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A dynamic cluster quantum Monte Carlo approximation is used to study the effective pairing interaction of
a two-dimensional Hubbard model with a near neighbor hopping t and an onsite Coulomb interaction U. The
effective pairing interaction is characterized in terms of the momentum and frequency dependence of the
eigenfunction of the leading eigenvalue of the irreducible particle-particle vertex. The momentum dependence
of this eigenfunction is found to vary as �cos kx–cos ky� over most of the Brillouin zone and its frequency
dependence is determined by the S=1 particle-hole continuum which for large U varies as several times J. This
implies that the effective pairing interaction is attractive for singlets formed between near-neighbor sites and
retarded on a time scale set by �2J�−1. The strength of the pairing interaction measured by the size of the
d-wave eigenvalue peaks for U of order of the bandwidth 8t. It is found to increase as the system is
underdoped.
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I. INTRODUCTION

Results from numerical studies suggest that the two-
dimensional �2D� Hubbard model exhibits the basic phenom-
ena which are seen in the high-Tc cuprate materials. At half
filling, one finds a groundstate with long-range antiferromag-
netic order.1 Doped away from half filling there is a
pseudogap regime,2–7 and at low temperature a striped
phase8,9 as well as d-wave pairing.10 In addition, the various
phases appear delicately balanced with respect to changes in
parameters. All of these features remind one of the actual
cuprate materials, so that it is of interest to understand the
structure of the interaction that leads to dx2−y2-wave pairing
in this model.

Here we will study this interaction for a 2D Hubbard
model11 on a square lattice which contains a one-electron
near-neighbor hopping t and an onsite Coulomb interaction
U. In this case the results depend upon just two parameters
U / t and the average site occupation �n�. Previous work12 has
shown that the pairing interaction with U / t=4 and �n�
=0.85 increases with momentum transfer, has a Matsubara
frequency dependence similar to that of the Q= �� ,�� spin
susceptibility, and is mediated by a particle-hole S=1 ex-
change channel. Here we extend this work to explore the
pairing interaction for larger values of U / t and various dop-
ings. We are particularly interested in the case in which U is
of order of the bandwidth 8t. In this case, well developed
upper and lower Hubbard bands are seen in the single par-
ticle density of states

N��� = −
1

�N
�
k

Im G�k,i�m → � + i�� . �1�

Figure 1 shows N��� with U / t=8 for various fillings. These
results were obtained from a maximum entropy
continuation13 of dynamic cluster quantum Monte Carlo data
on a 16-site cluster. At half filling, Fig. 1�a�, for T� t one

sees broad upper and lower Hubbard bands. Then, as the
temperature scale drops below the exchange energy scale J
�4t2 /U, two additional structures appear above and below
�=0. As Preuss et al.14 first showed, the inner structures
arise from the formation of two coherent bands, each of
width �2J that form as the antiferromagnetic correlations
develop. This characteristic Mott-Hubbard-antiferromagnetic
four band structure14,15 is clearly seen when U becomes of
order of or larger than the bandwidth.

Figure 1�b� shows N��� for the doped �n�=0.9 case. Here
the chemical potential has moved down into the lower coher-
ent band and the spectral weight in the upper coherent band
has essentially vanished. Nevertheless, the remnants of the
upper and lower Hubbard bands remain. Part of the motiva-
tion for this study is to examine the structure of the pairing
interaction in this parameter regime.

As in our previous work, the pairing interaction �pp will
be calculated using a dynamic cluster quantum Monte Carlo
simulation.16 As shown in Fig. 2, �pp is the irreducible part
of the four-point particle-particle vertex in the zero center of
mass and energy channel. Previously, we discussed how one
could extract �pp�k �k��=�pp�k ,−k ;k� ,−k�� with k= �k , i�n�
using a dynamic cluster quantum Monte Carlo simulation.

While we studied �pp in our earlier work, here we will
focus on the momentum and Matsubara frequency depen-
dence of the dx2−y2-wave eigenfunction �d�k ,�n� of the ho-
mogeneous particle-particle Bethe-Salpeter equation

−
T

N
�
k�

�pp�k�k��G↑�k��G↓�− k�����k�� = 	����k� . �2�

At low temperatures, �d�k ,�n� has the largest eigenvalue
and this eigenvalue goes to one at T=Tc. As T approaches Tc,
the momentum and frequency dependence of �d�k ,�n� re-
flect the structure of the pairing interaction at Tc, just as the
superconducting gap function reflects the k and � depen-
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dence of the pairing interaction in the superconducting state.
Thus, while �d�k ,�n� is not a quantity that is directly mea-
surable, it has a k dependence related to the momentum de-
pendence of the interaction and a Matsubara frequency de-
pendence which decays beyond a characteristic frequency
associated with the dynamic character of the interaction. It
also has the great advantage of depending upon one momen-
tum and frequency variable as opposed to the multiple mo-
mentum and frequency variables of �pp�k �k��.

In the following Sec. II we review the dynamic cluster
approximation and discuss how one calculates the
dx2−y2-wave eigenvalue 	d�T� and eigenfunction �d�k ,�n�.
Then, in Sec. III we investigate how 	d�T� depends upon U
and �n�. Following this, we examine the k dependence of
�d�k ,�n� and see how closely it follows the simple cos�kx�
−cos�ky� dependence. If it were of this form over the entire
Brillouin zone, then it would imply a strictly near-neighbor
pairing interaction. Then we turn to the �n dependence
which reflects the dynamics of the pairing interaction and
study its dependence on U. In Sec. IV, based upon the results
for �d�k ,�n�, we construct a simple separable representation
of �pp�k �k�� and discuss the strength of the pairing interac-
tion. Section V contains our conclusions.

II. THE DYNAMICAL CLUSTER APPROXIMATION

The dynamical cluster approximation �DCA�16 maps the
bulk lattice to a finite size cluster embedded in a self-
consistent bath designed to represent the remaining degrees
of freedom. Short-range correlations within the cluster are
treated explicitly, while the longer-ranged physics is de-
scribed by a mean field. By increasing the cluster size, the
DCA systematically interpolates between the single-site dy-
namical mean-field result and the exact result, while remain-
ing an approximation to the thermodynamic limit for finite
cluster size.

The essential assumption is that short-range quantities,
such as the single-particle self-energy �, and its functional
derivatives, the two-particle irreducible vertex functions, are
well represented as diagrams constructed from a coarse-

grained propagator Ḡ. To define Ḡ, the Brillouin zone in two
dimensions is divided into Nc=L2 cells of size 2� /L2. As
illustrated in Fig. 3, each cell is represented by the cluster
momentum K in its center. The coarse-grained Green’s func-

tion Ḡ�K� is then obtained from an average over the N /Nc

wave vectors k̃ within the cell surrounding K,

Ḡ�K,�n� =
Nc

N
�
k̃

1

i�n − 
K+k̃ + � − �c�K,�n�
. �3�

Here the self-energy for the bulk lattice ��K+ k̃ ,�n� has
been approximated by the cluster self-energy �c�K ,�n�.
Consequently, the compact Feynman diagrams constructed

from Ḡ�K ,�n� collapse onto those of an effective cluster

FIG. 1. �Color online� The single particle density of states N���
versus � for U=8t, Nc=16, and various values of the temperature T
for site fillings of �a� �n�=1.0, �b� �n�=0.90.

FIG. 2. The Bethe-Salpeter equation for the particle-particle
channel showing the relationship between the four-point vertex �
and the particle-particle irreducible vertex �pp. The solid lines are
dressed single particle Green’s functions.

FIG. 3. �Color online� In the DCA the Brillouin zone is divided
into Nc cells each represented by a cluster momentum K. Irreduc-
ible quantities such as the single-particle self-energy � and two-
particle irreducible vertex � are constructed from coarse-grained

propagators Ḡ�K� that are averaged over the momenta k� within the
cell represented by K. The cluster momenta K for a four-site cluster
are shown on the left and those for a 24-site cluster on the right.
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problem embedded in a host which accounts for the fluctua-
tions arising from the hybridization between the cluster and
the rest of the system. The noninteracting part of the effec-
tive cluster action is then defined by the cluster-excluded
inverse Green’s function

G−1�K,�n� = Ḡ−1�K,�n� + �c�K,�n� �4�

which accounts for the hybridization between the cluster and
the host. Given G−1�K ,�n� and the interaction on the cluster
U�ini↑ni↓, one can then set up a Hirsch-Fye quantum Monte
Carlo algorithm17 to calculate the cluster Green’s function
and from it the cluster self-energy �c�K ,�n� which is used in
Eq. �3� to recalculate the coarse-grained Green’s function

Ḡ�K ,�n�.16,18 This process is then iterated to convergence.
Since a determinantal Monte Carlo method is used, there

is also a sign problem for the doped Hubbard model. How-
ever, the coupling of the cluster to the self-consistent host
significantly reduces the sign problem so that lower tempera-
tures can be reached.18

The DCA cluster one- and two-particle Green’s functions
that we calculate have the standard finite temperature defini-
tions

Gc
�X2,X1� = − �T�c
�X2�c

†�X1�� �5a�

and

Gc2
4¯
1
�X4,X3;X2,X1�= �5b�

− �T�c
4
�X4�c
3

�X3�c
2

† �X2�c
1

† �X1�� .

Here, X�= �X� ,���, where X� denotes a site in the DCA clus-
ter, �� the imaginary time, T� is the usual �-ordering operator,
and c


†�X2� creates a particle on the cluster with spin 
. Fou-
rier transforming on both the cluster space and imaginary
time variables gives Gc�K� and Gc2�K4 ,K3 ;K2 ,K1� with K
= �K , i�n ,
�. Using Gc�K� and Gc2�K4 ,K3 ;K2 ,K1�, one can
extract the cluster four-point vertex � from

Gc2�K4,K3;K2,K1� �6�

=− Gc�K1�Gc�K2���K1,K4
�K2,K3

− �K1,K3
�K2,K4

	

+
T

N
�K1+K2,K3+K4

Gc�K4�Gc�K3���K4,K3;K2,K1�

� Gc�K2�Gc�K1� .

Then, using Gc and �, one can determine the irreducible
particle-particle vertex �pp from the Bethe-Salpeter equation
shown in Fig. 2.

Using �pp, the eigenvalues and eigenfunctions of the
Bethe-Salpeter equation may then be calculated from

−
T

N
�
k�

�pp�K,− K;K�,− K��G↑�k��G↓�− k�����K��

= 	����K� . �7�

Here, the sum over k� denotes a sum over both momentum

k� and Matsubara �n� variables. We decompose k�=K�+ k̃�.

By assumption, irreducible quantities like �pp and �� do not

depend on k̃�, allowing us to coarse grain the Green’s func-
tion legs, yielding an equation that depends only on coarse
grained and cluster quantities

−
T

Nc
�
K�

�pp�K,− K;K�,− K���̄0
pp�K�����K�� = 	����K�

�8�

with �̄0
pp�K��=

Nc

N �k̃�G↑�K�+ k̃� , i�n��G↓�−K�− k̃� ,−i�n��.
Here, we show a number of results for the four-site cluster

shown on the left in Fig. 3, which allows us to investigate
larger values of U and lower temperatures than the 24-site
cluster. As discussed in Ref. 10, the four-site cluster does not
allow for the effect of pair-field phase fluctuations. Simula-
tions on the 24-site cluster were used to determine the k
dependence of �d�k ,�n�.

III. THE STRUCTURE OF THE PAIRING INTERACTION
AS REFLECTED IN �d„T… AND �d„k,�n…

The temperature dependence of the d-wave eigenvalues
	d�T� calculated using a four-site cluster for a site filling

FIG. 4. �Color online� �a� The dx2−y2 eigenvalue 	d�T� versus
T / t for U=4t, 8t, and 12t and �n�=0.90. �b� The dx2−y2 eigenvalue
	d�T� versus U / t for T=0.15t and �n�=0.90.

PAIRING INTERACTION IN THE TWO-DIMENSIONAL… PHYSICAL REVIEW B 74, 094513 �2006�

094513-3



�n�=0.9 with U / t=4, 8, and 12 are shown in Fig. 4�a�. Fig-
ure 4�b� shows 	d versus U / t for T=0.15t. Here one sees that
it is favorable to have a Coulomb interaction strength U of
order of the bandwidth 8t. This is consistent with the notion
that it is important to have strong short-range antiferromag-
netic correlations. However, because the exchange interac-
tion J�4t2 /U at strong coupling, the short-range antiferro-
magnetic correlations decrease when U becomes large
compared to the bandwidth.

The dependence of 	d�T� on the filling �n� is illustrated in
Fig. 5 for U / t=6. What one sees is that 	d�T� increases as
the system is doped towards half filling. However, at half
filling the dominant eigenvalue of the four-point vertex oc-
curs in the Q= �� ,�� irreducible particle-hole S=1 channel
as indicated by the dashed line in Fig. 5, and the groundstate
at T=0 has long-range antiferromagnetic order.

For �n�=0.9 and U / t=8, the momentum dependence of
the d-wave eigenvector �d�K ,�n� for the 24-site cluster at
�n=�T is shown in Fig. 6. Here, for T / t=0.22, 	d�T�
=0.42, and the values of K lay along the dashed line shown
in Fig. 3. One clearly sees the d-wave structure of �d. The
dependence of �d�K ,�T� for K along the Kx axis is shown
in the inset of Fig. 6. Here, one sees that �d�K ,�T� falls off
as K moves away from the Fermi surface towards the zone
center.

We have also calculated the projection of �d�K ,�T� on
the first and second dx2−y2 crystal harmonics

di = �
K

gi�K��d�K,�T� �9�

with g1�K�=cos Kx−cos Ky and g2�K�=cos 2Kx−cos 2Ky. In
Table I, we list the values of d2 /d1 versus U at a filling �n�
=0.9. Here the sum in Eq. �9� is over the entire Brillouin
zone and the temperature was adjusted so that the d-wave
eigenvalue 	d for each U / t was the same �	d
0.4�. If the
sum over K in Eq. �9� is restricted to values which lay along

the dashed line in Fig. 3, this ratio vanishes exactly in the
24-site cluster, since g2�K�=0 on the momenta K along the
dashed line.

The Matsubara frequency dependence of
�d�K ,�n� /�d�K ,�T� with K= �� ,0� is shown in Fig. 7 for
�n�=0.9 and U / t=4, 8, and 12. Also shown in each case is
the frequency dependence of ��Q ,�n� with Q= �� ,��. The
decrease of the characteristic exchange energy as U / t in-
creases is seen in Figs. 7�a�–7�c�. It is clear from these re-
sults that the dynamics of the pairing interaction �pp, re-
flected in the �n dependence of �d�k ,�n�, is associated with
the spin-fluctuation spectrum. The relevant frequency scale
extends over the S=1 particle-hole continuum which for
large values of U varies as several times J.

IV. A SEPARABLE REPRESENTATION OF THE PAIRING
INTERACTION

With the results obtained for the d-wave eigenvector
�d�K�, one can construct a simple separable representation
of the pairing interaction �pp�K �K��,

�pp�K�K�� � − Vd�d�K��d�K�� . �10�

Here K= �K , i�n� so that �pp depends upon �n and �n�.

TABLE I. The ratio of the second to the first crystal d-wave
harmonic projection of �d�K ,�T� for �n�=0.9 and 	d
0.4.

U / t 4 6 8

d2 /d1 0.064 0.128 0.157

FIG. 5. �Color online� The dx2−y2 eigenvalue 	d�T� versus T / t
for various band fillings �n� for U / t=6. The dashed line represents
the leading eigenvalue 	AF in the Q= �� ,��, S=1 particle-hole
channel at half filling.

FIG. 6. �Color online� The dx2−y2 eigenvector �d�K ,�n� at �n

=�T, normalized to its value at K= �� ,0�, versus K for U / t=8,
band filling �n�=0.9 and T / t=0.22. In the main figure, the K points
move along the dashed line shown in Fig. 3. The inset shows the
behavior of �d when K varies along the kx axis.
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Using this separable form for �pp�K �K��, one finds that Eq.
�8� gives

Vd
T

Nc
�
K�

�d
2�K���̄0

pp�K�� = 	d. �11�

Then, using the dressed DCA Monte Carlo single particle
Green’s functions and the DCA results for 	d, we can deter-
mine the strength Vd of the separable interaction from Eq.

�11�. The strength of Vd depends upon both the site occupa-
tion �n� and the temperature T. An alternative way of extract-
ing a simple approximation for the pairing interaction is to
use the d-wave projected irreducible vertex for �n=�n�
=�T,

Vd
��� =

1

Nc
�

K,K�

g�K��pp�K,�T�K�,�T�g�K�� �12�

with g�K�= �cos Kx−cos Ky� /2.

FIG. 7. �Color online� The Matsubara frequency dependence of �d�K ,�n� /�d�K ,�T� with K= �� ,0� for �a� U / t=4, �b� U / t=8, and �c�
U / t=12 calculated for Nc=4. Here �n= �2n+1��T with T / t=0.125 and the band filling �n�=0.90. Also shown is the frequency dependence
of the normalized spin susceptibility 2��Q ,�m� / ���Q ,0�+��Q ,2�T�	 for Q= �� ,��.

FIG. 8. �Color online� The pairing interaction Vd versus tem-
perature for different dopings for U=8t calculated for Nc=4.

FIG. 9. �Color online� Plot of Pd0�T� versus T for U=8t and
�n�=1 showing the effect of the opening of the Mott-Hubbard gap.
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Figure 8 shows Vd�T� and Vd
����T� for U=8t and various

values of the site occupation �n�. Both approximations give
very similar results. It is interesting to see that Vd becomes
stronger as �n� approaches half-filling. This is characteristic
of the Mott-Hubbard system and has been previously ob-
served. A determinantal quantum Monte Carlo calculation of
the d-wave eigenvalue on an 8�8 lattice at half filling with
U=8t found that 	d approached one as the temperature was
lowered.19 As noted there, in this case the antiferromagnetic
eigenvalue remained dominant and on an infinite lattice the
ground state would have long-range antiferromagnetic order
at T=0. A related behavior is seen for the two-leg ladder,
where the pair binding energy of a finite ladder is greatest for
the first two holes that are added.20 This latent pairing ten-
dency of the half-filled Hubbard model is also seen in the
magnitude of the probability amplitude for adding two near-
neighbor holes in a d-wave state reported by Plekhanov et
al.21

Although Vd increases as �n� goes to one, the number of
holes that are available for pairing is suppressed as is Tc. A
measure of this is given by

Pd0�T� =
T

Nc
�
K

�d�K�2�̄0
pp�K� �13�

which is plotted in Fig. 9 for U=8t and �n�=1. Here one
clearly sees that as the temperature is lowered and the Mott-
Hubbard gap opens, Pd0�T� is suppressed.

V. CONCLUSION

The cos kx−cos ky dependence of �d�k ,�n� reflects a
pairing interaction �pp�k �k�� which increases at large mo-
mentum transfer k−k�, implying a spatially short-range in-
teraction which is repulsive for pair formation on the same
site but attractive for singlet pair formation between near-
neighbor sites. The �n dependence of �d�k ,�n� tells us that
the pairing interaction is retarded on a time scale of order
�2J�−1. The strength of the interaction is largest when U is of
order of the bandwidth and increases as the system is doped
towards half filling. Of course, with U=8t, as �n� goes to 1,
a Mott-Hubbard gap opens and there are no holes to pair.
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