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The properties of ferroelectric-ferroelastic twin boundaries in tetragonal BaTiO3-like crystals are analyzed in
the framework of the phenomenological Ginzburg-Landau-Devonshire model. Special attention is paid to the
introduction and appreciation of the gradient and dipole-dipole terms, which depends on inhomogeneous
polarization. An adjustment of the model parameters to the bulk properties of BaTiO3 allows us to make
quantitative predictions for domain-wall profiles and widths �at ambient conditions, 3.6 nm and 0.6 nm for
fully relaxed 90° and 180° domain walls�.
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I. INTRODUCTION

The 90° domain wall in tetragonal BaTiO3 is a prototype
example of a ferroelectric domain boundary separating two
adjacent ferroelectric domains. In this well-known case,
movement of the wall along its normal leads to rotation of
both the direction of polarization and the orientation of the
spontaneous strain tensor by about 90°. It has been recently
demonstrated that these domain walls, if they are pinned1,2 or
sufficiently dense,3–8 would lead to an extraordinary en-
hancement of the piezoelectric properties of BaTiO3. Similar
behavior is expected in other low-conductive ferroelectrics
with ferroelectric-ferroelastic domain walls, and the same
principle might be also behind the high-piezoelectric proper-
ties of relaxor-type materials with nanoscopic polar arrange-
ment.

The preferred geometry of the 90° domain wall of BaTiO3
is known to follow directly from basic energy considerations.
To minimize the electrostatic energy in a insulating crystal,
the polarization should have a head-to-tail arrangement so
that there is no uncompensated charge at the wall �div P
=0�. Minimization of the elastic energy requires the 90° do-
main wall �which is also a ferroelastic twin boundary� to be
planar and perpendicular to the sum of the polarization vec-
tors of the adjacent domain states, in agreement with the
general ferroelastic twin compatibility theory.9,10 These rules
are normally verified in experiments, although exceptions
were reported in some special cases, too.11–16

More specific properties of the 90° domain wall of
BaTiO3 can be in principle addressed within the continuous
Ginzburg-Landau-Devonshire-type model developed in a
number of previous theoretical works.17–25 While the con-
tinuous approach itself is well justified by the reasonably
large thickness of the 90° domain wall in BaTiO3 �according
to available experimental and theoretical estimates,17,26–33 in
the range of 2–25 nm�, its quantitative implications are
largely dependent on the correct definition of the relevant
terms in the model potential.

The aim of the present work is to assess the properties of
the 90° domain wall of BaTiO3 as much quantitatively as
possible. For this purpose, we use the generalized Ginzburg-
Landau-Devonshire-type model which includes long-range
electrostatic interactions34,35 �Sec. II�, and utmost care is
given to a realistic determination of all model parameters

from the known bulk BaTiO3 properties �Sec. III�. Analytic
and numerical solutions representing the equilibrium 90° do-
main wall are derived for the present model in Sec. IV. Sec-
tion V is devoted to a discussion of the results and their
detailed comparison with previous approaches and experi-
ments.

II. PHENOMENOLOGICAL MODEL

We assume a proper ferroelectric crystal with a parent
phase of macroscopically cubic Oh symmetry. The free en-
ergy of this system is assumed to be the sum of the part
associated with a hypothetical reference cubic state Fr and
the excess free energy F arising due to the nonzero primary
and secondary order parameters �polarization and strain
fields�. Following several preceding works,8,35,36,38,39 we
complete the classical Landau-Ginzburg model for F by ex-
plicitly including the elastic, electrostrictive, and dipole-
dipole terms. The resulting model for the excess free energy
F is then given by a functional of Cartesian components of
polarization Pi, its spatial derivatives Pi,j =�Pi /�xj, and strain
components eij = ��ui /�xj +�uj /�xi� /2, i , j=1–3, as follows:

F = FLG
�e� ��Pi,Pi,j�� + FCq��Pi,eij�� + Fdep��Pi�� , �1�

where

FLG
�e� ��Pi,Pj,k�� =� dr�fL

�e��Pi� + fG�Pi,j�� �2�

stands for the fully clamped Landau-Ginzburg potential,

FCq��Pi,eij�� =� dr�fC�eij� + fq�Pi,eij�� �3�

stands for the linear elastic and electrostriction energy, as
considered, e.g., in the seminal paper of Devoshire,39 and the
nonlocal interaction term describing long-range electrostatic
dipole-dipole interactions

Fdep��Pi�� = −
1

2
� dr�Edep�r� · P�r�� �4�

depends on the inhomogeneous depolarization field Edep,
which can be expressed explicitly as a functional of P�r�,
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Edep�r� = −
1

4��0�B
� dr��P�r��

	R	3
−

3�P�r�� · R�R
	R	5 
 , �5�

with R=r−r�.
This basic formulation assumes that there is no depolar-

ization field associated with the overall polarization of the
sample �as in the case of an infinite system or system with
shortcut boundary conditions�. In a more general situation,
Eq. �5� for the depolarization field can be replaced by a so-
lution of

div Edep =
1

�B�0
div P �6�

under appropriate boundary conditions.

A. Devonshire free-energy density

The Landau-type free-energy density functional fL
�e� is

normally written as systematic-expansion Oh-symmetry-
invariant terms in components of polarization Pi. In the case
of BaTiO3, discontinuity of the transition towards the
paraelectric phase requires a model with terms up to at least
sixth order:

fL
�e� = �1�P1

2 + P2
2 + P3

2� + �11
�e��P1

4 + P2
4 + P3

4�

+ �12
�e��P1

2P2
2 + P2

2P3
2 + P1

2P3
2� + �111�P1

6 + P2
6 + P3

6�

+ �112„P1
4�P2

2 + P3
2� + P2

4�P1
2 + P3

2� + P3
4�P1

2 + P2
2�…

+ �123P1
2P2

2P3
2. �7�

The coefficients of this expansion would generally depend
on thermodynamic state variables such as temperature, exter-
nal stress, or applied electric field, although often a linear
temperature �or pressure� dependence of the �1 coefficient is
sufficient. Dependence on the strain order parameter is con-
sidered by including a bilinear elastic and electrostriction
functionals21,38,39 defined by elastic and electrostriction ten-
sors Cijkl ,qijkl. It can be conveniently written in matrix
notation40 with Voigt abbreviated suffixes �=1–6 �e1=e11,
e2=e22, e3=e33, e4=2e23, e5=2e13, e6=2e12� as

fC =
1

2
Cijkleijekl =

1

2
C��e�e�

=
1

2
C11�e1

2 + e2
2 + e3

2� + C12�e2e3 + e1e3 + e1e2�

+
1

2
C44�e4

2 + e5
2 + e6

2� , �8�

fq = − qijkleijPkPl

= − q11�e1P1
2 + e2P2

2 + e3P3
2�

− q12�e1�P2
2 + P3

2� + e2�P1
2 + P3

2� + e3�P1
2 + P2

2��

− q44�e6P1P2 + e5P1P3 + e4P2P3� , �9�

where C11=C1111, C12=C1122, C44=C1212, q11=q1111, q12
=q1122, and q44=2q1212.

The equilibrium homogeneous state in applied homoge-
neous stress � and electric field E is given by the minimum

of the appropriate �incomplete� Gibbs free-energy density
g�T ,� ,E ;e ,P�= fL

�e�+ fC+ fq−�e−E ·P—i.e., from the condi-
tions

�

�P
�fL

�e� + fC + fq − � · e − E · P� = 0,

�

�e�

�fL
�e� + fC + fq − � · e − E · P� = 0. �10�

The second equation implies that the stress-free homoge-
neous equilibrium �spontaneous� strain at zero electric field
is given by custom expressions

e1 = Q11P1
2 + Q12P2

2 + Q12P3
2,

e2 = Q12P1
2 + Q11P2

2 + Q12P3
2,

e3 = Q12P1
2 + Q12P2

2 + Q11P3
2,

e4 = Q44P2P3,

e5 = Q44P3P1,

e6 = Q44P1P2, �11�

where the electrostriction coefficients Qij are expressed39,41

through the bulk and shear elastic and electrostriction
constants21

Ĉ11 = C11 + 2C12,

Ĉ22 = C11 − C12,

q̂11 = q11 + 2q12,

q̂22 = q11 − q12, �12�

as follows:38

Q11 = Q1111 = 3−1�q̂11/Ĉ11 + 2q̂22/Ĉ22� ,

Q12 = Q1122 = 3−1�q̂11/Ĉ11 − q̂22/Ĉ22� ,

Q44 = 4Q1212 = q44/C44. �13�

Substitution of Eq. �11� into Eqs. �8� and �9� gives two
fourth-order invariant polynomials in polarization, so that the
total free energy fL= fL

�e�+ fC+ fq associated with stress-free
homogeneous states has exactly the same form as fL

�e� �Eq.
�7��, apart from replacement of �11

�e� and �12
�e� coefficients by

the renormalized ones:38,39,42

�11 = �11
�e� −

1

6� q̂11
2

Ĉ11

+
2q̂22

2

Ĉ22

 ,

�12 = �12
�e� −

1

6�2q̂11
2

Ĉ11

−
2q̂22

2

Ĉ22

+
3q44

2

C44

 . �14�
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B. Nonlocal interactions

The Ginzburg functional fG�Pi,j� contains the lowest-
order symmetry-invariant terms in spatial derivatives of po-
larization, and it can be written in two frequently used
equivalent forms

fG =
G11

2
�P1,1

2 + P2,2
2 + P3,3

2 �

+ G12�P1,1P2,2 + P2,2P3,3 + P1,1P3,3�

+
G44

2
��P1,2 + P2,1�2 + �P2,3 + P3,2�2 + �P3,1 + P1,3�2�

�15�

or, with a new38 constant G14=G12+G44, as

fG =
G11

2
�P1,1

2 + P2,2
2 + P3,3

2 �

+ G14�P1,1P2,2 + P2,2P3,3 + P1,1P3,3�

+
G44

2
�P1,2

2 + P2,1
2 + P2,3

2 + P3,2
2 + P3,1

2 + P1,3
2 � . �16�

The former expression is a formal analog of the elastic
energy density �Eq. �8��; the latter expression has a more
straightforward interpretation in its discrete form. Assuming
a discrete polarization field on a simple cubic lattice, the
spatial derivatives are replaced by first-neighbor finite differ-
ences. In the lowest-order approximation, one can retain only
the two first-neighbor symmetry-allowed pairwise harmonic
terms—longitudinal and transverse coupling terms, which
correspond to the G11 and G44 terms in the latter expression,
respectively. The fact that the G14 cross term drops out in this
basic and natural approximation suggests that it is not a very
important term, but it can be obviously easily included if
necessary—e.g., in second-neighbor approximations. Let us
finally mention that some authors34,38,43 are including in the
expression �15� also the G44� term

1

2
G44� ��P1,2 − P2,1�2 + �P2,3 − P3,2�2 + �P3,1 − P1,3�2� .

�17�

However, this term can be actually transformed into a com-
bination of G12 and G44 terms �its action is equivalent to the
replacements G44→G44+G44� , G12→G12−2G44� �, because the
volume integral of the P1,2P2,1 term is equal to that of the
P1,1P2,2 one. This means that only the symmetrical part of
the Pi,j matrix contributes to the gradient energy, and, there-
fore, the Ginzburg functional can be written as

fG =
1

2
GijklPi,jPk,l, �18�

where Gijkl is same type of fourth-rank symmetric tensor as
Cijkl �and where G11=G1111, G12=G1122, and G44=G1212, but
G14, as introduced38 before, is not equal to G1123�.

III. MODEL PARAMETERS FOR BaTiO3

The parameters in the above model can be estimated from
bulk single-crystal properties. The ambient condition values
for BaTiO3 crystal, which are used in this paper, are resumed
in Table I.

For the parameters of the the Landau functional, we have
adopted set of values used in Refs. 42 and 44 �sixth-order
expansion, models I and II in Table I� or that of in Ref. 45
�eighth-order expansion, model III in Table I�, assuming T
=298 K and taking into account the renormalizations given
by Eqs. �14�. These Landau potentials are considered quite
realistic as they qualitatively reproduce the actual
�temperature–electric-field� phase diagram as well as E=0
transition entropies,45 although they may obviously fail to
describe some higher-order effects.75

The values of elastic and electrostriction tensors Cij, qij
in models I and III are taken as in Ref. 35. These elastic
constants are thus in fact46 room-temperature Cij

E values
of Ref. 47. In model II, we have adopted the Cij

E values
of a more recent Brillouin experiment.46 Other recent
measurements48,49 also give similar values. All these values
are obviously somewhat renormalized by the electrostriction,
but we are not aware of complete measurements of the tem-

TABLE I. Complete list of parameters describing the phenom-
enological model defined by Eqs. �1�–�9�. Three sets of numerical
values �cited as models I, II, and III� for room-temperature BaTiO3

are derived in the text.

I II III Unit �SI�

�1 −2.772 −2.772 −3.712 107 J m C−2

�11 −6.476 −6.476 −2.097 108 J m5 C−4

�11
�e� 1.701 2.199 6.079 108 J m5 C−4

�12 3.23 3.23 7.974 108 J m5 C−4

�12
�e� −3.441 −4.360 1.303 108 J m5 C−4

�111 8.004 8.004 1.294 109 J m9 C−6

�112 4.47 4.47 −1.950 109 J m9 C−6

�123 4.91 4.91 −2.500 109 J m9 C−6

�1111 3.863 1010 J m13 C−8

�1112 2.529 1010 J m13 C−8

�1122 1.637 1010 J m13 C−8

�1123 1.367 1010 J m13 C−8

G11 51 51 51 10−11 J m3 C−2

G12 −2 −2 −2 10−11 J m3 C−2

G44 2 2 2 10−11 J m3 C−2

q11 14.20 13.62 14.20 109 J m C−2

q12 −0.74 −2.56 −0.74 109 J m C−2

q44 1.57 1.62 1.57 109 J m C−2

C11 27.50 21.10 27.50 1010 J m−3

C12 17.90 10.70 17.90 1010 J m−3

C44 5.43 5.60 5.43 1010 J m−3

�B 7.35 7.35 7.35
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perature dependence of Cij and qij tensors in the cubic phase
of BaTiO3, which in principle would allow one to take
proper renormalization into account. In any case, the most
relevant are the resulting values of the electrostriction coef-
ficients Q��. In all three parameter sets, the selected param-
eters of Cij and qij give electrostriction coefficients Q�� iden-
tical to those considered in Ref. 41 �actually, derived50 from
results of Ref. 47� and very close to the electrostriction co-
efficients used in the recent Ref. 45.

The choice of coefficients G11, G12, and G44 of the gradi-
ent terms and the relative permittivity �B in the expression
for the dipole-dipole interaction deserves some more caution.
In order to adjust the parameter values of the gradient terms,
one can use the soft phonon dispersion measured by inelastic
neutron scattering as was proposed, for instance, in Refs. 24
and 51. In the soft-mode theory, small fluctuations of the
order parameter are identified with soft-phonon modes. For
example, in the case of the potential considered here, disper-
sion of transverse soft-phonon modes with wave vectors q
parallel to the �100� and �111� directions, respectively, are in
the paraelectric phase given by51

���100�
2 = 2�1 + G44q

2, �19�

���111�
2 = 2�1 +

1

3
�G11 − G12 + 2G44�q2, �20�

where �−1=�0�p
2 is a common factor including mode-

effective charge and mass via the mode-plasma frequency �p
as defined, e.g., in Ref. 52. On the other hand, the corre-
sponding phonon dispersion curves as obtained in the inelas-
tic neutron study53 of cubic BaTiO3 can be approximated as
�at 150 °C�

�	��100��2 = �3 meV�2 + 970 �meV Å�2q2, �21�

�	��111��2 = �3 meV�2 + 5500 �meV Å�2q2. �22�

Using the �1�150 °C��1.4
107 value according to the
Ref. 41, comparison of Eqs. �19� and �21� allows us to
evaluate independently 	�p�190 meV and G44�3

10−11 m4 N C−2. The value of the mode-plasma frequency
is quite close to the values evaluated for the BaTiO3 soft
mode from room-temperature IR reflectivity data52 �	�p

�200 meV� as well as to the mode-plasma frequency of the
pure Slater mode calculated52 directly from ab initio–
predicted Born effective charges54 �	�p�190 meV�. There-
fore, the estimation of G44 appears also quite reliable. In
addition, an alternative estimation �G44=2�1�44�3.5

10−11 m4 N C−2� can be obtained using correlation length
�44 from a neutron diffuse scattering experiment55 �at
137 °C, �1=9.7
106, �44�13.5 Å�. It should be stressed
that the ��100�

2 branch is significantly mixed with a transverse
acoustic branch. This mixing is disentangled in Ref. 53 so
that the parameters shown above describe the dispersion of
the bare optic branch. It is known56,57 that after the elimina-
tion of the strain field from the Landau-Ginzburg potential,
the TA-TO interaction effectively decreases the values of the
gradient terms in polarization, and since the TA-TO interac-

tion is not considered explicitly in the present model poten-
tial, one should use an effective G44 value. Following the
calculations of Ref. 57 and using the coupling parameters of
Table 1 in Ref. 53, we estimate that this flexoelectric reduc-
tion of G44 is in BaTiO3 of the order of 25%–30%. This is
much less than in the case57 of SrTiO3, but in order to take
this effect into account we use a slightly lower value of
G44=2
10−11 m4 N C−2.

The dispersion parameter of ��111�
2 �22� was read out di-

rectly from Fig. 8 in Ref. 53. It allows one to estimate G11
−G12+2G44�51
10−11 m4 N C−2. Assuming that the first-
neighbor interactions are essential �G14=0, G12=−G44�, we
finally have G11�45
10−11 m4 N C−2. The pronounced dif-
ference between G11 and G44 values is associated with the
huge anisotropy of the soft-mode dispersion curves and it
reveals a large dipole-dipole contribution related to the large
mode-effective charge of the soft mode, typical for
BaTiO3-type perovskites. Similar numerical values of Gii can
be deduced also from the ab initio–calculated zero-
temperature imaginary dispersion curves of the soft-mode
branches in the unstable cubic state, such as, e.g., from data
of Ref. 54.

The expression of electrostatic dipole-dipole energy den-
sity has a single adjustable parameter—the “background” di-
electric permittivity �B. It allows us to include all the addi-
tional high-frequency susceptibility contributions which are
not associated with the soft mode—the electronic permittiv-
ity and eventually also the permittivity due to other high-
frequency polar lattice modes. In the ferroelectric phase, �B
should actually be considered as a tensor. According to the
room-temperature IR reflectivity data58 of BaTiO3, the val-
ues of �B are 7.71 and 6.62 for an electric field oriented
perpendicular and parallel to the polarization, respectively. In
this paper, we neglect the anisotropy and the isotropic aver-
age of these values is taken for �B. The dipole-dipole contri-
bution obviously leads to the LO-TO splitting of the soft-
mode optic branch, and its magnitude in the present model
�	�LO�2− �	�TO�2= �	�P�2 /�B= �70 meV�2 is then slightly
lower than that of the bare ETO mode evaluated with average
electronic contribution �about �79 meV�2�. Let us stress that
some authors considered �B=1 but taking �B equal to static
susceptibility as proposed in Refs. 34, 59, and 60 is not sat-
isfactory at all since the dipole-dipole interactions would
lead to an unrealistic LO-TO splitting of the soft-phonon
branch of an insulating system.

IV. DOMAIN-WALL PROFILES

The above-described model allows us to calculate the
phase diagram and basic single-domain properties. In the
model with sixth-order Landau potential expansion, the num-
ber of quantities can be in fact obtained as very simple ex-
plicit expressions. For example, the spontaneous polarization
of a fully relaxed �stress-free� single-domain and short-
circuited state is given by

P0
2 =

− �11 + ���11�2 − 3�1�111

3�111
, �23�

the associated components of tetragonal spontaneous strain
�along and perpendicular to the spontaneous polarization� are
given by
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e
 = Q11P0
2, e� = Q12P0

2, �24�

and the associated excess Gibbs free-energy density reads

fT min = − P0
4��11 + 2�111P0

2� . �25�

The numerical values of these quantities are for room-
temperature BaTiO3 given in Table II. A similar analysis can
be obviously performed numerically or analytically for other
plausible phases as a function of temperature, pressure,61

chemical substitution,62 or more general mechanical condi-
tions �such as, for example, biaxial clamping by substrate in
case of thin films63�.

Our interest here is rather in the variational problem �F
=0 and its kink-type solutions corresponding to domain
walls separating adjacent tetragonal domain states. Such so-
lutions have to obey Euler-Lagrange equations, ensuring lo-
cal mechanical equilibrium conditions for polarization and
strain. In the absence of the dipole-dipole interaction term
Fdep, these equations have the standard form

�

�xj
� �f

�Pi,j
� =

�f

�Pi
, �26�

�

�xj
� �f

�eij
� = 0, �27�

with f = fL
�e�+ fG+ fC+ fq. We will focus on the 90° domain

wall and thus closely follow and develop the approach pre-
sented earlier in papers by Zhirnov,17 Ishibashi,19 Cao and
Cross,21 and Ishibashi and Salje.18 We shall consider a �110�-
domain wall �normal to the x+y direction�, corresponding to
rotation of the spontaneous polarization by about 90° around
the z axis, as sketched in Fig. 1 �90° head-to-tail ferroelastic
domain wall�. In other words, we are seeking a quasi-one-
dimensional, single-kink-type solution described by the
polarization field �P1�x+y� , P2�x+y� ,0� such that, for
x+y→−
,

�P1,P2,0� → �P0,0,0� ,

�e1,e3,e3,e4,e5,e6� → �e
,e�,e�,0,0,0� �28�

and, for x+y→ +
,

�P1,P2,0� → �0,P0,0� ,

�e1,e3,e3,e4,e5,e6� → �e�,e
,e�,0,0,0� . �29�

The problem is conveniently solved in a 45°-rotated
Cartesian-coordinate system s-r-z, where �see Fig. 1�

x� = s = �x + y�/�2,

y� = r = �y − x�/�2,

P1� = Ps = �P1 + P2�/�2,

P2� = Pr = �P2 − P1�/�2. �30�

In the rotated system, components of the elastic tensor are
given by

C��� =�
C11� C12� C12 0 0 0

C12� C11� C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66�

� , �31�

with

TABLE II. Several quantities derived for different sets of model
parameters given in Table I.

I II III Unit

P0 0.265 0.265 0.260 C m−2

e
 7.78 7.78 7.45 10−3

e� −3.18 −3.18 −3.05 10−3

q̂11 1.272 0.850 1.272 1010 J m C−2

q̂22 1.494 1.818 1.494 1010 J m C−2

Ĉ11
63.30 42.50 63.30 1010 J m−3

Ĉ22
9.60 10.04 9.60 1010 J m−3

Q11 11.04 11.04 11.04 10−2 m4 C−2

Q12 −4.52 −4.52 −4.52 10−2 m4 C−2

Q44 2.89 2.89 2.89 10−2 m4 C−2

FIG. 1. �001� cross section through a head-to tail, �110�- ori-
ented 90° twin boundary in BaTiO3-type crystal. Polarizations in
domains and in the boundary are shown schematically by thick
arrows; the dashed line stands for the center of the wall. Thin ar-
rows indicate the orientation of new and old axes.

PHENOMENOLOGICAL MODEL OF A 90° DOMAIN WALL IN¼ PHYSICAL REVIEW B 74, 104104 �2006�

104104-5



C11� =
C11 + C12 + 2C44

2
,

C12� =
C11 + C12 − 2C44

2
,

C66� =
C11 − C12

2
, �32�

and the elastic energy can be expressed as

fC =
1

2
C��� e��e�� , �33�

where e�� are strain tensor components in the rotated Carte-
sian system. Voigt matrices of electrostriction and gradient
tensors have the same structure as that of an elastic tensor
�Eq. �31��, with

q11� =
q11 + q12 + q44

2
,

q12� =
q11 + q12 − q44

2
,

q66� = q11 − q12,

G11� =
G11 + G12 + 2G44

2
,

G12� =
G11 + G12 − 2G44

2
,

G66� =
G11 − G12

2
. �34�

Boundary conditions and Saint-Venant compatibility rela-
tions restrict the single-kink, quasi-one-dimensional solution
of the Euler-Lagrange equation for strain components �Eq.
�27�� e�� in the form17,21 where only e1� and e6� follow the
inhomogeneous polarization profiles Pr�s� and Ps�s�,

e1� =
e� + e


2
−

q11 + q12

2C11�
�P0

2 − Pr
2 − Ps

2� +
q44

2C11�
�Ps

2 − Pr
2� ,

e6� =
2q̂22

Ĉ22

PrPs, �35�

while the remaining components do not change across the
domain wall and they are just equal to the above-defined
boundary values:

e2� =
1

2
�e� + e
� ,

e3� = e�,

e4� = e5� = 0. �36�

This formal solution can be inserted to the Euler-
Lagrange equations �26� for the polarization. It results in a
pair of coupled differential equations17,21 for Pr�s� and Ps�s�.
For the model with a sixth-order Landau expansion, these
equations were derived in Ref. 21:

G11� Ps,ss = 2�1
s Ps + 4�11

s Ps
3 + 2�12

sr PsPr
2 + 6�111� Ps

5

+ 4�112� Ps
3Pr

2 + 2�112� PsPr
4,

G66� Pr,ss = 2�1
r Pr + 4�11

r Pr
3 + 2�12

sr PrPs
2 + 6�111� Pr

5

+ 4�112� Pr
3Ps

2 + 2�112� PrPs
4, �37�

with coefficients

�1
s = �1 − �1

3

q̂11
2

Ĉ11

+
1

6

q̂22
2

Ĉ22

−
�q11 + q12�q11�

2C11�

P0

2,

�1
r = �1 − �1

3

q̂11
2

Ĉ11

+
1

6

q̂22
2

Ĉ22

−
�q11 + q12�q12�

2C11�

P0

2,

�11
s =

�11
�e�

2
+

�12
�e�

4
−

q11�
2

2C11�
,

�11
r =

�11
�e�

2
+

�12
�e�

4
−

q12�
2

2C11�
,

�12
sr = 3�11

�e� −
�12

�e�

2
−

q11� q12�

C11�
−

q̂22
2

Ĉ22

,

�111� =
�111 + �112

4
,

�112� = �15�111 − �112�/4. �38�

Analytical solutions of Eqs. �37� were found in special
cases only. For example, Ref. 21 considers the case when the
�12

sr and �112� coefficients are simultaneously equal to zero,
while Ref. 17 assumes Ps� P0 /�2. Both assumptions lead to
decoupling and to the same type of solution

Ps =
1
�2

P0, �39�

Pr =
1
�2

P0
sinh�s/���

�A + sinh2�s/����−1/2 . �40�

In a general case, exact solutions can be found numerically.
For example, in Fig. 2 we give numerical solutions for the
BaTiO3 potential parameters �model I, without dipole-dipole
interactions�.

Several general properties are apparent from the first in-
tegral of the Euler-Lagrange equations, which can be written
as follows:
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G11�

2
Ps,s

2 +
G66�

2
Pr,s

2 = fEL�Ps,Pr� − fEL0. �41�

Here the “Euler-Lagrange potential” fEL�Ps , Pr� and the inte-
gration constant fEL0, determined from boundary conditions
�Eqs. �28� and �29��, reads

fEL�Ps,Pr� = �1
s Ps

2 + �1
r Pr

2 + �11
s Ps

4 + �11
r Pr

4 + �12
sr Ps

2Pr
2

+ �111� �Ps
6 + Pr

6� + �112� Ps
2Pr

2�Ps
2 + Pr

2� ,

fEL0 = fEL�P0/�2,P0/�2� . �42�

The shape of the Euler-Lagrange potential fEL�Ps , Pr� for
BaTiO3 parameters is apparent from the Fig. 3. By definition,
it has two minima I and II, corresponding to the domain
states selected as boundary conditions �Eqs. �28� and �29�,
respectively�. The searched for solution of the Euler-
Lagrange equation can be considered as a least-action path
connecting these domain states. As the fEL potential is sym-
metric with respect to the Pr=0 plane, it is natural to define
the Pr=0 point of the trajectory as the center of the domain
wall. Let us associate this state with s=0. Then, the Pr com-
ponent of the solution is an odd function of s. Since the exact
shape of Pr�s� not known, it is convenient to define76 the
domain-wall thickness via the derivative of the switched po-
larization component at the domain-wall center:

2�HT = 2� 1

Pr

� �Pr

�s
�

s=0

−1

, �43�

where Pr
=lims→
 Pr�s�= P0 /�2. The motivation for this
definition is apparent from Fig. 2. In the special case of Eq.
�40�, it gives just 2�HT=2���A.

The same Euler-Lagrange potential appears in the calcu-
lation of other types of �110�-oriented 90° domain walls. For
example, replacement of Eq. �29� by a new x+y→ +

boundary condition

�P1,P2,0� → �0,− P0,0� ,

�e1,e3,e3,e4,e5,e6� → �e�,e
,e�,0,0,0� �44�

defines the head-to-head domain-wall solution, which corre-
sponds to the I↔ IV trajectory, passing through a “head-to-
head” domain-wall center HH �see Fig. 3�.

The magnitude of polarization in the center of the head-
to-head �head-to-tail� domain wall is given by

PHT1
2 =

− �11
s + ���11

s �2 − 3�1
s�111�

3�111�
,

PHH1
2 =

− �11
r + ���11

r �2 − 3�1
r �111�

3�111�
, �45�

and the associated fEL values are

fHT1 = − PHT1
4 ��11

r + 2�111� PHT1
2 � ,

fHH1 = − PHH1
4 ��11

s + 2�111� PHH1
2 � . �46�

Using the first integral of the Euler-Lagrange equations, the
domain-wall thicknesses can be expressed as

FIG. 2. Polarization profiles across a 90° head-to-tail domain
wall in room-temperature BaTiO3 calculated without long-range
dipole-dipole interactions �using parameter set I of Table I�. Larger
point symbols stay for Pr, smaller ones for Ps and P= 	P	
=�Ps

2+ Pr
2, respectively. The dash-dotted line indicates the meaning

of the domain-wall thickness defined in Eq. �43�.
FIG. 3. Euler-Lagrange potential fEL�Ps , Pr� for model I but

without long-range dipole-dipole interactions. Minima I and II cor-
respond to domain states selected as boundary conditions. The state
denoted HT �HH� corresponds to the polarization state in the center
of the head-to-tail �head-to head� domain wall.
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2�HT1 = P0� G66�

fHT1 − fEL0
,

2�HH1 = P0� G11�

fHH1 − fEL0
. �47�

Let us stress that although the head-to-head and head-to-
tail domain walls are found equivalent in some simplified
models, in general they have distinct energies and thick-
nesses already at the level of the Landau-Ginzburg-
Devonshire model. The difference between thicknesses can
arise either because a general anisotropy of the gradient ten-
sor �G66� =G11� only if G44+G12=0� or because of a general
anisotropy of electrostriction tensor �q44�0�. In the case of
BaTiO3, however, these differences are negligible, and the
real effect is due to the inhomogeneous depolarization field
Fdep associated with charge on head-to-head domain walls
�compare Fig. 2 and Fig. 4�. Such a depolarization field can
be evaluated from Eq. �6� with appropriate boundary condi-
tions. Assuming as, e.g., in Ref. 18 that the depolarization
field is zero �compensated� in the domain state I, the result-
ing Euler-Lagrange potential including the depolarization en-
ergy contribution reads

fEL2 = fEL +
1

2�B�0
�Ps − P0/�2�2. �48�

This contribution can drastically change the shape of the
Euler-Lagrange potential. In our room-temperature BaTiO3
model, the minima II and IV are in fact completely elimi-
nated �see Fig. 5� so that only head-to-tail �and tail-to-head�
domain walls are permissible. Simultaneously, the saddle-
point polarization is pushed towards to P0 /�2 and the
charge-neutral condition of Zhirnov �Ps� P0 /�2� thus be-
comes quite a good approximation. Within this approxima-

tion, the Euler-lagrange equation for Pr �in model sixth-order
Landau expansion� reads

G66� Pr,ss = 2�1
cnPr + 4�11

cnPr
3 + 6�111� Pr

5, �49�

where

�1
cn = �1

r + �12
sr P0

2 + 0.25�112� P0
4,

�11
cn = �11

r + �12
sr P0

2 + 0.5�112� P0
2, �50�

and it has thus the simple solution �Eq. �40�� with

�� =
1

P0
� G66�

6�111� P0
2 + �11

cn ,

A =
6�111� P0

2 + �11
cn

4�111� P0
2 + �11

cn . �51�

The width of such a strictly charge-neutral head-to-tail do-
main wall reads

2�HT2 = 2���A =
2

P0
� G66�

6�111� P0
2 + �11

cn = P0� G66�

fHT2 − fEL0
,

�52�

where the Euler-Lagrange potential at the domain-wall cen-
ter is now approximated by

FIG. 4. Polarization profiles across a 90° head-to-tail domain
wall in room-temperature BaTiO3 calculated for the present model
including the dipole-dipole term using parameter set I of Table I.
Larger point symbols stay for Pr, smaller ones for Ps and 	P	,
respectively.

FIG. 5. Euler-Lagrange potential fEL2�Ps , Pr� for model I but
including long-range dipole-dipole interactions. Minima I and II
correspond to domain states selected as boundary conditions.
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fHT2 =
1

2
�1

s P0
2 +

1

4
�11

s P0
4 +

1

8
�111� P0

6. �53�

The numerical values of 2�HT2 for room-temperature BaTiO3
are given in Table III. It is obvious that the 2�HT2 estimate is
really very close to the domain-wall width of the exact solu-
tion

2�HT = P0� G66�

fHT − fEL0
, �54�

where fHT is the true saddle-point value of fEL+ fEL2, given
by the minimum value of the potential

fEL2�Ps,0� = �1
s Ps

2 + �11
s Ps

4 + �111� Ps
6 +

1

2�B�0
�Ps − P0/�2�2.

�55�

Once the domain-wall profile �course of Ps�s� , Pr�s� ,
e��s�� is known, the domain-wall energy �90 can be calcu-
lated from the path integral

�90 = �
−





�fEL2�Ps�s�,Pr�s�� − fEL0�ds = 2�
−





fG ds .

�56�

In the strict charge-neutral approximation �div P=0�, the
head-to-tail domain-wall energy reads

�HT2 =
G66� P0

2

2��
A2I�A� , �57�

where �� and A are given by Eq. �51� and I�A� is a numerical
factor67

I�A� = �
−



 cosh�t�2 dt

�A + cosh�t�2 − 1�3 , �58�

depending on the deviation of the domain-wall profile from
the tanh�s� shape.

V. DISCUSSION

A. Domain-wall thickness

We note that the thickness of a fully relaxed 90° domain
wall in our models is about one order of magnitude larger
than the unit cell size, so that the resulting microscopical
displacement profile is really smooth. The predicted value
itself �about 3.6–3.7 nm� is in reasonable agreement with
various experimental estimates, resumed in Table IV. When
judging the experimental values, one has to bear in mind that
there is no straightforward way of measuring the spatial pro-
file of polarization across the domain wall so that the pro-
vided experimental values should rather be considered as ap-
parent widths that tend to overestimate the actual thickness.
Other reasons for the overestimation could be effects of lat-
eral resolution, residual strain, roughening by thermal fluc-
tuations or defects,65 possible broadening due to proximity of
the crystal surface,66 and so on. Moreover, the present calcu-
lation suggests that if the depolarization charge can be
screened out by mobile charges, the domain wall would ac-
tually approach 2�HT1 �about 9 nm�. The only method that
predicts very sharp domain walls is electron holography.26,27

The value in the earlier paper26 is even lower than our pre-
diction but such an underestimation may possibly come from
the approximations employed in the evaluation26,27 of the
domain-wall thickness from the observed electron interfero-
grams.

The frequently cited theoretical estimate of 90° twin
boundaries given in Ref. 31 is that calculated by Zhirnov17

�2�HT2=10−20 nm�. This calculation is surprisingly good
taking into account that it was based on a fourth-order Lan-
dau potential and a rather crude estimation of model param-
eters. A similar rough estimate �giving 2 nm� was given in
Ref. 67 which employs a sixth-order Landau potential but
the domain wall is not a fully relaxed �strain was evaluated
from e�=0 rather than from �e� /�s=0� condition. We are not
aware of any more advanced calculations of 90° twin bound-
aries in BaTiO3.

In this paper, we have not investigated properties of 180°
domain walls. The case of the basic planar uncharged 180°
wall is, however, quite simple: the depolarization term can be

TABLE III. Thickness of domain walls in BaTiO3 at ambient
conditions, calculated from the present model according to the defi-
nition �43�. Here 2�HH1 and 2�HT1 stand for fully relaxed head-to-
head and head-to-tail domain walls in the model without the depo-
larization energy, 2�HT stands for the fully relaxed head-to-tail
domain wall in the complete model, 2�HT2 stands for value calcu-
lated using approximation �52�, and 2�180 stands for the thickness of
the 180° domain wall evaluated from Eq. �59�.

I II III Unit

2�HH1 8.64 8.62 8.41 nm

2�HT1 9.36 9.40 9.24 nm

2�HT2 3.59 3.57 nm

2�HT 3.59 3.58 3.69 nm

2�180 0.63 0.65 0.67 nm

TABLE IV. Experimental estimates of 90° wall thickness in
BaTiO3. TEM, AFM, and SNOM stand for transmission electron
microscopy, atomic force microscopy, scanning near-field optical
microscopy.

Model
90° wall thickness

�nm� Source �Year�

TEM 20 Ref. 64 �1964�
TEM 4–6 Ref. 33 �1972�
TEM 7–12 Ref. 30 �1974�
Electron holography 1–2.5 Ref. 26 �1992�
Electron holography 2–5 Ref. 27 �1993�
X-ray diffraction 4–6 Ref. 28 �1997�
X-ray diffraction 14 Ref. 29 �1999�
AFM/SNOM 25 Ref. 32 �2000�
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dropped out and there is only a single Euler-Lagrange equa-
tion. The problem was treated, e.g., in Ref. 21. The expres-
sion for its thickness can be obtained in the form

2�180 = 2P0�G44

2EB
, �59�

where the barrier on the associated Euler-Lagrange potential
is in case of the sixth-order Landau expansion simply:

EB = ��11
�e� −

q12
2

2C11
�P0

4 + 2�111P0
6. �60�

The domain-wall energy can be expressed as

�180 =
G44P0

2

�180
A180

4 I�A180� , �61�

where

A180 =

3�111P0
2 + �11

�e� −
q12

2

2C11

2�111P0
2 + �11

�e� −
q12

2

2C11

�62�

and I�A� is given by Eq. �51�. The expression �59� gives
thickness of about 0.63 nm �0.65 nm, 0.67 nm� for model I
�models II, III� and a domain-wall energy of about 6 mJ/m2.
Such values are in nice agreement with the independent ab
initio calculations of Ref. 76 �0.56 nm, 7–16 mJ/m2�. Let us
stress that even here, the domain thickness is larger than the
unit cell �0.4 nm�.

B. Temperature evolution

The domain-wall thickness and profile can considerably
change with temperature or pressure. The properties of the
90° domain wall of BaTiO3 can be calculated in our model in
at any temperature within stability limits of the tetragonal
phase. The temperature dependence of the Landau potential
coefficients as given in Refs. 41 and 44 gives the temperature
evolution of the domain-wall thickness as shown in Fig. 6.

An increase of the domain-wall thickness with temperature is
the usual trend and it was also seen30 in experiments.

It should be stressed that in the room-temperature case
discussed earlier, the head-to-head and head-to-tail central
states correspond to the true saddle points of the potential
fEL. In general, however, the domain-wall center may be-
come a local minimum. Our derivations are also valid in this
case except that the domain center is no longer the point with
the largest gradient of the polarization. This is expected to
happen in the vicinity of the tetragonal-orthorhombic phase
transition. For fEL of model I it happens already at 24 °C.
Nevertheless, the influence of the coexisting local minimum
on the domain wall profile is quite small here and it is any-
way removed when the dipole-dipole interaction term is in-
cluded.

C. Symmetry considerations

The 90 domain wall profiles considered here are described
by a polarization field which has a normal component Ps and
a tangential component Pr. As mentioned earlier, these com-
ponents are for head-to-tail domain-wall even and odd func-
tions of s, respectively �Ps�s�= Ps�−s� and Pr�s�=−Pr�−s��.
Therefore, the associated polarization field P is symmetric in
the sense that there is this unique relation between the shape
of the wall on the opposite sides from the central plane s
=0, which can be identified with the domain-wall center.

The realistic atomic structure of such a domain wall can
be in principle derived from the reference cubic structure by
applying atomic shifts similar to that of the soft mode,68 with
vectorial amplitudes proportional to the superposed polariza-
tion field with components (Ps�s� , Pr�s�). Irrespectively of
the central plane position, the layer symmetry69 of the result-
ing atomic arrangement68 would be mz. As such atomic struc-
ture does not have a symmetry element relating points at
opposite sides of the central plane, it should be considered as
asymmetric, in agreement with the rigorous symmetry analy-
sis of Ref. 69�. Clearly, the asymmetry of the domain wall
itself �as defined in Ref. 69� does not exclude possibility to
describe it as a reference atomic structure with displacements
modulated by odd and even functions of s.

It was also argued that the asymmetry of the head-to-tail
domain wall allows for a residual charge distribution in the
form of a dipole layer.70 On passing through the domain
wall, this dipole layer creates a step in the macroscopic elec-
trostatic potential. The unscreened magnitude of this step,70

�� = −
1

�0
� �Pr�s� − P0/�2�ds , �63�

in the fully relaxed head-to-tail wall in model I is about
0.5 eV, which is quite comparable with the first-principles-
based estimate70 for PbTiO3 �0.18 eV�. Finally, according to
definitions of Ref. 71, these head-to-tail solutions are chiral.

D. Model parameters

In this work, we have determined gradient coefficients
from an inelastic neutron scattering experiment. We estimate
that the error in the determination of G11 and G44 is about 5%

FIG. 6. Thickness of a 90° domain wall as a function of tem-
perature, calculated for model I with Landau potential parameters
varying according to the Ref. 44.
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and 25%, respectively. These uncertainties are probably the
principal limiting factor in predictions of the 90° and 180°
domain wall widths. At the same time, the available data are
insufficient for a quantitative estimate of G12. This does not
really matter here, since G12 appears in the calculations al-
ways together with the much larger coefficient G11, but it
should be kept in mind when applying the present model
parameters to other problems. In fact, we are not aware of
any previous determination of the gradient tensor in BaTiO3.
For example, the predictions of Ref. 17 are based on a very
rough guess that G11��1�0�d2, where �1�0� is a low tem-
perature value �1 and d is a lattice constant; Refs. 36 and 37
adopt another estimate giving G11=250
10−11 J m3 C−2

while Ref. 8 has simply chosen G11=1.38
10−11 J m3 C−2

in order to receive sharper domain walls, and others have just
worked with rescaled, dimensionless variables.34,35,38 None
of these previous works has considered the huge anisotropy
G11�G44, which is essential for reproducing the relative size
and energy 90° and 180° domain walls, as apparent from
Eqs. �54�, �57�, �61�, and �59�. In any case, additional experi-
ments or first-principles calculations could be helpful for the
determination of all these gradient coefficients with more
precision.

In addition to this, there is a legitimate concern that
all Landau coefficients do depend on temperature72–75 and,
moreover, on the order of the Landau potential
expansion.72,73 By the way, the latter is apparent from Table
I, too. There are also valid arguments75 against the model
with sixth-order expansion only. Such a discussion, however,
is not in conflict with the present work. Both sixth- and
eighth-order potentials considered here were constructed in a
way to reproduce reasonably quantities like susceptibility,
transition entropies, spontaneous polarization, energy differ-
ences between the tetragonal and orthorhombic states, and so
on. Here it is merely this kind of �reliable� basic quantities
through which the �somewhat ambiguously defined� coeffi-
cients appear in present calculations. For example, inspection
of Eq. �54� suggests that the head-to-tail domain wall width
depends primarily on the energy difference between the
single-domain state and the intermediate orthorhombic state
inside the wall, the spontaneous polarization, and the gradi-
ent coefficients. Therefore, we do not expect much error here
in choosing a sixth-order model instead of an eighth-order
model, although the eighth-order model may be in principle
better adjusted. One should keep in mind, however, that for

quantitative calculations of other phenomena, like those75

which rely on the nonlinear response to high electric fields,
the present model may turn out to be insufficient.

VI. CONCLUSION

In this work, we have completed the available Devonshire
model of BaTiO3 by quantitative appreciation of the dipole-
dipole and the highly anisotropic gradient interactions.
Within this model, the basic properties of 90° domain walls
were analyzed in detail. It was found that flat �charged� head-
to-head 90° domain walls are not stable at ambient condi-
tions. The thickness 2�HT of the head-to tail 90° wall and
thickness 2�180 of the 180° wall were calculated as a function
of temperature and found to be in acceptable agreement with
available experimental data and a first-principles-based
model.76 As �HT and �180 play the role of polarization-
polarization correlation lengths in the ferroelectric phase, we
believe that the same set of parameters values should allow
realistic calculations of other BaTiO3 domain-wall phenom-
ena or problems with inhomogeneous order parameters.

The success of the quantitative predictions for BaTiO3
indicates that the earlier proposed24,51 program—to derive all
parameters in the model from bulk properties—is feasible
and useful for ferroelectric perovskites in general. Applica-
tion of the program to other materials is beyond the scope of
this work but it is worth noting that all the calculations given
here apply directly to tetragonal phases of ferroelectric per-
ovskites like PbTiO3 or KNbO3. Clearly, numerous analyti-
cal expressions derived here �e.g., the expression for thick-
ness and energy of the strictly charge-neutral head-to-tail
domain wall given in Eqs. �52�, �53�, �57�, and �58� or the
formulas for 180° wall given in Eqs. �59�–�62�� can be thus
useful in analyzing of such materials, too. Whether the pa-
rameters come from the experiment or first-principles stud-
ies, the model given by Eqs. �1�–�6� gives the possibility of
quantitative simulations of domain-wall or inhomogeneous
polarization phenomena at scales of the order of 1–100 nm
in a variety of interesting insulating ferroelectrics.
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