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Recent local tunneling data indicate strong nanoscale inhomogeneity of a superconducting gap in high
temperature superconductors. Strong local nanoscale inhomogeneity in the bosonic scattering mode has also
been observed in the same samples. We argue that these two inhomogeneities are directly related to each other.
To address local boson scattering effects, we develop a local strong coupling model of superconducting pairing
in a coarse grained superconducting state. Each patch is characterized by local coupling to the bosonic mode
as well as by local mode energy. We find that local gap value on each patch grows with the local strength of
electron-boson interaction. At the same time local gap value decreases with the local boson mode energy, an
observation consistent with the tunneling experiments. We argue that features in the tunneling spectrum due to
boson scattering are consistent with experimentally observed spectra. We also address the 16O to 18O isotope
substitution. Since both coupling constant and boson energy could change upon isotope substitution, we prove
that interplay between these two effects can produce results that are very different from the conventional BCS
model.
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I. INTRODUCTION

Electron-boson interaction is at the center of the pairing
interaction in conventional superconductors. Pioneering
work of Eliashberg,1 McMillan and Rowell,2 and Scalapino3

conclusively proved that the non-BCS features in the tunnel-
ing spectra in conventional superconductors are directly re-
lated to the electron-boson coupling and ultimately to the
formation of the superconducting state. Experimental evi-
dence of the “strong-coupling” features4 in the tunneling
spectra was clearly connected to the known phonon spectra
in these materials.5 On the other hand the number of super-
conducting materials where electron-boson coupling has
been seen was small and the initial weak coupling approach
of Bardeen-Copper-Schrieffer theory was successful in pre-
dicting all the measured properties in these materials. The
few superconductors, like Pb and Sn, with clear electron-
phonon features in the spectrum were called “bad actors”
because of deviations from BCS predictions.

In this paper we will focus on high temperature supercon-
ductors �high-Tc�. In high-Tc materials the situation is very
different. Tunneling spectra in all of these materials clearly
deviates from the mean field BCS d-wave tunneling density
of states �DOS�, see, e.g., Fig. 7. In this sense all of the high-
Tc materials are “bad actors.”

There has been substantial evidence for strong quasiparti-
cle renormalization from tunneling6–13 and angle-resolved
photoemission �ARPES�14–27 experiments. The strong quasi-
particle renormalization has been suggested as a manifesta-
tion of strong electronic coupling to collective modes.18–38

Observed strong electron-electron correlations are clearly
important for mechanism of superconductivity. At the same
time the physics of electron-boson coupling in these materi-
als is crucial for understanding of the pairing in these mate-
rials. We would argue that these features of the tunneling
spectra are due to strong electron-boson coupling.

Recent scanning tunneling microscope �STM� experi-
ments reveal strong electronic inhomogeneity.39–44 More re-

cent experiments with inelastic electron tunneling spectros-
copy �IETS STM� have allowed one to directly observe
inelastic tunneling features in Bi2Sr2CaCu2O8+� �BSCCO�
high-Tc materials. These experiments have shown that
bosonic modes that produce strong coupling features in tun-
neling spectra are also inhomogeneous on the scale of
20–50 Å.45 Nontrivial correlations between local gaps and
local boson mode energies were observed.

Here we follow the notion that deviations from the BCS
tunneling DOS in these materials are caused by the strong
coupling effects due to electron-boson interaction in these
materials. We present a strong coupling theory of d-wave
superconductor where the superconducting state arises as a
result of a pairing mediated by bosonic modes, that is attrac-
tive in d-wave channel.

In this regard, the treatment is analogous to the conven-
tional Eliashberg-McMillan-Rowell approach. The main de-
parture from the conventional approach is that we explicitly
allow inhomogeneity in the electron-boson coupling strength
and the bosonic mode energy. The typical size of inhomoge-
neity we will assume is on the order of 20–50 Å. We will
assume that the pairing is local and determined by local val-
ues of coupling strength and mode energy at the given patch.
This approximation allows us to simplify the calculation dra-
matically. If one takes guidance from the data, it is clear that
inelastic tunneling features and superconducting gaps are
rather local, and there is no “self-averaging” seen in the tun-
neling spectra. In other words, local approximation might be
a good starting point for this kind of analysis.

We solve self-consistently the Eliashberg equations on
each patch and find the local d-wave order parameter. Ran-
dom Gaussian distributions of the local coupling constant
and local mode energy are considered. As the result, local
order parameter �OP� values are random maps that correlate
with the input parameters. We find that the local OP posi-
tively correlate with the coupling constants. One of the most
important findings of this local formalism is that we find
indeed anticorrelation between the typical local boson fre-
quency and the superconducting OP. This negative correla-
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tion is a direct consequence of the strong local coupling na-
ture of the pairing we assumed. The IETS-STM experiment
by Lee et al.45 has indeed shown a negative correlation be-
tween gaps and IETS mode energy.

Using our local model we also address the isotope effect.
The most commonly used isotope substitution for high-Tc
materials is 16O by 18O substitution. Isotope effect was stud-
ied in the past by measurements other than STM tunneling.
Here we point to the important papers in this regard by Shen
and Lanzara groups20 that argue how isotope effect can
change both the characteristic bosonic frequency and the
coupling constant to the local bosonic mode.18,20,22,26,27 We
find that isotope shift in these two quantities can either work
together to mutually enhance the superconducting gap, or
they can work against each other partially cancelling and
therefore making net isotope effect small. Hence we con-
clude that the naive arguments about the “smallness” of iso-
tope effect with substitution of 16O by 18O are misleading.

While in this paper we focus on electron-boson interac-
tion, in real systems this interaction contributes to the pairing
in these materials. We would like to make it clear that we
believe pairing in high-Tc materials is a result of interplay
between strong electron-electron correlations46,47 and
electron-boson interaction. To address the effects of spatial
inhomogeneity of tunneling IETS spectra we focus only on
electron-boson coupling, ignoring the electron-electron inter-
action part that will not produce IETS features. It is not clear
how high the transition temperature would be assuming only
electron-boson pairing. We leave this question for a separate
investigation.

The outline of the paper is as follows: In Sec. II, we will
introduce local strong coupling formalism and outline the
details of the formalism starting with the general inhomoge-
neous pairing theory in real space. In Sec. III, we will present
results from solving self-consistently the strong coupling
equations. In Sec. IV we will discuss the isotope effect for an
inhomogeneous superconductor. We conclude in Sec. V.

II. LOCAL PAIRING FORMALISM

We start with the strong coupling analysis in the local
pairing limit. Locality here would be understood in the sense
of a coarse grain approach where we assume that the typical
sizes of grains are on the order of the coherence length of
superconductor ��20 Å. This assumption is consistent with
the STM observed granularity in Bi2212.44,45

We will present a detailed description of local strong cou-
pling theory with the steps in the logic outlined. Some of the
points are well-known but we keep them in for complete-
ness. The formulas are very similar to the standard Eliash-
berg discussion except we want to stay with the real space
description.1–3

Taking the STM data as guidance we can imagine that we
take a coarse grained view of the sample. We are taking the
given field of view and pixelizing it in a set of boxes with
characteristic size of 20�20 Å. Each of the pixels will be
assigned three variables: order parameter W�R�, bosonic
mode energy �0�R�, and local coupling constant g�R�. Cou-
pling constant and bosonic mode energy variables are ran-

domly drawn from the given distribution. We calculate the
local order parameter self-consistently.

To start we write down the Green’s function equations in
the Nambu space, assuming no translational invariance. We
consider the case of both electron-electron and electron-
boson interactions being present. The electron-boson cou-
pling term in the Hamiltonian assuming no translational in-
variance is

He-lattice =� drdr�dr�cr�
† cr���br�

† + br��g�r,r�,r�� , �1�

where g�r ,r� ,r�� is the coupling constant and x�r�=br+br
† is

the boson field. If we assume that only electronic density
coupled to the lattice degrees of freedom, then coupling con-
stant g�r ,r� ,r��=g�r��r,r��r,r�. The bosons that couple to the
electronic density on the other hand are taken to be on the
bonds connecting nearest neighbor sites, or alternatively to
reside on the dual lattice. We will focus on the local bosonic
mode coupling. This seems to be a general enough situation
that we believe will capture the relevant physics to be ad-
dressed.

Next we consider the second order terms in the effective
action that would look like

� drr�r�dr1r1�r1��
0

�

d	d	1g�r,r�,r��g�r1,r1�,r1��cr�
†

��	�cr���	�cr1�1

† �	1�cr1��1
�	1�xr��	�xr1�

�	1� , �2�

here we assume that phonon propagator B�r−r1 ,	−	1�=
−�T	x�r��	�x�r1��	1�� is local given the STM data that indi-
cate the strong local variations of the bosonic excitations as
seen in IETS STM.45 Thus we assume

− �T	x�r�x�r1�� = B�r,	��r,r�. �3�

Then in the self-energy terms electron-boson interaction
would produce the term that we would see as
g�r�g�r��B�m

�r ,r� �r� ,r��. We again stress here that both
coupling constant g and boson energy will be assumed inho-
mogeneous. This situation is qualitatively different from
weak coupling approach where only the single effective cou-
pling constant will be position dependent.

The equation for Green’s functions in Matsubara fre-
quency 
n=��2n+1�kBT becomes

��̂r − S�r,r�,i
n� W�r,r�,i
n�
W*�r,r�,i
n� − �̂r − S�r,r�,i
n�

	 � Ĝ�r�,r�,i
n�

= 1��r − r�� �4�

with � understood as a convolution in real space. �̂r is the
kinetic energy operator, that in momentum space will have
the form ��k�=−t
cos�kxa�+cos�kya��−,  being the
chemical potential. 1 being the indentity matrix, and

Ĝ�r ,r� , i
n� being a matrix in Nambu space with relevant

components Ĝ�r ,r� , i
n�11=G�r ,r� , i
n� and Ĝ�r ,r� , i
n�12

=F�r ,r� , i
n� being the normal and anomalous Green’s
functions.
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We also explicitly keep the normal self-energy in the
Gorkov equations: S�r ,r� , i
n� that renormalizes the normal
self-energy propagators.

Normal and anomalous self-energies are defined self-
consistently through

S�r,r�,i
n� = − T�
m
� dr�dr�V
n−
m

�r,r��r�,r��

�G�r�,r�,i
m� , �5�

W�r,r�,i
n� = − T�
m
� dr�dr�V
n−
m

�r,r��r�,r��

�F�r,r�,i
n� , �6�

where the effective pairing interaction V�m
�r ,r� �r� ,r�� is

given by the combination of both direct and lattice-vibration-
induced electron-electron interaction:

V�r,r��r�,r���n
= Vee�r,r��r�,r��

− g�r�g�r��B�m
�r,r��r�,r�� . �7�

V is defined on Matsubara bosonic frequency �m=2�mkBT,
assuming local coupling g. Here Vee is an electron-electron
interaction written in real space �below we will assume that
this term might be inhomogeneous as well�. We assume Vee

to be weakly frequency dependent.
Next we introduce a local �on a coarse grained scale�

description for the properties of the superconductor. For any
discussion of the local nature of pairing we will need to keep
track of the relative coordinate and center of mass coordi-
nates. For example, consider the pairing amplitude
W�r ,r� ,
n� that describes the pairing amplitude of two par-
ticles at sites r and r�. It is convenient to introduce the center
of mass and relative coordinates for the pairing field and for
the kernel g2B

R = 1/2�r + r��, R1 = 1/2�r1 + r1��

r̃ = r − r�, r̃1 = r1 − r1� �8�

for simplicity of notation we will drop the sign in r̃ hereafter
with the understanding that the capital coordinate label
would mean center of mass coordinates and small coordinate
label would mean the relative coordinates. In thee coordi-
nates W�r ,r� ,
� becomes W�R ,r ,
�, and similar expres-
sions for S, �, etc. The interaction term will also have a
factorizable form

V�m
�r,r��r1,r1�� = V�n

�R,r�R1,r1� . �9�

In the case of homogeneous pairing W is independent of
R. We will focus on the inhomogeneity of W�R ,r ,
� as a
function of R.

We introduce the basis functions for the d-wave channel
and ignore any other pairing channels. This is not a principal
assumption but a useful one that allows us to greatly simplify
equations.

We have therefore

W�R,r,
� = W�R,
���r� ,
�10�

V�n
�R,r�R1,r1� = V�n

�R,R1���r���r1�

and similar for S�r ,r� ,
n�, etc.
Here ��r� is a real space representation of the basis func-

tion that has a d-wave character. The simplest way to present
this is to take a function that is nonzero at nearest neighbors
of site r that has a d-wave signature: ��r�=��=±x,±y

�−1���r,r+� on the lattice. In the continuum we would have to
deal with the gradient operator: ��r����x

2−�y
2�. In the mo-

mentum space it will be a simple ��k�=cos�kxa�−cos�kya�.
It is also convenient to introduce mixed representation

where we use Fourier transform for the relative coordinate.
Then

W�
n,R,k� = W�
n,R���k� ,

S�
n,R,k� = S�
n,R�1k, �11�

V�m
�R,k�R1,k1� = V�n

�R,R1���k���k1� .

We consider the d-wave channel only in assuming a
simple factorizable approximation. This is definitely an over-
simplification since the inhomomgeneous system would ad-
mit the mixture between components. One can always in-
clude the mixing in a more detailed approach. In practice this
mixture could be modest. For us the main focus here would
be on the real space modulations of the gap function
W�R ,
n�, electron-lattice and electron-electron interactions
V�m

�R ,R��. We proceed with this simplifying assumption
that would make our discussion more transparent.

We can rewrite the self-energies S ,W Eqs. �5� and �6�
upon projection on the d-wave channel as

W�R,
n� = − T�
m
� dR�V
n−
m

�R,R���F�
m,R�,k���d

�12�

and similarly for S:

S�R,
n� = − T�
m
� dR�V
n−
m

�R,R���G�
m,R�,k���

�13�

with

�F�
m,R�,k���d =� dk���k��F�
m,R�,k�� , �14�

�S�
m,R�,k��� =� dk�S�
m,R�,k�� . �15�

We focus on the gap equation hereafter. We find that nor-
mal self-energy S�
n ,R ,k� at most leading to mass renor-
malizations on the scale unity. The fermi surface average
correction due to normal self-energy corrections is small and
hence we ignore it. This allows us to keep only the d-wave
projected part of the interaction in Eq. �11�.
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From the solutions of the Green’s function we have self-
consistently defined F, G:

F�
n,R,k� =
W
n

�R���k�


i
n − S�
n,R��2 − ��k� − W2�
n,R��2�k�
,

�16�

G�
n,R,k� =
i
n − S�
n,R�


i
n − S�
n,R��2 − ��k� − W2�
n,R��2�k�
.

�17�

The gap in the quasiparticle spectrum is determined as

��
n,R� =
W�
n,R�

1 − S�
n,R�/i
n
. �18�

These equations are written in general form. We take S=0
below.

Equations �12�, �13�, and �16�–�18� are the main result of
this section. These equations are quite general and describe
the inhomogeneous superconducting state in the presence of
inhomogeneous pairing interaction.

These equations are similar to the Eliashberg equations
considered for a homogeneous superconductor. Here we fo-
cus on the spatial dependence of the superconducting prop-
erties like gap in the spectrum and pairing interaction
V�m

�R ,R��.

A. Local approximation

We can make further progress if we will make some ad-
ditional assumptions. We will assume that the kernel in Eqs.
�12� and �13� is local. Again, this locality should be under-
stood in a coarse graining sense with typical length scale for
coarse graining to be on the order of superconducting coher-
ence length ��20 Å. This length scale is compatible with
the observed inhomogeneities in the tunneling gap and
bosonic frequency, as imaged with STM.45

Local on-site pairing kernel would be incompatible with
the d-wave character of the pairing we assumed here. For a
moment we will focus on the electron-lattice part of the ker-
nel. It contains an effective coupling g and boson propagator
B as a single combination we label g2B. We will assume
local approximation for both coupling constant g and
bosonic frequency. Thus

V�m
�R,R�� = Vee�R��RR� − g�R�g�R��B�m

�R��RR�,

�19�

where, following standard Eliashberg approach,1–3 we will
assume that the bosonic spectral density �on the real fre-
quency axis� would have a local character:

Im„g2B�R,R�,��… = �g2�R�
�„� − �0�R�…

− �„� + �0�R�…��RR�. �20�

With the recent STM experiments we now have an inde-
pendent experimental measure of the local bosonic energy
�0�R� as a function of position and doping.45 Typically,

these energies are randomly distributed in a sample with
characteristic variations on the length scale on the order of
20–50 Å and thus are consistent with our assumption of lo-
cality. The sample averaged frequency �0= ��0�R�� is essen-
tially doping independent and is about 52 meV, while distri-
bution ranges between 40 and 70 meV for the observed
bosonic modes in STM experiments, see Fig. 1. We do not
have similar experimental information on coupling constant.

In practice, of course, only the total kernel V will enter
into the self-consistency equations and we would not be able
to differentiate the effects of inhomogeneity in the W due to
electron-electron versus electron-lattice interaction inhomo-
geneity. There is one important distinction, however, be-
tween electron-electron vs electron-lattice coupling.
Electron-electron interaction being essentially frequency in-
dependent cannot produce features outside the coherence
peaks. Electron-lattice coupling on the other hand will pro-
duce the features in local tunneling characteristics at 
�R�
=��R�+�0�R�. Hence the local tunneling characteristics
would allow us to extract the inhomogeneous values of the
bosonic modes, at least in principle. In practice one would
have to deal with rather large signal-noise uncertainties but
the local bosonic energy extraction from the dI /dV data can
be done.45

The local version of Eqs. �12� and �13� now would take
the form:

W�R,
n� = − T�
m

V
n−
m
�R��F�
m,R,k���d �21�

and similarly for S:

FIG. 1. �Color online� Illustration of our coarse graining ap-
proach to the local strong coupling solution of Eliashberg equations.
We pixelize a finite system with the size of the patch to be on the
order of �. Then we solve the self-consistent strong pairing equa-
tions on each patch. The outcome of the solution is the set of local
value for the d-wave order parameter that depends on the local
value of boson frequency and local coupling constant. We present
these values as a pixel dependent vector with these three compo-
nents 
W�Ri ,
� ,�0�Ri� ,g�Ri��.
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S�R,
n� = − T�
m

V
n−
m
�R��G�
m,R,k��� �22�

and one can recognize standard Eliashberg equations that are
now written locally, patch by patch. Hereafter we will ap-
proximate S�R ,
n�= �1−Z
n

�i
n, i.e., local Z factor normal-
ization only. In practice we know that effective mass renor-
malization in high-Tc materials is not very large and at most
Z�2, hence the effects of the normal self-energy on quasi-
patrticle dispersion would be minor. It is the pairing interac-
tion contribution from electron-boson interaction that we will
be paying attention to. These equations in the homogeneous
case were well analyzed.1–3

B. Weak coupling approximation

Now we will consider the weak coupling limit of these
equations, namely the case when the pairing amplitude W
and normal self-energy corrections S are small compared to
the typical bosonic energy, �0= ���R��. The most natural
region to make the weak coupling approximation would be
in the overdoped regime where both superconducting gap �
and Tc decrease with increased doping. There are no compet-
ing orders in the overdoped regime that would make the
analysis more complicated. Competition with the other or-
ders, like charge ordered state and pseudogap, would make
our analysis in terms of a single superconducting gap inac-
curate. Therefore the analysis presented below assumes that
we are dealing with optimally doped to overdoped samples.

Summation over Matsubara frequency in Eqs. �21� and
�22� is treated in a standard way by using T�nf�
n�
= dz tanh� �z

2
�f�z� ,�=1/kBT. This integral is reduced to the

integral over spectral density for the effective interaction that
we will assume to be local:

V��� = �
−�

�

dx
Im V�x�
x − �

,

Im„g�
2 �R,R��B��R,R��… = g2�R�„��� − �0�R��

− �„� + �0�R�…�R,R�… ,

�23�
Im Vee�R,R�,�� = Vee�R��R,R�, ��� � �c,

Im V��R� = Im Vee�R� − Im g2B��R� ,

where we have parametrized the position dependent electron-
lattice interaction by local coupling constant g2 and local
boson frequency �0�R�. Electron-electron interaction is as-
sumed to be frequency independent up to cutoff frequency
�c��0.

The analysis we will implement here is essentially the
same as the one used in standard Eliashberg approach. We
use the d-wave projected propagator F and integrate over the
quasiparticle energies ��k� to find from Eqs.�21� and �22�:

W�R,�� = − N0� dx�
0

�

d�� tanh���

2
	 Im„Vx�R�…

x − � + ��

�Re�� W�R,���
��Z�����2 − W2�R,k,����k

	
= �

0

�

d��N0
2g2�R�
�0�R� + ���


�0�R� + ���2 − ���2 + i�

�Re�� W�R,���
��Z�����2 − W2�R,k,����k

	 . �24�

In the weak coupling limit for small coupling g2B�
 ,R�
we can develop a local BCS pairing approximation for this
local strongly coupled superconductor by approximating
W�
 ,R�=W�
=0,R��(�0�R�−
) ,
�0 and a similar step
like cutoff at negative 
.

We will focus on the low energy part of W�R ,�� that will
contain the real part of the gap only. Then �a� the integral
over x is trivial since we assumed spectral function Im V to
be a delta function in frequency. We assume T→0 and hence
tanh� ��

2
�=1. �b� We assume that the electron-electron part

will produce normalizations on the normal channel and also
will produce a d-wave pairing. Then we take a low frequency
limit of this equation �→0 and limit the integral over ��
over the range ����0 since the kernel is attractive only in
this range. The weak coupling limit therefore would read as

W�R,� = 0� = �
0

�0�R�

d��N0
2g2�R�
�0�R� + ���


�0�R� + ���2 − ���2 + i�

� Re�� W�R,� = 0�
��Z�����2 − W2�R,k,� = 0��k

	 �25�

and ultimately we obtain the local version of the BCS equa-
tion for W�R�=W�R ,�=0�:

W�R� = �
0

�0�R�

d��N0gef f�R�

�Re�� W�R�
��Z�����2 − W2�R,k,� = 0��k

	
�26�

with

gef f�R� = 2� d

g2�
,R�B�
,R�



�27�

a weak coupling limit coupling constant in Eliashberg theory.
Using the local approximation for the spectral density Eq.

�23�, we have

gef f = 2
g2�R�
�0�R�

. �28�

Here we explicitly assume that g�R� and ��R� are inde-
pendent random distributions. This assumption is natural if
we allow these two quantities to be set by local environment
in the crystal and we do not assume here that coupling con-
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stant g�R��
M��R��1/2 as would be the case for quantized
extended collective modes. We thus arrive at the local gap
equation for ��R�=W�R� /Z�R�:

��R� = �0�R�exp�−
1

N0gef f�R�
	 . �29�

Equation �29� is applicable in the weak coupling limit and
therefore can be viewed only as a qualitative result. For any
distribution of the coupling constants for small enough aver-
age value �g2B� there will be regions where this coupling
constant is not smaller than 1 and hence weak coupling
analysis would fail in those regions. Nevertheless it is useful
in that it allows us to analyze the results of numerical calcu-
lations, see below and compare numerical results with the
locally observed quantities. With this caveat in mind we will
consider the implications of Eq. �29� for our analysis of the
local pairing.

We find immediately three important consequences of the
local pairing approximation: �1� Effective coupling constant
is a function of the local boson mode energy. Effective cou-
pling constant gef f�R� is inversely proportional to the mode
energy �0�R�. This result implies that there is a direct nega-
tive correlation between local gap and local bosonic mode
energy. Similar direct negative correlation is observed in the
STM experiments on inelastic tunneling spectroscopy.45 �2�
Another implication of this result is that the isotope effect
will affect both the prefactor and coupling constant in Eq.
�29�. This point will be discussed more below. �3� Finally,
from this simple equation we can find local effective cou-
pling constant N0gef f�R� as

N0gef f�R� = −
1

ln� ��R�
�0�R�

	 . �30�

This equation contains two experimentally observable
quantities: ��R� and �0�R�. We therefore can build the real
space map of the effective coupling constant.

III. NUMERICAL RESULTS AND DISCUSSIONS

Here we will discuss the numerical solutions of local
Eliashberg equation. From Eqs. �21� and �22� together with
Eqs. �16� and �17�, it can be written explicitly as

i
nS�R,i
n� = −
1

NL�
�
q

�
i�m

Mef f�i�m,R�
��R,q;i
n − i�m�

�
�i
n − i�m�Z�R,q;i
n − i�m� + �q� ,

W�R,i
n� = −
2

NL�
�
q

�
i�m

Mef f�i�m,R�
��R,q;i
n − i�m�

�W�R,q;i
n − i�m� , �31�

where

Meff�R,k;i�m� = 
Vee�R� − g2�R�B�R,i�m���k �32�

with

B�R;i�m� =
1

i�m − �0�R�
−

1

i�m + �0�R�
, �33�

and

��R,k;i
n� = �
i
nZ�R,q;i
n�2� − 
�k
2 + W2�R,k;i
n��2�1/2.

�34�

Note that the strong correlation between electrons them-
selves can give rise to an effective pairing. In this case, vee is
negative. In principle, we cannot exclude the possibility that
vee also becomes inhomogeneous. Here we focus on the ef-
fect from the electron coupled to local modes and will ignore
the contribution from vee. We mention the equation for nor-
mal self-energy correction for completeness. As was pointed
out, we will ignore S.

We adopt a six-parameter fit to the band structure used
previously for optimally doped Bi-2212 systems,47 having
the form

�k = − 2t1�cos kx + cos ky� − 4t2 cos kx cos ky − 2t3�cos 2kx

+ cos 2ky� − 4t4�cos 2kx cos ky + cos kx cos 2ky�

− 4t5 cos 2kx cos 2ky −  , �35�

where t1=1, t2=−0.2749, t3=0.0872, t4=0.0938, t5=
−0.0857, and =−0.8772. Unless specified explicitly, the en-
ergy is measured in units of t1 hereafter.

We use the method of Vidberg and Serene to first solve
the above coupled equations in the Matsubrara frequency
space. On Matsubara axis the quantities S and W are real. We
then do the analytical continuation with the Pade approxima-
tion to covert them to the axis of real frequency, on which
they have a real and imaginary part. Partly motivated by the
ARPES experiments,18–27 we take the averaged frequency of
the local bosonic modes to be ��0�=0.3 and the bare
electron-bosonic mode coupling constant �g0�=0.5. The tem-
perature is chosen at T=0.01. To be illustrative, we first
show the calculation at a specific coarse-grained spatial
point. Our calculations show that S is negligible and we will
ingore it hereafter.

A. Relation between features of the gap and coupling constant
and bosonic energy

In Fig. 2 we can see that at low energies the real part is
constant and the imaginary part rises only after energy ex-
ceeds the boson energy �0=0.3. The first peak of Re W
curve and shoulder on Im W curve precisely correspond to
the boson energy. Features at higher energies correspond to
the multiboson processes and are at multiples of �0. In Fig.
3 we observe the evolution of the inelastic features as a func-
tion of coupling constant. Gap function is changing substan-
tially even for fixed boson energy. Still there is always a
feature at boson energy for all coupling constants. For larger
energies and larger coupling constants peaks in Re W are
getting broader. In Fig. 4 the features in the real part of the
gap function for different values of boson energy are shown.
Again the first shoulder albeit of different intensity can be
seen at energy that exactly corresponds to the boson energy.
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The feature at E=0.2 for the blue curve is very broad, the
one at E=0.3,0.6 can be seen for boson energy �0=0.3, and
finally for the green curve one can see the feature at E=0.4.
Features at substantially higher energies are likely to be nu-
merical artifacts of our use of Pade approximations in ana-
lytic continuation.

B. Correlation between inhomogeneous coupling constant
and gap; anticorrelation between bosonic mode energy

and gap

Next we consider the effect of electronic inhomogeneity.
For this purpose, we consider two cases, �a� coupling con-

stant has a spatial distribution and �b� local bosonic mode
has a spatial distribution. Both of these parameters can be
position dependent at the same time as we suspect is the case
in real systems. Here we want to differentiate between the
effects coming from coupling constant and effects coming
from frequency variations. We assume that both distributions
are Gaussians.

P�x� � exp� �x − �x��2

2�2 � , �36�

where x represents g0 or �0. Throughout the work, we take
�=0.3.

In Fig. 5 we observe the direct correlation between the
strength of the coupling constant and Re W�E=0�. This di-
rect correlation is natural and to be expected. In Fig. 6 we
find an anticorrelation between the boson mode energy and
gap energy. The nature of this anticorrelation follows from
our assumption on the boson spectral function that is peaked
at one energy �0. Indeed from the structure of the pairing
kernel one can see that larger boson energy at fixed g would
lead to lower effective coupling constant, see Eq. �27�. Thus
we conclude that the anticorrelation is not a consequence of
the weak coupling analysis but is present in the full numeri-
cal solution of the self-consistent gap equations. This anti-
correlation is directly observed in the IETS STM
experiments.45

C. LDOS map and the d-wave order parameter map

We have also calculated the local density of states
�LDOS�.

FIG. 2. �Color online� The real �red/solid line� and imaginary
�blue/dashed line� parts of the complex d-wave order parameter as a
function of energy. Here the bosonic mode frequency �0=0.3 and
the electron-mode coupling constant g0=0.5.

FIG. 3. �Color online� The real part of the complex d-wave
order parameter as a function of energy for various values of the
electron-mode coupling constant g0=0.4 �blue/solid line�, 0.5 �red/
dashed line�, and 0.6 �green/dotted line�. The bosonic mode fre-
quency is fixed at �0=0.3.

FIG. 4. �Color online� The real part of the complex d-wave
order parameter as a function of energy for various values of the
mode frequency �0=0.2 �blue/dotted line�, 0.3 �red/dashed line�,
and 0.4 �green/solid line�. The bare electron-mode coupling con-
stant is fixed at g0=0.5.
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��E� =
2

NL�
�
k

�Im G�R,k;E + i0+�� , �37�

which correspond to the local differential tunneling conduc-
tance as measured by the STM experiments. Figure 7 shows
the local density of states as a function of energy at a se-
lected spatial point corresponding to Fig. 1. For comparison
we also show typical experimental data for STM tunneling
density of states and its derivative, Fig. 7.

We also calculated the spatial image of the LDOS at the
energy �g. In the strong-coupling theory, the d-wave order
parameter is energy dependent. To demonstrate the distribu-
tion of gap inhomogeneity from the LDOS distribution at the
gap edge �g, we should use the d-wave order parameter at
fixed energy, say E= ���. Figure 8 shows spatial distribution

of the LDOS for the case of an inhomogeneous distribution
of local bosonic modes.

IV. ISOTOPE EFFECT IN INHOMOGENEOUS
SUPERCONDUCTOR

One of the most powerful tools to investigate the role of
phonons in the pairing is to study isotope effect. In the case
of conventional supercoductors it was found that isotope
substitution of the lattice atoms would change the transiton
temperature thus directly indicating that lattice is involved in

FIG. 5. �Color online� The spatial distributions of the bare cou-
pling constant �left panel� and the resultant d-wave order parameter
at zero energy. The bosonic mode frequency is fixed at �0=0.3.

FIG. 6. �Color online� The spatial distributions of the mode
frequency �left panel� and the resultant d-wave order parameter at
zero energy. The bare electron-mode coupling constant is fixed at
g0=0.5. Anticorrelation between the mode frequency and gap mag-
nitude is clearly seen. Large mode frequency regions �red/gray
spots in the left panel� correlate with the small gap regions �blue/
dark spots in the right panel�. Anticorrelation for arbitrary coupling
constant is thus verified numerically. In the weak coupling limit the
anticorrelation follows from Eqs. �27� and �28�.
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pairing. By changing the mass of the ions from M to M�
critical temperature Tc�M−� would change by Tc� /Tc
= �M /M���.

First consider conventional homogeneous superconduct-
ors. In conventional superconductors often ��1/2 is ob-
served. This result follows the observation that the effective
coupling constant in standard BCS formalism is independent
of mass M.3 Simple arguments show that effective coupling
constant in homogeneous case gef f =

C
M
av

2 , where C is a con-
stant, M is the ion mass, and 
av

2 is the average phonon
frequency squared. Since 
av�M−1/2 for the phonon spec-
trum regardless of the detailed shape, one finds that the cou-
pling constant in this case is independent of mass M. There-

fore the only effect of the isotope substitution is on the
change of the phonon spectrum and the cutoff frequency that
is in the prefactor in the BCS equation for

Tc = �0 exp�−
1

N0gef f
	 . �38�

We thus find the conventional exponent is �=1/2 that is
set solely by the prefactor �0 within the BCS theory. The
situation we consider is very different. As we pointed out,
gef f�R� is made from two random independent quantities,
g�R� and �0�R�. This will lead to a very different isotope
effect in this random superconductor.

Standard isotope substitution experiment in cuprates is a
replacement of 16O by 18O. The changes in Tc produced by

FIG. 7. �Color online� The density of states as a function of
energy. Here the bosonic mode frequency �B=0.3 and the electron-
mode coupling constant g0=0.5. Also shown is an experimentally
measured dI /dV �blue/solid line� and d2I /dV2 �red/dashed� spectra
at some typical point �Ref. 45�. The overall similarity of the spec-
trum with the one we have calculated is suggestive that the features
in the tunneling seen at the large bias are indeed consistent with the
strong coupling features due to electron-boson interactions.

FIG. 8. �Color online� The spatial distributions of the real part of
the d-wave order parameter at E=�g �left panel� and the local den-
sity of states at the same energy. The bare electron-mode coupling
constant is fixed at g0=0.5.
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this substitution are small, � is small and depends on doping
levels of the samples. In the optimally doped samples � is
essentially zero.

The situation for inhomogeneous superconductors is
qualitatively different from the conventional BCS case. The
inhomogeneous superconductor is characterized by two
rather than one parameter that enters into the gap equation
�20�: one is coupling constant g�R� and another one is a local
boson frequency �0�R�. In principle, both random variable
will change upon isotope substitution. On general grounds,
isotopic substitution would change the local environment as
it affects both in-plane and out of-plane oxygen atoms.
Hence we argue that both the coupling constant and phonon
frequency are affected by isotope substitution. It would mean
therefore that both prefactor and coupling constant in the
exponent are changed in Eq. �29� upon 16O to 18O substitu-
tion. In addition, for the inhomogeneous superconductor one
has to differentiate between the isotope shift of critical tem-
perature of a sample Tc and the isotope shift of the gap ��R�.
Here we do not address the net shift of Tc as it is determined
by phase fluctuations at higher temperatures. Instead we fo-
cus on shift of local gap ��R� or average gap ���R��.

��R� = �0�R�exp�−
1

N0gef f�R�
	 . �39�

Again for simplicity we will take a weak coupling limit of
inhomogeneous Eliashberg equations. Let us take an “aver-
age” of the equation as an approximate way to discuss the
average shifts in �0�R� and in N0gef f�R�, Eq. �39�

���R�� = ��0�R��exp�−
1

�N0gef f�R��
	 . �40�

It is known45 that the average frequency �0= ��0�R��
shifts from 52 to 48 meV upon 16O by 18O substitution. On
the other hand this shift in �0 can be offset by a shift in
average gef f thus producing a zero isotope effect that is very
different from BCS exponent �BCS=1/2. To illustrate how
one gets near zero isotope shift, we take that effective cou-
pling constant shifts by

ln��0

�0�
	 =

1

N0gef f
−

1

N0gef f�
. �41�

This shift of the effective coupling constant could offset
the shift of the prefactor in Eq. �40�. The net isotope effect
will be determined by the combined isotope shift of the bo-
son mode energy and effective coupling constant. They can
mutually cancel each other making the net effect small, as
we suspect is the case near optimal doping. Alternatively,
both effects can add up to produce large isotope shift. Thus
knowing only the shift of boson energy is not sufficient to
address the net isotope effect of the gap.

To illustrate this point we have preformed a “numerical
isotope shift” experiment within our model, see Fig. 9. In
order to model the effect of oxygen subtitution we change
random distribution P��0� of the boson energy �0. We as-
sumed that changing 16O to 18O would shift Gaussian distri-

bution with the mean values of boson energy ��0�O16=�̄

=0.3 to ��0�O18=�̄�1–6% � �upper panel�. At the same time
coupling constant g can also change upon isotope substitu-
tion. We consider the shift in the coupling constant g which
here is taken to be constant at the same time �lower panel�.
For 16O we take g=g0=0.5 and for 18O we use g0�1–4% �.
We find that the negative shift of boson energy by 6% can be
offset by the shift of the coupling constat g0 and the net
effect would be the negative shift of the gap �W�. To address
the net isotope effect it is necessary to measure indepen-
dently both boson energy and coupling constant for 16O and
18O. At the moment there is no independent experimental
measurement of the coupling constant we are aware of.

For completeness we also present the correlation between
the gap and the mode energy �0, Fig. 10. The negative cor-
relation between the gap and mode energy is clearly seen for
both O16 and O18 isotopes.

V. CONCLUSION

In this paper we use a strong coupling model for boson
mediated d-wave pairing for an inhomogeneous supercon-
ductor. To model the inhomogeneous superconductor we
consider a coarse grain model with the typical size of the
patch on the order of superconducting coherence length �
�20–50 Å. We use patch dependent pairing interaction due
to disordered pairing boson with patch-dependent coupling
constant g�R� and boson energy �0�R�. This local pairing
produces a local superconducting gap as a self-consistent so-
lution of Eliashberg equations patch by patch.

We argue that any inhomogeneous theory of strong cou-
pling theory of pairing has to involve at least two indepen-
dent quantities that characterize electron-boson interaction:
coupling constant and boson energy. Reduction of the pairing
theory to an inhomogeneous BCS pairing model does not

FIG. 9. �Color online� Upper panel: histograms of the boson
energy �0 �upper panel� for O16 �red� and O18 �blue� are shown
assuming 6% isotope shift. Lower panel: histograms of the calcu-
lated gap distribution � for these two boson mode distributions
calculated with simultaneous coupling constant shift. We assumed
that coupling relative constant shift is negative 4%. This turns out to
be sufficient to produce net negative gap shift.
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allow one to distinguish a relative role of the coupling con-
stant g�R� vs �0�R�. In BCS-like analysis one deals with the
single effective coupling gef f�R� that is a combination of
g�R� and �0�R�, Eq. �28�.

We use the local coupling constant and boson energy
drawn randomly with the Gaussian distributions and calcu-
late local gap function W�
 ,R�=Re W�
 ,R�+ i Im W�
 ,R�.
This gap map is then used to compare correlations between
W�R�, g�R�, and �0�R�. We also calculate the local tunnel-
ing density of states that is consistent with the observed by
STM density of states.

Numerically we find a direct positive correlation between
the gap map W�R� and boson coupling constant map. This is
not surprising: the larger the coupling the larger is gap func-
tion. We also find an interesting and surprising result that
there is a negative correlation between gap function scale
and boson mode energy �0. We give a simple interpretation
of this negative correlation in the case of the weak coupling
analysis. We find that effective BCS coupling constant is
inversely proportional to the boson energy, Eq. �28�. Because
effective coupling constant is in the exponent of a gap solu-
tion Eq. �29�, its dependence on �0�R� is more important
than the dependence on frequency in the prefactor. Larger

frequency boson is less effective in inducing pairing for fixed
g�R� in our model. This result is consistent with the experi-
mental observation of the IETS signal, where anticorrelation
between gap and boson mode energy was observed.45

The exact nature of the boson is not important for our
analysis except when we discuss isotope effect. Then we
expicitly assume that boson is a lattice mode and its energy
has on average an isotope shift consistent with the isotope
shift for phonons due to 16O to 18O substitution.

We also consider isotope effect. We find that in order to
correctly address the full isotope effect one again would need
to have assessed changes in the coupling constant g�R� and
�0�R� as a result of 16O to 18O isotope substitution. Both
shift in the boson frequency and coupling constant contribute
to the net isotope effect and we find that small, on the order
of �4%, changes of the coupling constant can completely
offset the isotope shift of the gap function W�R� caused by
the standard isotope effect for the lattice mode �0�R�.

We therefore find that in order to understand the isotope
effect in d-wave superconductors we would need indepen-
dent measurements of the coupling constant map and boson
mode energy map for different isotopes. The whole notion
that a single isotope exponent can characterize the spatially
modulated superconducting state as is the case of high-Tc
materials seem to be too simplistic to address the real situa-
tion. It appears one cannot make an evaluation on the impor-
tance of the lattice effects in high-Tc superconductors based
on a shift of a critical temperature without addressing the
changes of the gap, boson modes, and coupling constant.

To address the effects of spatial inhomogeneity of tunnel-
ing IETS spectra we focus on electron-boson coupling, ig-
noring the electron-electron interaction part that will not pro-
duce IETS features. Electron-boson interaction is only one
contribution to the pairing interactions. Pairing in high-Tc
materials is likely a result of interplay between strong
electron-electron correlations and electron-boson interaction.
The realistic magnitude of pairing interaction and how large
the transition temperature would be by assuming only
electron-boson pairing is an interesting question. We leave
this question for a separate investigation.
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