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We study an exchange coupled system of itinerant electrons and localized fermion pairs resulting in a
resonant pairing formation. This system inherently contains resonating fermion pairs on bonds that lead to a
superconducting phase, provided that long-range phase coherence between their constituents can be estab-
lished. The prerequisite is that the resonating fermion pairs can become itinerant. This is rendered possible
through the emergence of two kinds of bond fermions: individual and composite fermions made of one
individual electron attached to a bound pair on a bond. If the strength of the exchange coupling exceeds a
certain value, then the superconducting ground state undergoes a quantum phase transition into an insulating
pair-bond liquid state. The gap of the superfluid phase thereby goes over continuously into a charge gap of the
insulator. The changeover from the superconducting to the insulating phase is accompanied by a corresponding
qualitative modification of the dispersion of the two kinds of fermionic excitations. Using a bond operator
formalism, we derive the phase diagram of such a scenario together with the elementary excitations charac-
terizing the various phases as a function of the exchange coupling and the temperature.
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I. INTRODUCTION

The evolution of pairing correlations and the related-to-it
onset of phase coherence in low-dimensional systems is at
the center of intense theoretical investigations.1 This activity
concerns systems such as: �i� high-temperature cuprate
superconductors with their spin-charge pseudogap
phenomenon,2 �ii� low-temperature superconducting materi-
als that can be driven toward insulating or metallic phases
via some extrinsic and/or intrinsic mechanisms,3–5 and �iii�
ultracold gases of fermionic atoms in the crossover regime
between a BCS state and a Bose-Einstein condensate, con-
trolled by a Feshbach resonance.6

In this paper, we shall investigate systems where bosonic
resonant pairs form in an ensemble of itinerant uncorrelated
fermions. The dynamics of such a boson-fermion exchange
coupled system is characterized by two competing processes:
�i� a local exchange between a localized bound pair of fer-
mions and a pair of itinerant uncorrelated fermions and �ii� a
nonlocal single particle hopping of the itinerant fermions be-
tween nearest-neighbor sites.

The exchange between the localized bound pairs �acting
as hardcore bosons� and the fermionic itinerant particles cre-
ates a local quantum superposition with bonding and anti-
bonding resonant pair configurations given by �2, i�±

= 1
�2

��i
+±�i

+��0�. �i
+ and �i

+=ci↑
† ci↓

† denote, respectively, the
creation operators of the two constituents of those local
bound pair states, i.e., for hardcore bosons and pairs of itin-
erant fermions on site i. In the atomic limit, these states are
separated by an energy difference equal to twice the boson-
fermion exchange coupling, with the bonding state being en-
ergetically favorable.

The local quantum structure of the bonding configuration,
which is responsible for inducing local resonant pairing
among the fermions, has at the same time a hindering effect

in establishing long-range superconducting spatial correla-
tions of such resonating pairs. Spatial correlations between
the bonding and antibonding pairs are built up via other
bosonic and fermionic bond configurations that form the lo-
cal Hilbert space, which has a very rich structure �see Fig.
1�a��. There are two fermionlike configurations that result
from attaching to the vacuum state one individual fermion
�configuration “1�”�, respectively, such an individual fer-
mion together with a localized bosonic bound fermion pair
�configuration “3�”�. Moreover, in this bond Hilbert space,
we have completely empty bonds—bond holes “0”—and
completely filled ones—double-pair-bond states “4.” The fer-
mionic objects are itinerant. Their mobility is due to the cre-
ation and/or annihilation of bonding �respectively, antibond-
ing� and bond holes �respectively, double-paired bonds�.

Our main aim in this study is to show that, due to the
internal degrees of freedom of the two components �local-
ized hardcore bosons and itinerant fermions�, there are two
distinct energy scales in this problem: one controlled by the
dynamics of the bonding pairs and one by the dynamics of
the bond holes and double-paired bonds �see Fig. 1�b��. De-
pending on the ratio between the exchange coupling strength
and the hopping amplitude, the dynamics of the two kinds of
fermionic excitations can lead to either �i� their pairing up in
a superconducting state where, simultaneously, a coherent
state with bonding pairs, bond holes, and double-paired
bonds occurs, or �ii� an insulating state with coherent bond-
ing pairs and with zero amplitude of the bond holes and/or
double-paired bonds �see Fig. 1�b��.

The presence of bonding pairs does not guarantee by itself
the occurrence of long-range superconducting correlations
between their paired constituents. They have to dissociate in
order to induce a superconducting state. This process of dis-
sociation involves two possible channels for the dynamics of
this resonant pairing scenario �see Fig. 1�b��: �i� the single
fermions and the composite ones �constituted of a fermion-
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boson pair� hybridize and their itinerancy sustains a coherent
liquid of bonding pairs, or �ii� the two kinds of fermions pair
up and resonate with the bond holes and double-paired bonds
and via that result in a superconducting state.

Within this context, our target is the following: �i� deter-
mine the evolution of the superconducting state into an insu-
lating state, both quantum and thermally driven, and �ii� ana-
lyze the nature of the excitation spectrum as a function of the
exchange coupling.

The outline of the paper is as follows: In Sec. II, we
present the scenario for resonant pairing on the basis of three
examples actively studied in the literature. In Sec. III, we
sketch the bond operator formalism and adapt it to the
boson-fermion problem. Section IV is devoted to the deriva-
tion of the phase diagram as a function of exchange coupling
and temperature features. In Sec. V, we present the evolution
of the excitation spectrum as one tunes the ground state from
a superconductor to an insulator. Section VI is reserved for
the summary, conclusions, and outlook.

II. THE BOSON-FERMION SCENARIO

There is a variety of different physical systems where
fairly localized bound states are quasi-degenerate with itin-
erant states of their constituents. They can be paraphrased in
terms of a two-component system composed of localized

bosonic pair states, itinerant fermionic quasiparticles, and a
local exchange interaction between the two. Such a scenario
is described by the so-called boson-fermion model �BFM�
Hamiltonian

H = �D − ���
i�

ci�
† ci� + ��B − 2���

i
	�i

z +
1

2



− �
i�j,�

tij�ci�
† cj� + H.c.� + g�

i

��i
+�i

− + �i
−�i

+� , �1�

where g is the strength of the exchange interaction and t the
hopping integral for the itinerant fermions, which is assumed
here to be different from zero only for nearest-neighbor sites.
The band half-width �which will serve as energy unit� is D
=zt, z being the coordination number of the underlying lat-
tice. The energy of the bound fermion pairs is denoted by �B.
The number of the ensemble of bosons and fermions being
conserved, ntot=nF↑+nF↓+2nB, implies a common chemical
potential � for both subsystems. nB and nF� are the occupa-
tion numbers per site of the hard core bosons and of the
fermions with spin �= ↑ ,↓. In the present study, we restrict
ourselves to the analysis for the fully symmetric half-filled
band case ��B�0�, which in such a two-component system
means ntot=2. The annihilation �creation� operators for the
fermions with a spin � at a certain site i are given by ci�

�†�,
those for the hard-core bosonic fermionic bound pairs by the
pseudospin-1

2�i
± and similarly those for the pairs of itinerant

uncorrelated fermions by �i
+=ci↑

† ci↓
† , �−=ci↓ci↑.

This model was introduced originally by Ranninger et al.7

in an attempt to capture the salient features of polaronic sys-
tems in the intermediate coupling regime between adiabatic-
ity and anti-adiabaticity, but has turned out subsequently to
be of much more general relevance and applicability. Among
others, such a scenario has led to the prediction of the charge
pseudogap features in the high Tc cuprate superconductors,7

without having to invoke any particular microscopic mecha-
nism for that. We shall discuss briefly three representative
examples where such a scenario seems to be relevant.

�i� In a system with strong local electron-lattice coupling,
we have the formation of small polaronic charge carriers,
which, in general, will exist in form of localized bipolarons.
If their binding energy exceeds the bandwidth of the itinerant
electrons in an undeformed lattice, this can give rise to bipo-
laronic superconductivity—an extremely fragile state of a
phase fluctuation controlled condensate of bosonic tightly
bound electron pairs—whose existence in real materials has
to be experimentally verified. However, if the binding energy
of such localized bipolarons is such that it overlaps with the
continuum of the bare electron band states, this will result in
an exchange between such bound pairs and pairs of uncorre-
lated itinerant electrons close to the chemical potential. The
microscopic mechanism for that exchange arises from large
quantum fluctuations of the lattice displacements in the im-
mediate vicinity of the charge carriers. Such local lattice dis-
placements fluctuate between essentially undeformed and
much deformed lattice environments, which, as a result, pe-
riodically capture and release electron pairs on small local
clusters �acting as effective sites on a lattice� made up of
atoms and their associated ligand environments.8

FIG. 1. Panel �a� provides the description of the possible con-
figurations on the single bond �hexagon�. The bold arrow is associ-
ated with the pseudospin for the original localized bound pairs.
Panel �b� indicates the possible mechanisms of dissociation starting
from a representative string of three neighbor bonding bosons. The
successive two steps for that are: �i� the formation of two kinds of
pairs, 1 involving single individual fermions on a bond and the
other made up with charges 3 due to individual fermions attached
with a bound pair on a bond, and, subsequently, �ii� the bond fer-
mions pairing up and resonating with the bond holes and the
double-paired bonds.
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�ii� In a system with strong local electronic correlations,
as described by the Hubbard model close to the half-filled
band case, hole pairing occurs on small plaquette clusters.9

This, coexisting with triplet spin-pairs, destroys the antifer-
romagnetic long-range order, giving rise to a spin liquid state
made out of singlet hole pairs, which conceivably can con-
dense into a superfluid state.10 One possible mechanism for
that is the hopping of the singlet hole pairs between neigh-
boring clusters. A more efficient way to get this condition is
by exchanging the local bound hole pairs on a plaquette with
single holes on neighboring plaquettes. This mechanism re-
sults in an effective exchange coupling between bosonic
bound hole pairs and pairs of uncorrelated fermionic holes
on adjacent plaquettes, which at the end assure the itinerancy
in the system. Such a scenario has been analyzed on the basis
of a kind of real space renormalization group technique,
where the initial Hubbard model can be rephrased in terms of
an effective BFM, albeit with additional terms carrying the
information of the underlying antiferromagnetic short-range
interaction.11

�iii� In a system with an optically trapped gas of ultracold
fermionic atoms �studied in connection with the crossover
between a BCS state of weakly interacting fermionic atoms
and a Bose-Einstein condensation of tightly bound states of
them�, one can monitor the strength of the interaction be-
tween those fermions—sweeping it from a repulsive to an
attractive interaction—via a so-called Feshbach resonance
mechanism,12,13 under the effect of a magnetic field. This
mechanism is based on binary collision processes in which
the inter-atomic interaction depends on the electronic spin
configuration of the pair. For an overall electronic spin triplet
state �avoiding the Coulomb repulsion�, this leads to a
weakly bound state, whereas a singlet configuration leads to
scattering states. Two incident atoms in a singlet configura-
tion can enter into a resonance with such a weakly bound
triplet configuration molecular state when their respective
energies are close to each other. This is achieved by flipping
the electron spin on one of the two atoms via a hyperfine
interaction, thus acquiring the necessary triplet configuration
to bind them momentarily into a pair. By applying a mag-
netic field during such binary scattering processes one can
change the relative position of the energy levels of the two-
electron spin configuration and, thus, enter in a resonance
regime where they are quasi-degenerate. Such a situation can
be then described by a phenomenological model, such as the
BFM.

III. BOND OPERATOR REPRESENTATION

To study the scenario for resonant pairing, sketched
above, by explicitly taking into account the interplay be-
tween the bosonic bonding pairs and the processes linking
them to the single-particle fermionic entities, we make use of
the bond operator formalism and adapt it to the present BFM
system. This approach turns out to be particularly appropri-
ate in treating situations where there is a natural pairing in
the form of dimers in the ground state, which is either im-
posed by the Hamiltonian �as in our case� or by a spontane-
ous symmetry breaking. The bond operator theory has been

successfully designed and applied in different contexts,
such as for antiferromagnets,14,15 spin-ladder,16 doped
antiferromagnets,17 bilayer quantum Hall,18 and Kondo lat-
tice systems.19

Introducing the bond operator formalism for the BFM, we
start from a bond on each lattice site being made up of fer-
mionic and bosonic configurations and then express the
original fermionic and bosonic operators ci�

�†� ,�i
± ,�i

± in terms
of this basis. Concerning a single local bond, one has eight
possible configurations to start with. Similar to the case of a
spin insulator, where one is introducing the singlet and triplet
boson operator, here we have four boson operators that de-
scribe two-particle configurations in the form of bonding
bonds and antibonding bonds and zero- as well as four-
particle configurations in the form of hole bonds and double-
paired bonds. The two-particle bonding and antibonding
configurations can be expressed in terms of pseudospin-1

2
operators �i

+ ,�i
+ for the uncorrelated fermions and the tightly

bound ones. The zero- and four-particle configurations are
described by �0� and �i

+�i
+�0�, respectively. We thus have to

consider four bond boson operators b�†�, a�†�, f �†�, and d�†�

�see Fig. 1�a�� with

b†�v� = 1
�2

��+ − �+��0�

a†�v� = 1
�2

��+ + �+��0�

f†�v� = �+�+�0�

d†�v� = �0� . �2�

�0�= �0 f� � �0b� denotes the boson-fermion vacuum, i.e., the
state with no fermions �c��0�=0� and no bosons present
��−�0�=0�. �v� designates a corresponding vacuum state in
which neither bond bosons nor bond fermions are present.
The remaining configurations are four bond-fermion opera-
tors describing individual fermionic states and states where
such fermions are attached to a boson on a particular bond

h�
† �v� = c�

† �0�

s�
† �v� = �+c�

† �0� . �3�

The operators h�†�, s�†� obey the canonical fermion commu-
tation relations, while d�†� , f �†� ,b�†� ,a�†� have boson commu-
tation rules. In this representation, the total number of states
in the Hilbert space of these four bond bosons and four bond
fermions is much larger than the eight configurations allowed
by the BFM. To limit the kinematics to the physical sub-
space, one has to impose the closure relation on the bond
given by the constraint

f†f + �
�

s�
†s� + b†b + a†a + �

�

h�
†h� + d†d = 1. �4�

In the subspace limited by the relation �Eq. �4��, one then
derives the expressions for the original fermion and hard-
core bosonic operators in terms of bond operators.

Let us first consider the fermion creation operator with
spin �. Making use of the closure relation �Eq. �4�� and
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considering all possible transitions induced by the single-
particle fermionic operator between the different bond quan-
tum configurations, we obtain the following expression:

c�
† = p�f†s−� +

1
�2

s�
†�b + a� +

p�

�2
�a† − b†�h−� + h�

†d , �5�

where p�= �+1,−1� for �= �↑ , ↓ �. In a similar way, one ob-
tains for the creation operator of a hard-core boson

�+ = 1
�2

f†�a − b� + �
�

s�
†h� + 1

�2
�b† + a†�d . �6�

This subsequently leads to the following expressions for the
density operators for the bosons and fermions:

�+�− =
1

2
�a†a + b†b + a†b + b†a� + f†f + �

�

s�
†s�

c�
†c� =

1

2
�a†a + b†b − a†b − b†a� + f†f + �s�

†s� + h�
†h�� .

�7�

Finally, the expression for the pair exchange on the bond
between the initial fermions and bosons reduces in the rep-
resentation to just the difference between the number of
bonding and antibonding bosons; that is,

�+�− + �+�− = a†a − b†b . �8�

IV. MEAN-FIELD PHASE DIAGRAM

Let us now apply the bond operator method to study the
spectral properties of the BFM, in conjunction with its vari-
ous possible phases. We proceed by looking for solutions
where the bosons associated with the bonding bonds b�†�,
antibonding bonds a�†�, the bond holes d�†�, and double-
paired bonds f �†� are condensed. This means that in the
Hamiltonian, Eq. �1�, after having transformed the original
fermion and boson operators into the bond operators, one is
decoupling the quartic terms in a way such that the expecta-
tion value of the linear and bilinear bond boson operators

have a nonzero amplitude, �o�= ō, with ō= b̄ , ā , f̄ , d̄. The co-
herent state, which then emerges in the most general case,
has the following local structure:

��c� = �uv + ubb† + uaa† + udd† + uf f
†��v� , �9�

where the finite amplitudes of the various coefficients u are
related to the condensate of the corresponding bosonic de-
grees of freedom. Let us, at this point, make some general
observations related to the structure of the Hamiltonian in
such a bond operator representation. The b-bond bosons are

always condensed at zero temperature �b̄�0�, due to the
local exchange and the hopping-induced processes related to
the creation of d-bond bosons and s, h bond fermions. More-
over, the d-bond bosons condense only if simultaneously the
f-bond bosons condense and in our present analysis concen-
trating on the particle-hole symmetric half-filled band case,

we have �d̄= f̄ �0�. In the present mean-field approach, the

a-bond bosons have gapped excitations due to the exchange
splitting with respect to the b-bond bosons and hence do not
contribute to a coherent state in the lowest energy configu-
ration.

Let us now examine the possible solutions at zero tem-
perature as a function of the exchange coupling g. Our main
objective is to show how, above a critical value of the ratio
g /D, the system passes from a superconducting state with
simultaneous coherence of b-bond bosons and the d-bond as
well as f-bond bosons, to an insulating state where only the
b-bond bosons are condensed.

Before going into the details about such a calculation and
the results, let us point out certain aspects of the emerging
bond boson-fermion dynamics, which can be envisaged on
simple and quite general physical grounds. As mentioned
before, the b-bond bosons are always in a coherent state at
zero temperature, due to the local exchange and the quantum
processes of double creation and annihilation of nearest-
neighbor b-bond bosons. Hence, the U�1� symmetry associ-
ated to the number conservation of the b-bond bosons is
generally broken in the entire regime of couplings g. In the
weak coupling regime, b-bond bosons have a large disper-
sion, which, together with coherent d-bond and f-bond
bosons, leads to a superconducting state. In the intermediate
and/or strong coupling regime, the b bosons become more
populated, which is caused by an increased local binding
energy. This increase in the b, d boson occupation leads to a
decrease of the s- and h-bond fermion densities, which ulti-
mately causes a reduction of the b-boson dispersion. Once
the d- and f-bond bosons are no longer condensed, the co-
herence of the b-bond bosons is built up via processes de-
scribed by the terms bibjsi�

† hj�̄
† �bi

†bj
†si�hj�̄� in the Hamil-

tonian.
Let us now consider the physics sketched above in terms

of a mean-field analysis of the BFM. After performing the
corresponding decoupling procedure, the Hamiltonian can be
separated into three main parts:

H = Ht + Hex + H0, �10�

where Ht is the hopping term, Hex the local pair exchange,
and H0, a term including the contributions coming from bond
bosons in the chemical potential term and the constraint.
Here, the constraint is treated in an approximative way,
where the corresponding Lagrange multiplier is taken as spa-
tially homogeneous and which has to be determined varia-
tionally as a saddle-point solution of the total free energy. In
our mean-field approximation, we rewrite the first part of Eq.
�10� in a compact way by introducing the vector operator
Dk= �sk,↑ ,s−k,↓

† ,hk,↑ ,h−k,↓
† � and its Hermitian conjugate Dk

†

= �sk,↑
† ,s−k,↓ ,hk,↑

† ,h−k,↓� in terms of the Fourier representation
for the bond fermions. The single-particle excitations are
then determined by the following mean field Hamiltonian:

Ht = �
k

Dk
†ÛkDk + c , �11�

where c=2�−4� is a constant that arises in the process of
ordering of the various bond fermionic operators. The 4	4

matrix Ûk is given by

M. CUOCO AND J. RANNINGER PHYSICAL REVIEW B 74, 094511 �2006�

094511-4





k

s �k
s 
k

s̄h

k

s̄h̄

�k
s − 
k

s 
k
sh − 
k

s̄h


k
s̄h 
k

sh 
k
h �k

h


k
s̄h̄ − 
k

s̄h �k
h − 
k

h
�

�k=−t��exp�ik�� is the free particle spectrum of the original
fermions, with � designating the lattice vectors linking
nearest-neighbor sites. 
k

s =�k�0.5�b+a�2− f2�−3�+�, 
k
h

=�k�d2−0.5�b−a�2�−�+� are the single-particle energy

spectra for the s and h fermions. 
k
s̄h=

�k
�2

���b+a�d�− ��a
−b�f�� and 
s̄h̄=�k��fd�+ 1

2 �a2−b2�� are the particle/hole and
particle/particle hybridization factors between the s- and
h-bond fermions. The pairing amplitudes for the s- and
h-bond fermions are �k

s =�k
�2�f�b+a�� and �k

h=�k
�2�d�a

−b��, respectively.
Let us next investigate how the effective hopping of the

s, h-bond fermions depends on the amplitude and the density
of the condensed bosons. As one can see by inspection of the

matrix Ûk, the processes linked to the fermionic degrees of
freedom are strongly renormalized by the strength of the
condensed b-bond bosons. Concerning the dispersion of the
s, h-bond fermions, one can see that the contribution of the
density of the d, f-bond bosons counteracts that of the
b-bond bosons. The strength of the pairing amplitude being
proportional to the product of the b-bond and d, f-bond bo-
son condensate amplitudes, indicates the need of having both
types of bond bosons condensed in a state where the s,
h-bond fermions are paired up. The hybridization between
the s- and h-bond fermions manifests itself in both the
particle-particle and in the particle-hole channel. Although
the amplitude 
k

s̄h of the s-h hybridization is linearly linked
to the b-bond and d, f-bond boson condensate, the processes
related to the particle-particle mixture depend on the effec-
tive density of the b-bond bosons as well as the d, f-bond
bosons. All those processes compete with each other, result-
ing in either a superconducting or an insulating state, de-
pending on the value of g /D.

Let us next examine the exchange and the local contribu-
tions of the BFM, which after a corresponding mean-field
decoupling are given by

Hex = Lg�ā2 − b̄2�

H0 = − L��4 f̄2 + 2�b̄2 + ā2�� + L�� f̄2 + b̄2 + ā2 + d̄2 − 1�
�12�

and where L indicates the total number of bonds. The proce-
dure of the present analysis is to look for a saddle-point
solution of the total free energy with respect to the bond
boson amplitudes and the Lagrange multiplier for the con-
straint. The free energy is obtained after performing a Bogo-
liubov rotation of the s, h-bond boson operators in the Ht
term, bringing it into the diagonal form:

Ht = �
k

E,k�,k
† �,k. �13�

E,k �=1, . . . ,4� are the eigenenergies of the various Bogo-
liubov quasiparticles �,k

† ��,k�, obtained by diagonalizing

the matrix Ûk. They result from a unitary transformation of
the original fermions and thus have the same commutations
relations as Dk

†�Dk�. The free energy is then given by the
following expression:

F = −
1

�

1

L�
k

�
i=1,..4

ln�2 cosh	�

2
Ei,k
� + E0

E0 = g�ā2 − b̄2� − ��4 f̄2 + 2�b̄2 + ā2��

+ �� f̄2 + b̄2 + ā2 + d̄2 − 1� �14�

with �=1/ �kBT�.
The saddle-point solutions for the bond bosons together

with the Lagrange multiplier are obtained variationally by
requiring the following extremal conditions:

�F

��
= 0

�F

�ā
=

�F

�b̄
=

�F

�d̄
=

�F

� f̄
= 0 �15�

together with the chemical potential being fixed via the rela-
tion ntot=− �F

�� .
In Fig. 2, we report the evolution of the amplitude for the

condensed b-bond bosons at zero temperature as a function
of g /D. Throughout this paper, we use a two-dimensional
fermionic tight-binding spectrum �k=−�D /2��cos�kx�
+cos�ky�� for the original fermions. The self-consistent solu-
tions of the nonlinear Eqs. �15� yield a zero amplitude for the
a-bond bosons, as anticipated above, and an equal amplitude
for the d- and f-bond bosons. The latter is a consequence of
the particle-hole symmetric case considered here. We also
find a clear separation between two distinct regions as the
exchange coupling is varied. Below a critical gcrit /D�0.4,
the system allows a finite condensation of the d, f-bond and

FIG. 2. Phase diagram at zero temperature as given by the evo-
lution of the bonding bosons and bond hole amplitude. SC and I
stands for a superconducting and insulating state, respectively.
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the b-bond bosons, which signifies a superconducting state.
Yet, upon increasing the exchange coupling, the amplitude of
the d, f-bond bosons gets reduced, until above gcrit, the
ground state does not contain anymore any d-bond bosons.
The transition is continuous, merely showing a change of
slope in the behavior of b̄.

A particular feature of this mean-field analysis at T=0 is
that the order parameter d̄, controlling the superconducting
phase, has a finite value as soon as the boson-fermion ex-
change mechanism is switched on, i.e., for g /D�0, however
small it might be. In the limiting case, where the exchange
coupling is zero, the superconducting solution disappears be-
cause then b-bond and a-bond bosons are equally populated.
Such a degeneracy is removed as soon as the exchange cou-
pling is different from zero. The b-bond bosons are now
being able to condense while a-bond bosons will not. Thus,
in the present mean-field treatment the system finds the so-
lution with a finite amplitude for the b-bond and d, f-bond
bosons as soon as the exchange is switched on at a nonzero
value. The size of the b-bond boson amplitude is then related
to the constraint and via that to the total filling under consid-
eration.

At this point, we would like to make a few remarks on the
weak coupling regime. Since the mean-field analysis is based
on a local ansatz for the saddle-point solution, we do expect
that the present approach is best suited for the strong-
coupling limit. In the weak coupling limit such a scheme of
approximation is not completely satisfactory. In that regime,
the dynamics of the bond bosons and their delocalized be-
havior have to be taken into account in order to properly
consider their phase and amplitude fluctuations and the re-
lated to it consequences on the fermionic subsystem. The
bosonic fluctuations should renormalize down to zero the
value of the critical temperature in this small coupling re-
gion. The finite amplitude of Tc at g /D�0, obtained in our
present mean-field analysis, indicates that the pairing forma-
tion is driven by kinetics and an overestimation of the phase
locking with respect to the amplitude fluctuations of the bond
boson order parameter occurs. This physically unsatisfactory
feature is corrected by including the competition between the
phase and amplitude dynamics, as we have done in a recent
work where an effective phase action has been derived after
integrating out the fermionic degrees of freedom �see inset in
Fig. 3�.20 We do believe that, even in the weak coupling
regime, a BCS type of superconductivity should not occur
since the charge dynamics intrinsically involves the two
types of s- and h-bond fermions. A direct decoupling of the
exchange interaction in the starting representation of the
BFM would hence not be justified as the hard-core bosons
are localized fields and thus, in principle, cannot have a
phase coherent amplitude in the transverse mode. In an at-
tempt to include the mobility of the bosons, in a self-
consistent perturbative �weak-coupling limit� approach, it
has been shown that already above the superconducting tran-
sition temperature one gets, apart from the regular free band
spectrum, two rather dispersionless branches.21 As we will
see below, such an excitation spectrum resembles that ob-
tained in the present approximation. Hence, within our
saddle-point solution qualitatively correct features can be re-
covered even in the weak-coupling regime.

Concerning the dynamics of the bosons, we should make
a few remarks about the possible nature and the character of
the bosonic excitations near the quantum phase transition
between the superconducting and the insulating state—in a
frame that is beyond our present approximative mean-field
scheme of investigation. Focusing on the dynamics on the
insulating side, we observe that the fermionic excitations are
gapped, whereas the b-bond bosons may have low-energy
gapless excitations resulting from their itinerancy. However,
such excitations are not charged, i.e., capable of creating a
pair of fermions, or a localized boson, since that would re-
quire at the same time the presence of both b-bond as well as
d, f-bond bosons. Hence, two scenarios are possible as g /D
is increased: �i� the d, f-bond boson coherence and their
density go to zero, simultaneously, �ii� the phase coherence
of the d-bond bosons drops to zero before their density van-
ishes. Case �i� corresponds to a direct transition between the
superconducting to an insulating configuration with coherent
b-bond bosons. Case �ii� allows one to have an intermediate
state, where a finite density of d, f-bond bosons occurs in a
state that is not condensed. In this case, the current can be
carried directly by the mobile b-bond and d, f-bond bosons,
and the presence of these low-energy excitations can induce
a metalliclike state. This regime is quite exotic, since the
effect of the a-bond bosons in activating itinerant pairs can
induce a gap in the bosonic sector and, in this way, result
again in an insulating state. The picture that finally could
emerge is one of a system that undergoes first a transition
from a superconductor to a metalliclike phase �built out of a
state where incoherent itinerant b-bond and d, f-bond bosons
are present and which ultimately transits to an insulating
state where �driven by the exchange coupling and due to the
constraint� there exist only condensed b-bond bosons and no
condensed d, f-bond bosons.

Let us now analyze the behavior of the two coherent
states as a function of temperature �see Fig. 3�. In the struc-
ture of the phase diagram one notes three regions that are
reminiscent of the configurations found at zero temperature.
The superconducting state �SC� is characterized by a nonzero
amplitude for the b- as well as d, f-bond bosons, the BP

FIG. 3. Phase diagram at finite temperature as a function of g /D
as given by the evolution of the b-bond boson and d-bond boson
amplitude. SC, BP and N stands for a superconducting, bond coher-
ent boson phase, and normal state, respectively. The inset shows the
evolution of the critical superconducting temperature as obtained
within a path-integral approach.20
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�bond phase� by condensed b-bond bosons but a zero ampli-
tude of the d, f-bond bosons, while in the normal �N� high-
temperature phase none of the bond bosons are condensed.
As a consequence of the competition between the b-bond and
d, f-bond boson condensation, one has two regimes, depend-
ing on the exchange coupling in the region where SC is
stable at zero temperature. For values of the exchange cou-
pling below g* /D=0.125, the SC critical temperature �Tbd�
and that associated with the b-bond boson condensation �Tb�
are very close in amplitude so that there occurs an almost
direct transition from the SC to the N phase. In this limit, the
scales of energy that controls the b-bond and d, f-bond dy-
namics are comparable. Going to a larger exchange cou-
plings �g�g*�, the characteristic temperature marking the
onset of SC is reduced due to the increased population of the
b-bond bosons. But contrary to that, Tb grows almost linearly
with the coupling. Thus, outside the quantum phase transi-
tion region there occurs a large region in parameter space,
where the system is not superconducting but is still charac-
terized by a coherent state of b-bond bosons.

V. EVOLUTION OF THE CHARGE GAP AND OF THE
SPECTRAL FUNCTION FROM THE SUPERCONDUCTING

TO THE INSULATING REGION

In this section, we analyze the excitation spectra both for
the s- and h-bond fermions and for the original c fermions.
We shall focus on the evolution of the spectral function when
moving from the superconducting to the insulating region in
the phase diagram. In Sec. IV, we have constructed the vec-
tor Dk, with Dk,i denoting its ith component. Because of its
structure, the time-dependent correlation function for the
vector Dk contains the information for the matrix Green’s
function both for the diagonal and the off-diagonal anoma-
lous part of the s- and h-bond bosons. Using the relation that
connects the s- and h-bond fermions and the b-bond bosons
with the original c type fermions, we are able to extract the
spectral function for the original fermions. For that, it is
convenient to introduce the following time dependent corre-
lation function:

Gk
ij��� = − �T�Dk,i���Dk,j

† �0��� �16�

where i , j=1, . . . ,4 and � is the Matsubara imaginary time, T
the usual time-ordering operator, and angular brackets indi-
cates the average at finite temperature. Because of the bilin-
ear structure of the Hamiltonian, we readily determine the
Green’s function via its equation of motion. We thus obtain
the following expression in matrix notation:

Ĝk��n� = �i�n1 − Ûk�−1. �17�

The Green’s function for the original c operators is con-
sequently a linear combination of the contributions of the
different components Gk

ij���, which are weighted by the vari-
ous amplitudes of the condensed b-bond bosons. This is be-
cause of our mean-field approach where in the expression for
the fermionic c operators, Eq. �5�, the various boson opera-
tors are replaced by their mean-field averages, i.e.,

ci�
† = p� f̄ si�̄ +

1
�2

si�
† �b̄ + ā� +

p�

�2
�ā − b̄�hi�̄ + hi�

† d̄

ci� = p� f̄ si�̄
† +

1
�2

si��b̄ + ā� +
p�

�2
�ā − b̄�hi�̄

† + hi�d̄ . �18�

Expanding the expression for the time-dependent Green’s
function of the c fermions Gk�

c ��n�, we derive the following
structure for it:

Gk�
c ��n� = Tr�F̂ · Ĝk��n�� , �19�

where Tr indicates the trace of the matrix indices, and F̂ is a
4	4 matrix whose coefficients depend on the amplitude of
the boson condensates.

In our investigation of the various phases of the BFM, let
us start by examining the evolution of the charge gap, as
extracted from the density of states, Nc���=�d�N���Ak

c���,
with Ak

c���= �−1/��Im�Gk
c���� and N��� the bare density of

states. Both in the SC and the I phase the b-bond bosons are
condensed. Thus, the charge gap ��c� represents an estimate
of the energy required to break a b-bond boson and create a
pair of h- and s-bond fermions in case those bond fermions
simply hybridize or pair up. As one can see from Fig. 4, �c
has a nonmonotonous behavior as the exchange coupling g is
varied from weak to strong coupling. For g /D smaller than
about 0.15, the energy to excite a single c-type fermion
grows slightly as a consequence of the concomitant effect of
the constraint, the hybridization between the s- and h-bond
fermions as well as the increasing pairing between them.
Beyond g /D�0.15, the bond-hole boson amplitude dimin-
ishes, which drives the charge gap to a lower bound. Upon
further increasing g /D, the systems transits from a supercon-
ducting to an insulating phase. The nonmonotonic behavior
occurring in the superconducting regime is related to the
competition between the two possible channels for breaking
a b-bond boson �see Fig. 1�b��. Moving into the insulating
side of the phase diagram, we note that the charge gap in-
creases almost linearly with g. This indicates that now, for
breaking one b-bond boson in order to create a pair of s,
h-bond fermions, one has to overcome the strength of the

FIG. 4. Zero-temperature evolution of the charge gap associated
with the excitation of a c fermion as a function of the exchange
coupling.

FROM AN INSULATING TO A SUPERFLUID PAIR-¼ PHYSICAL REVIEW B 74, 094511 �2006�

094511-7



local exchange. In this limit, it is the constraint that deter-
mines the local scale of exchange energy in the excitation
spectrum.

Up to now we have concentrated our attention on the
amplitude of the b-bond bosons, their related-to-it charge
gap, and its evolution from the SC to the I phase. Next, we
shall investigate how the dispersion and the related spectral
weight associated with the c-type excitations of the Bogoliu-
bov branches get modified by tuning the exchange coupling.
In Fig. 5, we report the behavior of the spectral function for
the original fermions as a function of their momentum, when
moving along the major symmetry lines of the two-
dimensional Brillouin zone.

We observe that the structure of the excitation spectra is
qualitative different in the superconducting phase and the
insulating one. We obtain four branches in the SC region and
only two in the insulating one. Concerning the dispersion
and the position where the charge gap opens, there are dis-
tinct differences in the two parts of the phase diagram. Start-
ing from the weak coupling regime, one notes that the gap
opens up at the Z point of the Brillouin zone. This is due to
a crossing at this point of the fermionlike and fermion-hole-
like tight-binding spectrum, for the particle-hole symmetric
half-filled band case, studied here. Looking at the evolution
of the spectral function, the excitations with the dominant
weight follow a dispersion that is reminiscent of a free tight-
binding spectrum, except close to the Z point, where the gap
opens. Furthermore, in this region of coupling, two almost
dispersionless branches with small spectral weights are
present. They arise from the hybridization between the s- and
h-bond fermions. Their small spectral weight is a conse-
quence of a counteractive action between the b-bond and d,
f-bond bosons in renormalizing the hybridization between
the bond fermions. Increasing the exchange coupling induces
a modification in the spectral weight distribution and in the
width of the dispersion. The dominant Bogoliubov branches
get more dispersive on approaching the quantum phase tran-

sition due to an increase in the b-bond boson amplitude b̄.
Their spectral weight however diminishes down to zero due
to the reduction of the bond-hole and double-paired boson

amplitudes d̄ and f̄ as we approach the quantum critical
point. This change is accompanied by a partial redistribution
of the spectral weight in the lower and upper Bogoliubov
branches. Crossing the critical exchange coupling, the bands
below �above� the chemical potential develop a unique struc-
ture and one no longer discerns any trace of the four Bogo-
liubov branches, which were caused by the pairing and the
hybridization between the bond fermions. In this region, only
the process of mixing the s- and h-bond fermions is active.
Now, a b-bond boson can only break into an s- and h-bond
fermion, but the energy cost for that grows proportionally to
the exchange coupling and is controlled by the constraint.
The emerging bond fermions have propagating features and
hybridize with each other, which results in a dispersion that

is renormalized by the b-bond boson amplitude b̄.

VI. CONCLUSIONS

In the present study, we have illustrated the evolution of
pairing correlations in a two-component system where local

bond pairing is induced in an ensemble of itinerant fermions.
We have shown that there are two possible bond-pair con-
figurations which can materialize. Depending on whether we
have a finite or a zero amplitude of the bond-hole �respec-
tively, double-paired-bond� bosons, we obtain a supercon-
ducting or an insulating phase. The bond fermions that

FIG. 5. �Color online� Dispersion of the Bogoliubov branches Ei

and the related spectral weight at zero temperature for the c-type
excitation as a function of the exchange coupling. From top to
bottom, the exchange assumes the following values: g /D
=0.1,0.3,0.4,0.6, respectively. The points of the two-dimensional
Brillouin zone are �= �0,0�, Z= �� ,0�, and X= �� ,��.
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emerge in such a system control the occurrence of the one or
the other bond-pair liquid. Those bond fermions are both �i�
single fermions on a bond and �ii� fermions attached locally
to a boson on that same bond. The dynamics of these bond
fermions and the interplay between the related pairing and
the hybridization process crucially determines the competi-
tion between the superconducting and the insulating paired
liquid states.

To extract the main features of this scenario, we have used
a bond operator formalism, which has been widely applied in
the literature for the spin analog quantum problems. In the
present problem, it has turned out to be particularly useful
because of the intrinsic nature of the dimer formation of
resonant pairs. Moreover, though the bond operator method,
within the present mean-field approach, is best suited for the
strong coupling limit, it can indeed describe the quantum
phase transition because, as we have shown, it occurs in a
regime of coupling where g / t�2. This, a posteriori, justifies
the use of an approximation that is based on a local saddle-
point ansatz for the bond bosons. Still, as we have discussed
in the Introduction, it is already within the local structure of
the bond configurations that one recovers the objects to dis-
tinguish between the superconducting and the insulating
state. Among the nonbonding configurations, there is the
bond-hole state, which turns out to be the relevant bond bo-
son, because the formation of the superconducting state is
attributed to the simultaneous presence of a phase coherent
amplitude for the bonding bosons as well as for the bond
holes. This is a key element that allows one to follow the
evolution from the insulating �condensation of the pure
bonding bosons� to the superconducting state �pairing of the
s and h fermions, due to the phase coherence of the bonding
bosons and the bond holes�.

We have obtained the phase diagram as a function of the
boson-fermion exchange coupling and by varying the tem-
perature. We have shown how, with increasing the exchange
coupling, the continuous reduction of the amplitude of the
bond-hole condensate drives the quantum phase transition
between the superconducting and the insulating state. This
behavior is dictated by the interplay between the dynamics of
the bond fermions and the constraint controlling the occupa-
tion of the various bond operators. In this attempt to capture
the salient aspects of that scenario, on the basis of a mean-

field approach in the bond operator formulation of it, we
have focused our attention on the excitation spectra and the
nature of the charge gap. In the superconducting region the
single-particle gap exhibits a nonmonotonic evolution as the
exchange coupling is increased and the quantum phase tran-
sition is approached. This is a sign of the double nature of
the dynamical variables at play and that contains features of
pairing as well as of hybridization of those bond fermions. A
completely different behavior characterizes the insulating re-
gime, where it is the local exchange that sets the scale of
energy. Coming from the insulating side, entering the super-
conducting phase one is led to the picture where the insulat-
ing charge gap continues to exist in the superconducting
phase as one of the components of the charge gap, and whose
amplitude diminishes as g goes to zero. This could signify a
breakdown in cascade of the order in such systems, as g is
increased. First, destroying the superconducting phase but
without the amplitude of the pairs up to the quantum critical
point and, then, gradually destroying the pair amplitude
when g is sufficiently large in the insulating state.

Concerning the excitation spectra, there are four Bogoliu-
bov branches in the superconducting region and that continu-
ously evolve into a two-branch configuration in the insulat-
ing region. For a two-dimensional system and the
corresponding tight-binding spectrum for the original bare
fermions, the pairing gap opens up at the Z point of the
Brillouin zone. The interplay between the pairing and the
hybridization between the bond fermions also controls the
spectral weight redistribution between the various Bogoliu-
bov branches as the exchange coupling is tuned through the
quantum phase transition.

Further analysis on the issues that have been discussed
here is presently in progress and deals with such questions as
the effects expected for hole doping away from the half-filled
band case and of the feedback on the bond fermions arising
from the dynamics of the bond bosons. A major attempt in
this direction will concern the case when the system is in the
proximity of the breakdown of the coherent superconducting
state, where possibly a metallic phase of bosonic fermion
pairs could exist. For that purpose, the present bond-mean-
field analysis will be improved by taking into account the
phase fluctuations of the bosonic mean-field coherent states
described here.
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