
simpler if we use Cartesian coordinates:

x = sin � cos 	 , y = sin � sin 	 ,

z = cos � .

In these coordinates the standard energy surface takes the
form

E±�x,y� = � 2�1 − x2 − y2 + �xx
2 + �yy

2, �18�

where both signs—i.e., negative and positive values of
z—must be included to describe the motion on the sphere.

The dynamical behavior of the system is determined with
the knowledge of the critical points and their Hessian matrix
Hij, built with the second derivatives of energy—i.e.,

�E±�x,y ;�x,�y� = 0,

Hij
± =� �2E±

�xi � xj
�

�x1=xc,x2=yc�
, �19�

where the superscript denotes a critical point for the vari-
ables.

In Table II of the Appendix, the critical points of the func-
tion E+ are given together with its nature—i.e., if they are
maxima, minima, or saddle points. Next, the bifurcation sets
of the function E+ are obtained from the condition det Hij
=0, for each critical point.

�i� �xc ,yc�= �0,0�: In this critical point, the elements of the
Hessian matrix are

Hxx
+ = 2�1 + �x�, Hxy

+ = 0, Hyy
+ = 2�1 + �y� .

The condition det H=0 yields the bifurcation sets

�x = − 1 and �y = − 1. �20�

This critical point is a minimum if �x�−1 and �y �−1,
while it is a maximum if �x�−1 and �y �−1. Otherwise it is
a saddle point.

�ii� �xc ,yc�= �±�1−1/�x
2 ,0� and �x�−1: Now the ele-

ments of the Hessian matrix are

Hxx
+ = 2�x�1 − �x

2� � 0, �21�

Hxy
+ = 0, �22�

Hyy
+ = 2�− �x + �y� . �23�

For �y ��x this critical point is a minimum, meanwhile for
�y ��x it is a saddle point.

�iii� �xc ,yc�= �0, ±�1−1/�y
2� and �y �−1: Now the ele-

ments of the Hessian matrix are

Hxx
+ = 2��x − �y� , �24�

Hxy
+ = 0, �25�

Hyy
+ = 2�y�1 − �y

2� � 0. �26�

Then we see that in the region �x��y the critical point is a
minimum and in the region �x��y, the critical point is a
saddle point. Although these are similar to the previous con-
ditions, we must observe that in this case �y �−1, whereas
before the region was �x�−1.

�iv� �xc ,yc� such that xc
2+yc

2=1−1/�0
2 and �0�x=�y

�−1: In this final case, the elements of the Hessian matrix
are

Hxx
+ = − 2�3xc

2 � 0, �27�

Hxy
+ = − 2�3xcyc, �28�

Hyy
+ = − 2�3yc

2 � 0. �29�

The determinant of the Hessian function is always zero. In
this case our criterion says nothing about the nature of the
critical point, but an expansion in spherical coordinates re-
veals that the energy surface is � independent and a mini-
mum at this locus of points.

For the lower hemisphere case—i.e., E−—we observe that
if we make a parameter axis reflection

TABLE I. In the first column the critical points of the function
E�� ,	� in Cartesian coordinates are given, while in the second one,
the corresponding critical points in terms of � and 	 are established.

�xc ,yc� ��c ,	c�
�0,0� �0,0� and �� ,0�

�±xc ,0� ��c ,0� and ��c ,��
xc=�1−1/�xy

2 �c=arccos�−1/�x�
�0, ±yc� ��c ,� /2� and ��c ,3� /2�

yc=�1−1/�y
2 �c=arccos�−1/�y�

�x=�y =�0

�xc ,yc� ��c ,	�
xc

2+yc
2=1−1/�0

2 �c=arccos�−1/�0�
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�x → − �x, �y → − �y ,

then E−→−E+. Therefore the analysis we made for E+ will be
identical for E− if we add to the above transformation the
change of minimum for maximum, and maximum for mini-
mum. In Table II of the Appendix the nature of the critical
points associated to the function E− is indicated.

A summary of the behavior of the critical points for the
function E�� ,	�, in terms of points on the sphere �� ,	�, is
presented in Table I.

The standard energy surface, in the region �x�1,�y �1,
presents two minima, with the lowest one corresponding to
the constant value E+=−2.

For the other critical points, as can be seen in Tables II
and III of the Appendix, only the function E+ presents
minima and they all have the same functional form

E+�xc,yc� = � +
1

�
, �30�

where we have defined

� = ��x, when �x � − 1, �x � �y ,

�y , when �y � − 1 �y � �x,

�̄ , when �x = �y = �̄, �̄ � − 1.

�31�

The study of the even and odd energy surfaces and their
critical points cannot be performed analytically. These sur-
faces were built finding numerically their minima. As a ref-
erence, those minima at the critical points of the standard
energy surface listed above are given. For the north and
south poles, which correspond to �xc ,yc�= �0,0�, the expres-
sions are

Ee = ± 2, Eo = ± 2 +
1

j
��x + �y � 2� , �32�

where for the up sign there is the condition �x�−1 and �y
�−1, while for the down sign one has that �x�1 and �y
�1.

In the other critical points, one can write the following
expression for the even and odd energy surfaces:

Ee/o = �� +
1

�
��2j ± �2

�2j ± 1
� ��x + �y�

�2 − 1

�2j ± 1
, �33�

where �xc ,yc�� �0,0� and the parameter � satisfies the same
conditions established in Eq. �31�.

Thouless’ theorem22 allows a direct association of the
Hartree-Fock trial ground state to the normal energy sur-
faces. Then, it is only necessary to multiply by the magnifi-
cation and to add the shift to obtain the Hartree-Fock solu-
tion of the LMG Hamiltonian. In this sense, the even and odd
coherent states can be understood as parity-projected
Hartree-Fock states, which provide a good approximation for
the ground and first-excited states of the system.

In a similar form other observables, like the distribution
function of Dicke states, the expectation value of the number
of particles in the upper level and its fluctuations are deter-
mined. The results at the minima critical points of these ob-
servables are compared with the corresponding quantum ex-
pressions in Sec. IV.

C. Phase transitions

A critical point belongs to a Maxwell set when the clas-
sical energies at two or more critical points are equal and
under small changes of the control parameters satisfy the
Clausius-Clapeyron equations.15 When, while smoothly
changing the control parameters, a Maxwell set is crossed,
the energy surface jumps from one critical branch to another
and a phase transition can take place. From the previous
analysis it follows that a phase transition for the minima of
the classical energy surface can only happen for ��−1.

The Maxwell sets must satisfy the Clausius-Clapeyron
condition

E�p� = E�q�, ��E�p�/��k − �E�q�/��k���k = 0, �34�

with p and q running over the different critical points; the
notation ��1 ,�2�= ��x ,�y� was used for the control param-
eters.

Bifurcation sets are the loci in parameter space where
function � changes because equilibria points are either cre-
ated or destroyed. According to the previous discussion, the
bifurcation sets are given by

�x = ± 1, �y = ± 1, �x = �y with ��x� � 1. �35�

The order of the phase transitions can be determined fol-
lowing the Ehrenfest classification of the classical phase
transitions. A phase transition takes place between p and q
branches of critical points and is of nth order if

lim
�→0
� �iE�p��s�

�si �
s0−�

= lim
�→0
� �iE�q��s�

�si �
s0+�

, �36�

for i=0,1 ,2 , . . . ,n−1, but fails for i=n.15

As an example, let us consider the function E+�x ,y� when
the line �x=−1 is crossed along the straight lines �y = ±2,
shown with arrow number 1 in Fig. 1. The control param-
eters �x and �y are described by the parametric equations

�x = − 1 + �, �y = 2. �37�

The standard energy surface E+ evaluated at the critical
points �0,0� and �xc ,0� is

E+�0,0� = − 2, E+�xc,0� =
1

− 1 + �
− 1 + � , �38�

respectively. To apply the Ehrenfest definition of a phase
transition we calculate
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�E+��0,0�,�−1+�,2� = �E+��xc,0�,�−1+�,2�,

� �E+

��x
�

�0,0�,�−1+�,2�
= � �E+

��x
�

�xc,0�,�−1+�,2�
,

� �2E+

��x
2 �

�0,0�,�−1+�,2�
� � �2E+

��x
2 �

�xc,0�,�−1+�,2�
,

where the different expressions are evaluated at the critical
points �xc=0,yc=0� and �xc�0,yc=0� and the control pa-
rameters ��x=−1+� ,�y =2� when �→0. Then, crossing the
curve �x=−1, one finds a second-order transition of the
Ginzburg-Landau type. In general a second-order phase tran-
sition takes place when the straight lines �x=−1 �arrow 1�
and �y =−1 �arrow 2� and the point ��x ,�y�= �−1,−1� �arrow
4� are crossed. The crossing of the straight line �y =�x �arrow
3� yields a first-order transition. Special attention must be
given to the crossing of the point ��x ,�y�= �−1,−1� along the
straight line �y =−�x−2 because in that case there is a third-
order phase transition �arrow 5�. In that point, a convergence
of second-order phase transitions is taking place.

In Fig. 1 the bifurcation sets associated with phase tran-
sitions between minima are shown with thick lines. Those
associated with maxima can be obtained by means of a re-
flection along the horizontal line �x+�y =0. Notice that there
are second-order phase transitions when the minima of the
system jumps from the critical points �0,0�→ �xc ,0�,
�0,yc�→ �0,0�, and �xc ,yc�→ �0,0� while the case �xc ,0�
→ �0,yc� is first order. When one is crossing the point
��x=−1,�y =−1�, in the control parameter space, along the
line �y =−�x−2 there is a third-order phase transition.

It is also shown that the parameter space is divided into
three regions by the equilateral hyperbola

�y =
1

�x
, �39�

which is obtained by equating the even and odd energy sur-
faces at the critical points that yield absolute minima. This
function has consequences in the determination of the re-
gions in the parameter space where there are crossings and
anticrossings. On the upper branch of the equilateral hyper-
bolas there are crossings between the maximum even and
odd energy surfaces while in the lower part one finds a simi-
lar behavior for the minima of these two energy surfaces. In
between there are no crossings.

D. Dynamical behavior

The time-dependent variational principle is a formulation
of the Schrödinger equation through a variation of an action
functional. This formalism yields first-order equations of mo-
tion, which may be interpreted as Hamilton equations of mo-
tion, if certain conditions are satisfied by the overlap be-
tween the used parametrized states in the variational
principle.27 This formalism is closely related to the Feyn-
man’s path integral representation of quantum mechanics.28

Next we briefly review the symplectic structure for the
LMG model. The classical equations of motion associated
with our quantum Hamiltonian are built from the overlap of
the non-normalized normal coherent states—i.e.,

N��,�*� = ����� = �1 + ���2�2j , �40�

which allows the definition of the complex auxiliary function

C��,�*� =
�2ln N
�� � �* =

2j

�1 + ��*�2 . �41�

This function is necessary to introduce the generalized Pois-
son brackets for arbitrary complex functions A�� ,�*� and
B�� ,�*�, given by27,28

�A,B� =
i

C� �A

��

�B

��* −
�A

��*

�B

��
� . �42�

In this way, the classical equations of motion of the complex
variables � ,�* are

�̇ = ��,H�, �̇* = ��*,H� , �43�

where H=E�� ,	�=E�� ,�*�, given in Eq. �9�. In summary,
the overlap N�� ,�*� determines the kinematical aspects of
the motion while H is responsible of the dynamics.

E. Trajectories

In terms of the angles � and 	 on the sphere, the gener-
alized Poisson brackets take the form

�A,B� = −
1

j sin �
� �A

��

�B

�	
−

�A

�	

�B

��
� . �44�

The Hamilton equations of motion

FIG. 1. �Color online� The bifurcation sets associated with the
absolute minima of the standard energy surface are indicated by
thick solid lines. The equilateral hyperbolas are also shown with
dash-dotted lines. The arrows numerated from 1 to 5 are indicating
phase transitions between the critical points associated with minima
of the standard energy surface E+ given in Table II of the Appendix.
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�̇ = ��,H�, 	̇ = �	,H� , �45�

give rise to

��

��
= ��x − �y�sin � sin�2	� ,

�	

��
= 2 + cos ���x + �y + ��x − �y�cos�2	�	 , �46�

where we have introduced �=
t.
To study this dynamical system �46� it is convenient to

use the classical functions

jx = 
�� 1
2 �J+ + J−���� = j sin � cos 	 ,

jy = 
�� 1
2i �J+ − J−���� = j sin � sin 	 ,

jz = 
��J0��� = − j cos � , �47�

which satisfy the Poisson bracket relations for the angular
momentum components. These classical functions obey the
equations of motion

djx

d�
= − 2�1 −

�y

j
jz� jy ,

djy

d�
= 2�1 −

�x

j
jz� jx,

djz

d�
=

2

j
��x − �y�jxjy , �48�

which are equivalent to the system �46�—i.e., describe the
same motion over the sphere.

The case �x=�y is straightforward and the solution is
given by

jz��� = jz�0� , jx��� = jx�0�cos 
0� − �jy�0�sin 
0� ,

jy��� = �jx�0�sin 
0� + jy�0�cos 
0� , �49�

where we have defined �=sgn�1− ��x / j�jz�0�	 and 
0=2 �1
− ��x / j�jz�0��.

For �x��y, the solutions are not analytical and the system
of equations is solved numerically. According to the separa-
trix of the system, the phase transition regions in the param-
eter strength space are indicated in Fig. 1, through the arrows
numerated from 1 to 5. In what follows, we present their
classical energy surfaces and classical trajectories over the
unitary sphere. Each figure displays the results for three sets
of Hamiltonian parameters associated with each arrow plot-
ted in Fig. 1. The upper panel was calculated at the begin-
ning of the arrow, the middle panel at the phase transition,
and the lower panel at the end of the arrow. The initial con-
ditions jx0, jy0, and jz0 are selected over the unitary sphere
with an energy 0.4 higher that the associated minimum en-
ergy.

In Fig. 2 we study the behavior of the standard energy
surface and trajectories around the minimum of a second-
order Ginzburg-Landau phase transition along arrow No. 1 in
Fig. 1. A spherical minimum in the south pole is converted
into two deformed minima along the jx axis �only half the

surface is shown� through a quartic potential on the bifurca-
tion. The classical trajectories evolve around the minimum.
In the bottom figure the initial conditions were selected to
allow only the trajectory around one minimum; changing jx0
by −jx0 gives a trajectory around the other minimum.

In Fig. 3 the contour energy curves are shown, as a func-
tion of the variables �� ,	�, along this phase transition �arrow
No. 1 in Fig. 1�. In Figs. 3�a� and 3�b� the Hamiltonian
parameters are the same employed in Figs. 2�a� and 2�c�,
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FIG. 2. �Color online� Energy surfaces �10� �left� and classi-
cal trajectories �right� for the functions jx, jy, and jz with j=1.
The parameter strengths, energy, and initial condition values are
for �a� ��x ,�y�= �0,4�, E=−1.6, �jx0 , jy0 , jz0�= �0.01,0.28,−0.96�;
�b� ��x ,�y�= �−1,4�, E=−1.6, �jx0 , jy0 , jz0�= �0.01,0.28,−0.96�; �c�
��x ,�y�= �−2,4�, E=−2.1, �jx0 , jy0 , jz0�= �−0.47,0.14,−0.87�.
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respectively. In the first case the five lowest lines depict the
classical trajectories for energies E=−1.99,−1.9,
−1.0,0 ,1.0, which represent rotational motions with the
angle 	 unbounded. At the energy E=2.0 the saddle point
�c=� is reached. For higher energies, the trajectories are in
the libration regime, where both angles � and 	 have lower
and upper bounds, associated with displacements inside the
“horn” in Fig. 2�a�. At the point ��x=−1,�y =4�, the energy
surface is characterized by a quartic function, which is very
soft with respect to the motion in �. In Fig. 3�b� the motion
is rotational for �E � �2, where it reaches the saddle point
�c=0, and of the libration type for −2�E�2.

These sudden changes in the trajectories represent phase
transitions, as a function of the energy of the system, for
fixed values of the Hamiltonian parameters. The energies
where they occur are sometimes called the “energy
separatrix,”4 which should not be confused with the separa-
trix in the parameter space depicted in Fig. 1, associated with
phase transitions which take place in the ground state when
the Hamiltonian parameters are varied.

The phase transition along arrow No. 2 in Fig. 1 is also a
second-order transition of the Ginzburg-Landau type, similar
than the previous one. In this case the energy surface pre-
sents two minima with equal depths in direction of the jy axis
and changes to a spherical potential, again through a quartic
potential, at the bifurcation. The associated contour energy
plots are similar to those exhibited in Fig. 3, but viewed from
right to left. They display a phase transition from a deformed
case, with two saddle point bifurcations separating the libra-
tion from the rotational motions, to a spherical one, with one
saddle point bifurcation.

In Fig. 4 we study the behavior of the standard energy
surface and trajectories around the minimum, for the first-
order transition along arrow No. 3 in Fig. 1. Two deformed
minima along the jx axis evolve in two deformed minima
along the jy axis through a 	-unstable potential on the bifur-
cation. In the top figure the initial conditions were selected
again to allow only the trajectory around the left minimum;
changing jx0 by −jx0 gives a trajectory around the right mini-
mum. Something similar happens with the trajectory shown
in the bottom figure.

For this case, the contour energy plots are shown in
Fig. 5. In Fig. 5�a�, the closed trajectories associated with
libration motions are clearly seen around the minima

��c=1.318,	c=0� and ��c=1.318,	c=�� �central regions�.
At the energy E=−10/3, the saddle points on the energy
surface, ��c=1.231,� /2� and ��c=1.231,3� /2�, are reached.
For −10/3�E�−2, there are always two possible rotational
trajectories, over the inner and outer surfaces in Fig. 4�a�, for
the two values of �, until a new bifurcation with an energy
E=−2.0 is reached. For higher energies only one rotational
trajectory—i.e., one value of �—is allowed for each energy.
In Fig. 5�b�, one finds only a rotational motion, again for two
values of �, until the energy of the previous bifurcation set is
obtained. Figure 5�c� is similar to Fig. 5�a�, but now the

FIG. 3. �Color online� Contour plots of the energy surface �10�:
in �a� the parameters �x=0 and �y =4 are taken for the set of ener-
gies −1.99,−1.9,−1.0,0 ,1.0,2.0,2.5,3.2,4.0; while in �b� the pa-
rameters are �x=−2 and �y =4 and the energies −2.45,−2.3,−2.0,
−1.5,−1.0,0 ,1.0,2.0,2.5,3.2,4.0.
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FIG. 4. �Color online� The same as in Fig. 2 for �a� ��x ,�y�
= �−4,−3�, E=−3.85, �jx0 , jy0 , jz0�= �−0.96,0.28,0.03�; �b� ��x ,�y�
= �−4,−4�, E=−3.85, �jx0 , jy0 , jz0�= �0.01,0.82,−0.57�; �c� ��x ,�y�
= �−4,−5�, E=−4.8, �jx0 , jy0 , jz0�= �0.4,0.82,−0.42�.
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libration motions for E�−17/4 take place around ��c
=1.369,	c=� /2� or ��c=1.369,	c=3� /2�.

It is worth mentioning that energy phase transitions, as
seen in the trajectories by increasing the energy through
saddle points, can occur between libration and rotational mo-
tion or from a kind of rotational motion with two allowed
trajectories to another one with only one possible trajectory.

In Fig. 6 it is shown a second-order transition from a
	-unstable potential to a spherical minimum along arrow No.
4 in Fig. 1. The three trajectories are horizontal—i.e., have
constant jz. In this particular case they can be found analyti-
cally. The contour energy plots in this case correspond
always to a rotational motion, with saddle point bifurca-
tions separating the cases when the motion can have two
values of � from the rotational motion where there is only
one value of �.

In Fig. 7 we observe a behavior similar to the one shown
in Fig. 4, although the transition in this case is of third order
along arrow No. 5 in Fig. 1.

For this case, the contour energy plots are shown in Fig.
8. In Fig. 8�a�, the closed trajectories associated with libra-
tion motions are seen around the minima ��c=1.047,	c=0�
and ��c=1.047,	c=�� �central regions�. At higher energies,
the system exhibits rotational motion. In this case for the
same energy, rotational motions are present with only one
possible value of �. In Fig. 8�b�, only rotational motion is
present. In Fig. 8�c�, the energy minima are located at ��c

=1.047,	c=� /2� and ��c=1.047,	c=3� /2�. Thus there are
phase transitions from libration motions to rotational motions
besides for a change of the minima of the energy surface.
There is again a phase transition from libration to rotational
motions at E=−2.

It is relevant to characterize the classical solution of the
LMG model. The power spectrum29 of the classical trajecto-
ries (jx�t� , jy�t� , jz�t�) indicates that the motion is periodic.
Depending on the values of the control parameters �x and �y,
the number of frequencies runs from 1, when �x=�y, to a
finite number of them otherwise. For �x��y we note that
increasing the value of the energy, the number of participant
frequencies grows. The evaluation of the Lyapunov expo-
nents confirms that the motion is periodic. This is of course
consistent with the quantum analysis, because the system is
integrable, having three degrees of freedom and three con-
stants of motion: the number of particles, N; the square of the

total angular momentum, Ĵ2; and the energy E.

IV. COMPARISON OF QUANTUM AND CLASSICAL
ANALYSIS

In order to compare the trial coherent-state description
and the exact quantum solutions, one considers the following
form of the Hamiltonian:

H =
j��x + �y�

2j − 1
+

2

j
J0 −

��x + �y�
j�2j − 1�

J0
2 +

��x − �y�
2j�2j − 1�

�J+
2 + J−

2� ,

which has the same shift and scaling that were used in the
classical analysis.
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FIG. 5. �Color online� Contour plots of the energy surface
�10�: in �a�, one considers �x=−4 and �y =−3; with the set of ener-
gies �−4.1,−3.75,−3.5,−10/3 ,−3.1,−2.7,−2.4,−2.0,−1.0,−0.5,
0.5,1.5,1.9�; in �b� one has �x=−4 and �y =−4 with energies �
−4.1,−3.0,−2.5,−2.0,−1.2,−0.3,0.5,1.3,1.9�; and in �c� the pa-
rameters are �x=−4 and �y =−5 and the energies �−5.1,−4.9,
−4.5,−17/4 ,−4.0,−3.5,−2.7,−2.0,−1.3,−0.5, 0.5,1.5,1.9�.
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FIG. 6. �Color online� The same as in Fig. 2 for �a� ��x ,�y�
= �−2,−2�, E=−2.1, �jx0 , jy0 , jz0�= �0.01,0.32,−0.95�; �b� ��x ,�y�
= �0,0�, E=−1.6, �jx0 , jy0 , jz0�= �0.01,0.60,−0.80�; �c� ��x ,�y�
= �2,2�, E=−1.6, �jx0 , jy0 , jz0�= �0.01,0.36,−0.93�.
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It has been shown that the classical dynamics of the sys-
tem depends on the regions on the parameter space classified
by the separatrix of the Hamiltonian model. This is evident
in the energy surfaces, their phase transitions, and the avail-
able trajectories on the sphere. If the initial conditions are
properly selected—i.e., very close to the locus of points that
define the separatrix—the system evolves around stable or
unstable equilibrium points, spending more time when its
trajectory is closer to them.

The behavior of the quantum system can also be de-
scribed in terms of the separatrix of the model. It can be seen
in the manifolds of the ground and first excited energies,
presented in Ref. 20. The bifurcation sets �x=−1, �y =−1 for
values of �x�−1,�y �−1 and the cusp15 found in the clas-
sical analysis closely describe the sudden changes in the

slopes seen in these plots. The exact even and odd minimum
energies cross at the same hyperbola, defined in Eq. �39�, as
the even and odd energy surfaces do. This is clearly shown in
Ref. 20, which underlines the strong correspondence be-
tween the classical and quantum descriptions of the system.

To study the behavior of the exact even and odd eigen-
functions of the LMG model in the vicinity of the bifurcation
and Maxwell sets all along the phase transitions, we compare
the composition of Dicke states of the eigensolution with
those associated to the minima for the standard, even, and
odd coherent states.

In the case of the phase transition indicated by the arrows
with a number 1 in Fig. 1, there is a second-order phase
transition between a spherical energy surface to a deformed
energy surface in the direction jx. This transition is reflected
in the composition of the exact wave function of the system
which is dominated in the region with �x�−1 almost for a
single Dicke state, while for �x�−1 the exact wave function
includes the participation of many Dicke states.

In Figs. 9�a� and 9�b�, the overlap between the even spin
coherent state and the exact eigenfunctions of the ground
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FIG. 7. �Color online� The same as in Fig. 2 for �a� ��x ,�y�
= �−2,0�, E=−2.1, �jx0 , jy0 , jz0�= �−0.86,0.41,−0.32�; �b� ��x ,�y�
= �−1,−1�, E=−1.6, �jx0 , jy0 , jz0�= �0.01,0.93,−0.38�; �c� ��x ,�y�
= �0,−2�, E=−2.1, �jx0 , jy0 , jz0�= �−0.07,0.33,−0.94�.
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FIG. 8. �Color online� Contour plots of the energy surface �10�:
in �a� one uses �x=−2 and �y =0 with the energies −2.45,−2.25,
−2.0,−1.5,−1.0,−0.5,0.5,1.5,1.99. In �b� the parameters are �x

=−1 and �y =−1 with the contours −1.99,−1.85,−1.5,−1.0,
−0.5,0.2,1.0,1.5,1.9. In part �c�, �x=0 and �y =−2 with the curves
−2.45,−2.35,−2.2,−2.0,−1.7,−1.0,−0.5,0.0,0.7,1.5,1.9.

FIG. 9. �Color online� The overlaps between the even eigen-
functions of the LMG Hamiltonian with the even and standard spin
coherent states are shown with solid and dotted lines, respectively.
The expectation values of the population operator n̂ and its corre-
sponding fluctuation n̂ with respect to the even exact solution and
the standard spin coherent states are displayed with solid and dotted
lines, respectively. In �a� and �c� the parameters of the trial states
take the values 	c=0 or � and zc=−1/�x, while in �b� and �d�
correspond to a single Dicke state with n=0. We use N=20 and
�y =4.
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state of the model Hamiltonian is displayed with solid lines.
The control parameters vary along the �y =4 straight line. For
�x�−1 the dominant trial wave function is the even spin
coherent state with the values 	c=0 or � and zc=−1/�x,
while for �x�−1 the dominant trial wave function is char-
acterized by a single Dicke state, with n=0, as can be seen in
the results of the expectation value of the population opera-
tor. The expectation values of the population operator, given
in Fig. 9�c�, and its corresponding fluctuation, given in Fig.
9�d�, with respect to the ground-state solution, for N=20
particles, exhibit a smoothed phase transition. However, a
change in the concavity of the curve can be appreciated in
both calculations. The corresponding expressions for the
standard spin coherent states show the phase transition at the
bifurcation set �x=−1.

It is important to mention that the behavior along the bi-
furcation �y =−1, which is the phase transition indicated with
the number 2 in Fig. 1, is very similar to the one discussed
previously. In this case, there is a transition from a deformed
energy surface in direction jy to a spherical energy surf-
ace. Thus the composition of the exact wave functions is
changing from many Dicke states to almost a single one. For
this case the even spin coherent state with 	c=� /2 or 3� /2
and zc=−1/�y is the best trial wave function in the region
�y �−1 and �x�0.

What happens for the previous phase transitions at the
region �x�0 and �y �0? In this region there are many phase
transitions in which the ground and first-excited states are
described alternatively by the exact even and odd solutions.
The first region of degeneracy starts at the equilateral hyper-
bola �y =1/�x. For a given number of particles, N, there are
N /2 or �N−1� /2 values of the control parameter where there
are degeneracy between the even and odd exact solutions,
depending if the value of N is even or odd, respectively.
Analytical expressions for the values of the control param-

eters ��x ,�y� along the degeneracy lines were given in Ref.
20.

To study the phase transition along the bifurcation indi-
cated by arrow No. 3 in Fig. 1, the overlap between the exact
solution and the trial wave function calculated along the �y
=−�x−30 straight line is presented in Fig. 10. The trial wave
functions fail to reproduce the exact results in the vicinity of
the bifurcations, as can be seen in the expectation value of
the population, where the maximum disagreement happens at
�x=−15—i.e., at the separatrix. Something similar occurs

FIG. 10. �Color online� The overlaps between the even eigen-
functions of the LMG Hamiltonian with the even and standard spin
coherent states are shown with solid and dotted lines, respectively.
The expectation values of n̂ and its corresponding fluctuation n̂
with respect to the even exact eigenfunctions and standard spin
coherent states are displayed with solid and dotted lines, respec-
tively. In �a� and �c� the parameters are 	c=0 or � and zc=−1/�x

while in �b� and �d� correspond to 	c=� /2 or 3� /2 and zc=
−1/�y. We take N=20 and �y =−�x−30.

FIG. 11. �Color online� The overlaps between the even eigen-
functions of the LMG Hamiltonian with the even and standard spin
coherent states are shown with solid and dotted lines, respectively.
The expectation values of the population operator n̂ and its corre-
sponding fluctuation n̂ with respect to the even exact eigenfunc-
tions and standard spin coherent state are displayed with solid and
dotted lines, respectively. In �a� and �c� the parameters are 	c=0 or
� and zc=−1/�x while in �b� and �d� correspond to 	c=� /2 or
3� /2 and zc=−1/�y. We consider N=20 and �y =�x+0.015.

FIG. 12. �Color online� The overlaps between the even eigen-
functions of the LMG Hamiltonian with the even and standard spin
coherent states are shown with solid and dotted lines, respectively.
The expectation values of the population operator n̂ and its corre-
sponding fluctuation n̂ with respect to the even exact solutions and
standard spin coherent state are displayed with solid and dotted
lines. In �a� and �c� the parameters take the values 	c=0 or � and
zc=−1/�x while in �b� and �d� take 	c=� /2 or 3� /2 and zc=
−1/�y. We use N=20 and �y =−�x−2.
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with the fluctuations of the population. In this case the even
spin coherent state is the best trial wave function in all the
considered region.

A similar result is obtained for the overlap between the
exact odd eigenfunction and the odd spin coherent state. In
some regions the ground state is best reproduced by the even
spin coherent state and, in others, by the odd spin coherent
state. These spin coherent states are constructed with the
variable 	c taking the values 0 or � and zc=−1/�x for �y
��x, while they are 	c=� /2 or 3� /2 and zc=−1/�y for
�y ��x. For �y =�x, the solution is diagonal in the Dicke
basis and they are independent of 	.

The phase transition indicated by arrow No. 4 in Fig. 1
corresponds to a 	-unstable deformed energy surface to a
spherical one. The composition of the exact wave functions
is dominated for a single Dicke state, running from the value
n= j in the region ��−3.5 to n=0 for ��−1. To show that,
the composition of the exact wave function, the expectation
value of the number of particles, and its fluctuation are dis-
played in Fig. 11, along the straight line �y =�x+0.015. It can
be noticed that the expectation value of the population op-
erator changes suddenly at the values 2, 4, 6, and 8 but
follows the result obtained with the standard coherent state.
At each point where there is a phase transition, the overlap
decreases considerably; this effect can be seen also in the
calculation of the fluctuation of the population operator when
it takes the value 1.

In Fig. 12, the overlaps of the quantum solutions and the
trial wave functions, for the phase transition along the cusp
of the system—i.e., �y =−�x−2—are displayed. In this case
the even spin coherent state is the best trial wave function
with the parameters 	c=0 or � and zc=−1/�x in the region
�x�−1 and with 	c=� /2 or 	=3� /2 and zc=−1/�y for
�x�−1. The expectation value of the population operator is
also shown, together with its corresponding fluctuation. They
are both well reproduced by the trial wave function, except
in a close neighborhood of the cusp point ��x=−1,�y =−1�.

It is interesting to study the distributions of nearest-
neighbor spacings as a function of the number of eigenstate

when the matrix Hamiltonian is not diagonal. The case �y =
−�x−4 will be discussed, with N=100 particles. The behav-
ior of the excitation energy spectra is also presented. In Fig.
13, for ��x=2.5,�y =−6.5�, the distribution function of spac-
ings exhibits two regions of degenerated energy levels �zero
spacings� intertwined with spacings varying between 0 and
0.3. In between there is a zone with almost constant separa-
tion between the energy levels with energies between −2 and
2. The degeneracies at the left-hand side of the distribution
function correspond to the lower-energy region, including
the ground state, while those appearing at the right-hand side
belong to the higher excitation energy. The separation be-
tween the degenerate levels is richer and more complex than
for the diagonal case. It is important to mention that the
separatrix indicates exactly where the distribution function of
spacings of the energy levels is not degenerated.

Finally, the expectation value of the population operator
for N=100 is given in Fig. 14, where the control parameters
are changing along the �y =�x+0.015 straight line in the in-
terval −4��x�0. The difference between the results associ-
ated with the exact even eigensolution with the odd case is
the starting value—i.e., 
n�=0 in the even case while 
n�
=1 for the odd one. For this large number of particles, one
can see clearly the presence of the phase transition in the
expectation value of the population operator and the excel-
lent agreement with the trial wave functions. These results
resemble the ones presented in Refs. 6 and 7, for the mag-
netization.

To summarize, if one is restricted to the region �y �−1
and �x�−1, the best trial wave function of the ground state
of the system corresponds to the Dicke state with n=0,
whereas that for the region �x�−1 and �y �−1 the even spin
coherent state describes the ground state with parameters 	
=0 or � and z=−1/�x. For �x�−1 and �y �−1, one has that
the best trial wave function is the even spin coherent state
but now with 	c=� /2 or 3� /2 and zc=−1/�y. The most
interesting region for a finite number of particles is when
�x�−1 and �y �−1, because there are many phase transi-
tions between the even and odd spin coherent states, as many

FIG. 13. �Color online� The distributions of nearest-neighbor
spacings as a function of the energy is shown. In the upper part, the
energy spectra is displayed, for the control parameters ��x=2.5,�y

=−6.5�. There are two regions of degenerated energy levels and a
zone of almost constant separation between the levels. In the plots,
N=100 particles.

FIG. 14. �Color online� The expectation values of the population
operator are shown for N=100 particles. In the first row, they cor-
respond to the exact even and odd eigenfunctions, while in the
second one to the even and odd spin coherent states, respectively.
We take �y =�x+0.015 and −4��x�0.
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as half the considered number of particles. In this case the
dominant even or odd spin coherent states take the values
	c=0 or � and zc=−1/�x if �y ��x and the parameters are
	c=� /2 or 3� /2 and zc=−1/�y if �y ��x.

V. CONCLUSIONS

The LMG model describes a spin system with nonlinear
interactions. It displays a very rich behavior when the two-
body interaction strengths are varied. The exact quantum so-
lutions exhibit both crossings between levels with different
parities and anticrossings �level repulsion� between states
with the same parities. The exact energy surfaces show sud-
den changes in their slopes for certain parameter values,
which were associated with classical phase transitions. Stan-
dard, even, and odd coherent states allowed the construction
of the respective energy surfaces. For the standard energy
surface, the catastrophe formalism allowed for a complete
classification of the critical points. Some of them belong to
the bifurcation and Maxwell sets and define the separatrix of
the model. The separatrix is fundamental to describe the sta-
bility properties, phase transitions, and accidental degenera-
cies of the nonlinear spin Hamiltonian. The bifurcation sets
displayed by the thick solid line in Fig. 1 separate the regions
in the parameter space where single-particle motion domi-
nates from those which are collective. For �x�−1 and �y
�−1 the eigenstates have many components on the angular
momentum basis states, while for the region �x�−1 and
�y �−1, only one component is dominant. We found that
according to the Clausius-Clapeyron classification there are
first-, second-, and even third-order phase transitions for the
LMG model, depending on how the parameters are changed
to cross the separatrix. Even and odd energy surfaces were
shown to closely reproduce the exact quantum behavior of
the ground and first-excited states and their crossings, de-
scribed by the hyperbola of Eq. �39�. In the parameter region
between the branches of the hyperbola there are no crossings
between energy levels, whereas in the exterior part, degen-
eracy is present.
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APPENDIX: CRITICAL POINTS

The critical points of the energy surface are evaluated by
means of the equation �E±�x ,y ;�x ,�y�=0. For these func-
tions one finds the derivatives

�E±

�x
= 2x��x ±

1
�1 − x2 − y2� , �A1�

�E±

�y
= 2y��y ±

1
�1 − x2 − y2� . �A2�

The functions E± have several critical points, depending on
the values of the parameters �x and �y as is indicated in
Tables II and III.

The point �0,0� is a critical point for any values of the
parameters of the functions E±�x ,y�. For this reason these
particular values of �x and �y are called the fundamental
roots.15 The Taylor series expansion around these fundamen-
tal roots are

TABLE II. The critical points of the function E+ are indicated in
the first column. In the second column, it is established the region in
the control parameter space where they are maximum, minimum, or
saddle points.

�xc ,yc� Parameter region and character

�0,0� �1+�x�0

1+�y �0 �minimum

�1+�x�0

1+�y �0 � maximum

�1+�x�0

1+�y �0 � saddle

�1+�x�0

1+�y �0 � saddle

�±�1−1/�x
2 ,0� �x�−1 existence

�x��y saddle

�x��y minimum

�0, ±�1−1/�y
2� �y �−1 existence

�x��y minimum

�x��y saddle

xc
2+yc

2=1−1/�0
2 �0�x=�y �−1 existence

TABLE III. The same as in Table II but now for E−.

�xc ,yc� Parameter region and character

�0,0� �1−�x�0

1−�y �0 � maximum

�1−�x�0

1−�y �0 � minimum

�1−�x�0

1−�y �0 � saddle

�1−�x�0

1−�y �0 � saddle

�±�1−1/�x
2 ,0� �x�1 existence

�x��y saddle

�x��y maximum

�0, ±�1−1/�y
2� �y �1 existence

�x��y maximum

�x��y saddle

xc
2+yc

2=1−1/�0
2 �0�x=�y �1 existence
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E±�x,y� = � 2 + ��x ± 1�x2 + ��y ± 1�y2

± 6�x4 + y4� ± 2x2y2 + O�5� . �A3�

Lower-order terms in this series, except for the constant one,
can be eliminated by a proper choice of the control param-

eters �x and �y. We observe that the first term which cannot
be canceled in this way is ±6�x4+y4�±2x2y2, which charac-
terizes a fourth-order germ of the system. From this germ,
other critical points, different from the poles in the sphere,
bifurcate as the control parameters are varied.
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