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We have recently shown that there is a limit to quantum coherence in many-particle spin qubits due to
spontaneous symmetry breaking. These results were derived for the Lieb-Mattis spin model. Here we will show
that the underlying mechanism of decoherence in systems with spontaneous symmetry breaking is in fact more
general. We present here a generic route to finding the decoherence time associated with spontaneous symme-
try breaking in many-particle qubits, and subsequently we apply this approach to two model systems, indicat-
ing how the continuous symmetries in these models are spontaneously broken and discussing the relation of
this symmetry breaking to the thin spectrum. We then present in detail the calculations that lead to the limit to
quantum coherence, which is due to energy shifts in the thin spectrum.
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I. INTRODUCTION

Recently we have shown that spontaneous symmetry
breaking imposes a fundamental limit for the time that a
large spin system can stay quantum coherent. This universal
time scale is t,,,,=27NA/(kgT), given in terms of the num-
ber of microscopic degrees of freedom N, temperature 7, and
the constants of Planck (%) and Boltzmann (kgz).! We ana-
lyzed this quantum decoherence process in terms of the ex-
actly solvable Lieb-Mattis spin model, which is known to
describe a symmetry broken macroscopic antiferromagnet in
equilibrium. Within this spin model we investigated the dy-
namical reduction of quantum physics to classical behavior
via spontaneous symmetry breaking. The goal of this paper is
to present a self-contained, detailed description and explana-
tion of the decoherence process caused by spontaneous sym-
metry breaking.

The fact that spontaneous symmetry breaking can lead to
decoherence on a time scale f,,,, might come as a surprise.
For a macroscopic body at room temperature, #/(kgT) is of
order 10~ sec, which is quite a short time. However, mul-
tiplying with Avogadro’s number N==10%*, yields Lspon
=10'0 sec, corresponding to a couple of centuries. Given all
other sources of decoherence for such a large macroscopic
body, this is surely not a relevant time scale. However, the
mesoscopic quantum qubits of contemporary interest are
typically much smaller and the intrinsic coherence time
might be reached in the near future. The counterintuitive
feature of this intrinsic decoherence mechanism linked to
classical equilibrium is that it starts to matter when systems
become small.

The many-particle qubits that motivate us to study deco-
herence due to spontaneous symmetry breaking are realized
in a number of mesoscopic solid state systems. For instance,
by engineering aluminum on a submicron length scale, su-
perconducting flux qubits, and Cooper pair boxes can be
manufactured. The flux qubit is a Josephson device that can
be brought into a quantum superposition of two electrical
currents: a left and a right circulating current.3 Typically
this current is carried by N~ 10° Cooper pairs. A Cooper pair
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box on the other hand is a superconducting island, containing
N~ 103 electrons, which can be brought in superposition of
two states with a different number of Cooper pairs.*> Mag-
netic many-particle qubits are for instance realized in mo-
lecular nanomagnets. Molecules with large magnetic mo-
ments can be brought into a superposition of directions of
magnetization. A well studied example is Mn'? acetate, a
molecule that contains 12 manganese atoms, coupled to-
gether to form a total spin of S=10. The molecule can be
brought into a superposition of states with $*=+10 and $°
=-10 and coherent Rabi oscillations of the magnetization are
observed.® An even larger molecule is ferritin, that contains
about 4500 Fe** ions.” If the total magnetic moment of a
ferritin molecule is brought into a coherent superposition,
this corresponds to a superposition of N~ 10 spins. For
these mesoscopic superconducting and magnetic qubits the
limit in coherence due to spontaneous symmetry breaking is
relevant.

This paper is organized as follows. We first introduce the
general notion of spontaneous symmetry breaking and the
thin spectrum. We illustrate these concepts by the elementary
example of a harmonic crystal that breaks translational sym-
metry. We then show how the presence of a thin spectrum
can cause decoherence. Again we clarify the concept by de-
scribing a theoretical setup in which we use the crystal as a
qubit. After that we switch to the more involved example of
the (non-Abelian) antiferromagnet. We first recapitulate the
properties of the Lieb-Mattis model® and determine its sym-
metric and symmetry-broken eigenstates. Subsequently we
will use the model to determine the effect of spontaneous
symmetry breaking on quantum coherence. For this purpose
we devise a generic gedanken experiment by coupling a two
spin singlet state to the macroscopic Lieb-Mattis antiferro-
magnet. We calculate the exact time evolution of this many-
body quantum superposition. Our main result on decoher-
ence follows from the evaluation of the reduced density
matrix of the superposition by tracing out the thin states.
Finally we will then discuss what it reveals regarding spon-
taneous symmetry breaking in more general Heisenberg-like
spin Hamiltonians.
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A. Spontaneous symmetry breaking

Due to the homogeneity of space, the laws of nature pos-
sess translational invariance. This invariance implies the
classical law of conservation of momentum. Likewise, space
being isotropic enforces rotational symmetry on the laws of
physics, implying conservation of angular momentum. In
quantum mechanics the power of symmetry is even greater:
the translational and rotational invariance of the laws of na-
ture taken at face value, should imply that any physical quan-
tum object that obeys these laws, has translational and rota-
tional symmetry. However, daily experience shows that this
conclusion is nonsensical. If the universe around us and ev-
erything in it would be translationally and rotationally invari-
ant, it would look the same at all places and in all directions:
we would be surrounded by a “quantum mist,” while human
observers should be dissolved in this quantum fog as well.
However, in the real world translational and rotational sym-
metry are manifestly broken. The fundamental difference be-
tween quantum and classical physics lies in the role of sym-
metry. Dealing with an exact quantum mechanical eigenstate,
all configurations equivalent by symmetry should have ex-
actly the same status in principle, while in a classical state
one of them can be singled out. In the example above, given
that space is translationally invariant, a quantum object
should be in an eigenstate of total momentum, being spread
out with equal probability over all of space. In the classical
limit however, it takes a definite position. The explanation of
this “spontaneous symmetry breaking” as a ramification of
the singular nature of the thermodynamic limit is one of the
central achievements of quantum condensed matter physics.’
One imagines a symmetry breaking “order parameter field”
B (e.g., a potential singling out a specific position in space).
Upon sending B to zero before taking the thermodynamic
limit (N—o0) one finds the exact quantum groundstate re-
specting the symmetry. However, taking the opposite order
of limits one finds that the classical state becomes fact. Al-
though the concept of spontaneous symmetry breaking was
originally introduced in the context of quantum magnetism
in solid state physics,” spontaneous symmetry breaking is a
general phenomenon, that is just as relevant in other fields,
including elementary particle physics and cosmology.'°

Let us first consider how spontaneous symmetry breaking
arises in a crystalline lattice to continue in the next section
with antiferromagnets. Consider the textbook example of a
harmonic crystal, with the Hamiltonian

2
P, k
H=2 > +52 (Xj_xj+1)2’ (1)
j “m j

where j labels all N atoms in the lattice, which have mass m,
momentum p;, and position x;. We consider here only a one-
dimensional chain of atoms, but all of the following can be
straightforwardly generalized to higher dimensions as well.
The harmonic potential between neighboring atoms is pa-
rametrized by «; it turns out that the results on spontaneous
symmetry breaking that follow are equally valid for anhar-
monic potentials. Let us first identify the collective dynamics
which describe the spontaneous symmetry breaking of this
short-ranged microscopic Hamiltonian.
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In the standard treatment of the quantum crystal one be-
gins by introducing alternative coordinates, which are the
displacements of atoms from their equilibrium position.
Then, after a Fourier transform the eigenstates of this Hamil-
tonian are easily found. We take a slightly longer route by
introducing bosonic phonon operators from the very begin-
ning and diagonalizing the quadratic part of the Hamiltonian
by performing a Bogoliubov transformation at the end. In
doing so we do not have to introduce any equilibrium posi-
tion of the atoms. Instead we can keep track of the center of
mass motion of the crystal as a whole, and this brings to the
fore the thin spectrum in a natural manner. Moreover we can
use the exact same procedure in the next section to find the
collective order parameter dynamics for antiferromagnets.

The momentum and position operators are expressed in
terms of bosonic operators as follows:

o 1 (%

so that the commutation relation [xj, pjr]ziﬁ 6; ;» is fulfilled.
We choose C2=+2mk so that the Hamiltonian reduces to

h |2k .
—_ .= T i i i
- N - §j§ 2(b5b;+ bb!) = (bl +b)(bl,, +bj1) (3)

and after a Fourier transformation

| K + B
H= ﬁ EE]( |:Akb;{bk + Ek(bzbik + bkb—k) + 1 N

where A;=2-cos(ka), By=—cos(ka), and a is the lattice con-
stant. This Hamiltonian is still not diagonal, since the terms
bib', and byb_; create and annihilate two bosons at the same
time. We get rid of these terms by a Bogoliubov transforma-
tion (see the Appendix). After this the Hamiltonian in terms
of transformed boson operators SB,=cosh(u)b_+sinh(u,)b;
is

1 1 =
H=*% \/EE {2 sin|ka/2|<ﬂ,t,8k+ —) + =12 cos(ka)}
m-y 2/ 4

1
=2h \/EE sin|ka/2|[nk+—], (4)
m-y 2

since 2, cos k== [ dk cos k=0.

This result seems to coincide with the textbook Hamil-
tonian which we would have obtained if we had followed the
conventional route of Fourier transforming the Hamiltonian
for the displacements, and then quantizing it. However, the
Bogoliubov transformation has the advantage that it brings to
the fore a rather subtle point. When k— 0 the excitation en-
ergy w;,— 0 and the two parameters in the Bogoliubov trans-
formation diverge: sinh(u;) — o and cosh(u;) — . Precisely
at k=0 the canonical transformation is no longer well de-
fined. We therefore should investigate the bosonic terms in
the Hamiltonian with k=0 separately. This zero momentum
part of the Hamiltonian describes the obvious fact that the
crystal as a whole carries a kinetic energy associated with the
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combined mass of all of its constituents, and is given by

L1
Hyeo=h/ i(b(')bo — = (bibt + byby) + 1)
2m 2
=% il l(lf b)z (5)
) R D R

where (b)—b)’= h_—z—pgpo so that

2mk
P
Hy_o= —2 + constant, (6)
k=07 oNm

where p,,,=2p;= V"Npkzo is the total momentum of the en-
tire system, or equivalently, its center of mass momentum.
When N is large, this Hamiltonian has states that are very
low in energy. These states in fact form the thin spectrum of
the harmonic crystal. We call this part of the spectrum thin
because it contains so few states of such low energy that its
contribution to the free energy in the thermodynamic limit
completely disappears (see the Appendix). In turn, this im-
plies that these thin spectrum states do not contribute to any
thermodynamically measurable quantities such as, for in-
stance, the specific heat of the crystal. Their effect on the
properties of the crystal is thus increasingly subtle, but its
existence can nonetheless have profound consequences. In
classical systems this thin spectrum is absent: it is quantum
mechanics that generates it. About a decade ago the deep
meaning of the thin spectrum for interacting quantum sys-
tems became clear and consequently its explicit mathemati-
cal structure was determined.'!!?

The groundstate of the Hamiltonian at k=0, which gov-
erns the collective behavior of the crystal as a whole, obvi-
ously has total momentum zero. It thus has no uncertainty in
total momentum and maximum uncertainty in total position:
the translational symmetry is unbroken. Symmetry breaking
can occur if we add to the Hamiltonian of Eq. (6) a symme-
try breaking field of the form Bxfm/ 2, where the center of
mass coordinate is X, =X X;. This yields a harmonic oscil-
lator equation for the collective position coordinate. Its well

known groundstate wave function is
B
w="\/—". 7
\oN (7)

( ma. N) 1/4

‘//O(xtot) = h

This state describes a wave packet for the center of mass
coordinate in real space, which of course corresponds to an
equivalent superposition of total momentum states: the sym-
metry breaking field B couples the different thin spectrum
states of the crystal. For a vanishing symmetry breaking field
B and finite number of atoms we have wN— 0 and the col-
lective coordinate is completely delocalized, as before:
o(x,,)=const. But taking the thermodynamic limit (N
—0) in the presence of a finite symmetry breaking field
gives wN — = and the center of mass position becomes com-
pletely localized in the center of the potential well [(x,,,)
=5me0]’ even if at the end the symmetry breaking field is
sent to zero. As we already pointed out, such a singular limit
characterizes spontaneous symmetry breaking; in this par-
ticular case the translational symmetry of the crystal as a

_mwa2
e 2 "ot

PHYSICAL REVIEW B 74, 094430 (2006)

whole is spontaneously broken. The occurrence of a thin
spectrum which consists of the states associated with the
quantum mechanics of the macroscopic body as a whole is a
universal notion. Whenever a system exhibits a continuous
symmetry which is broken in the classically realized, macro-
scopic state, then consequently there must be a spectrum of
states associated with the symmetry-restoring fluctuations of
the order parameter as a whole. The smallness of the energy
spacing within the thin spectrum warrants the order param-
eter dynamics of macroscopic bodies to take place on a time
scale much larger than anything observable.

B. Decoherence

To study the effect of the thin spectrum on the coherence
of many particle qubits, let us first investigate the dynamics
of such a qubit in the most general terms. Consider a many
particle system that is large enough to display a spontane-
ously broken continuous symmetry, but small enough to be
used as a qubit. This qubit will then have a thin spectrum
which we can label by the quantum number n. At the same
time the system must have two accessible quantum states
that can be used as the qubit states, and which can be labeled
by the quantum number m. Because we have no experimen-
tal control over the thin spectrum states, we will have to start
out the experiment with a thermal mixture of those states:

; (8)

1 n
Pr<ty = EE e_EE0|O,n><0,n
n

where p, is the density matrix, E), is the energy of the state
|m,n) and where, by definition, the partition function is Z
=3,,e7PE0 and B~'=k,T. To begin using this qubit in a quan-
tum computation we will typically have to prepare it in some
coherent superposition of the states in the two level system.
To do this we apply a rotation that takes the state |0,n) into
the state \1/2(|0,n)+|1,n)) for all values of n. The resulting
density matrix then is given by

0,1){0,n

1 n
pt:tO:iZ e_BEO( + O,n><l,”l + lsn><09n

+[1,n)X1,n

). )

If we know the Hamiltonian H which governs the dynamics
of the qubit, then we can follow the time evolution of this
density operator by applying the time evolution operator
Ulm ,n)= e~ WMH=10)|py ny= e~ @MEL=10)| 130 ). We then find
for the density matrix at >,

0,n){0,n

1 n
Pr1, = Upiy U = 2 e P50 +[1,n)(1,n

+ [e—i/h(Eg—E7)(t—t0)|0’n>< 1.n

+H.c.]), (10)

where H.c. denotes the Hermitian conjugate of its preceding
term.

Experimentally the thin spectrum is as good as unobserv-
able because of its extremely low energy and its vanishing
thermodynamic weight (see the Appendix). We therefore
have to trace these states out of the density matrix. This will
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yield a reduced (observable) density matrix, defined by
Prre>dto = E <j|pt>t0|j>7 (11)
J

where the trace is over thin spectrum states labeled by j and
(j|m,n)=|m)s;,,. Performing the trace, we find the follow-
ing reduced density matrix in the basis of the states |m):

0D
1 1 Pr>t
red — 0
pt>z0 = D) [pOD % 1 s (12)

l>t0
where the off-diagonal matrix element is defined

1 n . n 1
P, = 2 e PR ), (13)
n

If this off-diagonal matrix element vanishes at some time,
then the qubit will have decohered at that time, due to the
presence of the thin spectrum. In general AE,,;, = Ej—EY will
not be zero, and this shift in energy corresponds to a phase
shift of the thin spectrum states. These phases will typically
interfere destructively, lowering pf)>D,0 and leading to dephas-
ing and decoherence. The time scale for this decoherence
process is set by the inverse of the involved energy scale, and
will therefore be proportional to f/AE,,;,.

For this dephasing to occur however, it is necessary that a
finite number of thin spectrum states participates in the dy-
namics of decoherence. How many states do contribute to

the process is governed by the Boltzmann factor ¢ PE0, which
exponentially suppresses states of energy higher than
~kgT!E,,;, with E,,;, the typical level spacing of the thin
spectrum states. Putting these arguments together, one finds

that the characteristic time scale on which pf)>DtO will vanish

should be proportional to

o (14)
kBT AEthin
In the following sections we will calculate £,,, explicitly
for a number of realizations of the many particle qubit. We
will see that in the generic situation AE,,;, > E,,;,/N so that
we find

tSpOl’loc _’ (15)

which is our main result.

II. THE CRYSTAL AS A QUBIT

As a first example of the influence of the thin spectrum on
coherence, let us try to employ the harmonic crystal dis-
cussed in the introduction as a qubit. In order to do so we
will have to define a set of two states that are to be used as
the calculational states of the qubit. A simple choice for such
a set could be to use the presence or absence of an interstitial
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excitation. This leads to the definition of the state |m=0)
describing the crystal with N atoms, and the state |m=1)
which has one extra interstitial atom, and is described by the
same model, but with N+1 atoms in the lattice. The thin
spectrum is exactly as described in (6), so that the energy can
be defined

nZ

n
En= v e m T (16)
where M is the mass of an atom, n labels states with different
total momentum (which make up the thin spectrum), and w is
the chemical potential associated with adding an extra atom
to the lattice.
We are now in the position to simply substitute this infor-
mation into the general expression for the off-diagonal ma-
trix element of the reduced density matrix (13), yielding

|
p’0>D’0 _ E e—(z/ﬁ)u(t—to)E e—ﬁnz/(ZMN)

n

X oM 12M)(UN=1/(N+1))(i~1g) (17)

The constant phase factor e~"#(=) does not contribute to
the decoherence process, but the terms depending on 7 intro-
duce phase shifts into the dynamics of the system, which
lead to the disappearance of p?fr over time. Upon introduc-
tion of E,;,=1/(2MN) and AE,;,,=1/[2MN(N+1)]
=1/(2MN?), a straightforward evaluation of the sum over

thin spectrum states yields ,,,, defined as the half time for
oD
|pt>t0

s

27h Ey, 27h

t = =N . 18
P ko T AE,,;, kgT (18)

By using the crystal as a qubit in this way we have as-
sumed that we can just ignore the symmetry breaking field as
soon as the crystal has been localized in space at some time
in the past. In general this may not be true, because the
thermodynamic limit and the limit of the disappearing local-
ization field do not commute. We should therefore also con-
sider the situation in the presence of a small but finite sym-
metry breaking field B. In that case the energies of the
system will be given by

B
E'=n\|———— + um, 19
=N om(N+m) T (19)

which will again lead to a phase factor which is constant in
n, and a sum over phases which can be written as multiples
of Eyin=\B/2M(N+m) and AE,,;,=E,,;,/N. The summation
over thin spectrum states will thus again yield the coherence

. 2mh
time #,,,=N KT+

A. Goldstone modes

The interstitial excitation that is used in the previous sec-
tion to make a qubit state out of the harmonic crystal is a
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very rough excitation to use for that purpose. The extra atom
in the crystal will not only increase the mass of the crystal as
a whole but also immediately affect its lattice structure, and
thus couple to many phonon excitations. Because of this,
serious decoherence effects are to be expected. In construct-
ing a qubit using the quantum crystal it is therefore better to
look for a more “silent” excitation. These silent excitations
are naturally found in the long wavelength Goldstone modes
of the crystal, i.e., the low energy phonons.

To see what the effect of phonons on the thin spectrum is,
we need to consider the symmetry breaking of the crystal
more carefully. In the previous section we focused on the
collective behavior of the crystal as a whole. Thus we disre-
garded all internal degrees of freedom. Now we are inter-
ested in the localization of the individual atoms within the
crystal structure because the existence of the Goldstone
phonons is a manifestation of the internal breaking of trans-
lational symmetry within the crystal lattice. For this purpose
we introduce a symmetry breaking field V such that it acts as
a pinning potential for the individual atoms:

2
P, «k
H=Hy+Hsp= E —L2m + E(Xj_ Xji1)? = Vcos(2mx)).
J

(20)

Here the lattice constant a is taken as the unit of length. For
small deviations of the atoms from their mean positions, we
can expand the symmetry breaking term to read

4

2
Hgp= VE 27T2X12- - Tﬂ-x?
J

2vat
3 E XkXKX X k- K-q> (21)
k.K,q

= 2V7722 ka—k
k

where the last line results from a Fourier transformation of
the position operators. The thin spectrum of the crystal is
formed by the zero momentum part of the Hamiltonian,
while the phonons can be found after the bosonization and
Bogoliubov transformation of the finite momentum part. The
relation between the phonons and the thin spectrum thus be-
comes clear if we consider the zero momentum terms of Hgp
in lowest order given by

2Vt 4V
7T 1‘012 Bkﬁk"' (22)

X
tot
N k#0

SB =

where higher order collective terms and boson-boson inter-
action terms are neglected. The first term in this expression is
of the form of the symmetry breaking field that we consid-
ered before. It contains a factor 1/N because of the specific
periodic pinning potential that we now consider. The sym-
metry of the crystal as a whole is still broken by this term, as
can be easily checked by comparing the collective fluctua-
tions to the size of the crystal. The energy scale of the thin
spectrum is determined by the first term in (22) to be E,;,

N\ﬁ The second term shows how the presence of a pho-

non excitation will in first order lead to an energy shift in the
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thin spectrum which sets AE,,;, > I /— Putting these to-
gether in the general expression for the decoherence time in
Eq. (14), we immediately find once again that tsponOCNkZ'—T.

II1. LIEB-MATTIS MODEL

Let us now turn to the discussion of the antiferromagnetic
Lieb-Mattis model. The reason for considering the rather par-
ticular, long ranged Lieb-Mattis model is that for a broad
class of Heisenberg models with short-ranged interactions it
constitutes the effective Hamiltonian for the thin states.
Similar collective models underly the breaking of other con-
tinuous symmetries, such as for instance gauge symmetry in
a superconductor. In that case the collective Hamiltonian
turns out to be very similar to the Lieb-Mattis Hamiltonian
as far as the structure of the thin spectrum and the composi-
tion of the wave function of the symmetry broken state are
concerned. To explicitly show how the Lieb-Mattis model
arises from a Heisenberg model, let us consider an antiferro-
magnet on a bipartite lattice with isotropic nearest neighbor
interactions between quantum spins of size o. Its Hamil-
tonian is

H= JE SiSi+§’ (23)
i,0

where i labels all the spins on the A sublattice, and the & are
the vectors connecting site i to its neighbors on sublattice B.
The generalization to other types of interactions and even
other types of lattices is straightforward.'3-'® The magnon
spectrum of this Hamiltonian can be found within linear spin
wave theory. One approximates the spin operators with
Holstein-Primakoff bosons as follows:

o o—dla

IEB—>bb o,

S;A - V’%ai’ lEB - \’20’bT
Sin— \20d], Sz — \20b,. (24)

To quadratic order in the boson operators the Hamiltonian
becomes, after a Fourier transformation

1
HISY= Nz + Jzo 2, ((aay + biby)
k

+ ylaph’y + axb_y)), (25)

where z is the coordination number of the lattice, N the num-
ber of lattice sites and y, =13 ™. The last two terms in this
expression can be diagonalized by a Bogoliubov transforma-
tion (see the Appendix). Again the important point is that the
Bogoliubov transformation is singular at k=0 and k=, as in
both cases yﬁ — 1. We therefore treat these two k points sepa-
rately. Turning back to the notation in terms of spins, using
that the Fourier transform of our Hamiltonian is
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H=J2 %Sk S (26)
k

and

1 1
Sreo=—= 2, S;=—(S,+Sp).
0 VN iea.B WA

1
Sker= (84~ Sp)
k \”% A B

we find that the singular parts of the spectrum reduce exactly
to the Lieb-Mattis Hamiltonian

H=H}'+J 2 %Sk S
k#0,7

- 2J J
H?M = NSA Sp= XI(Sz - S/Z; - Szzg), (27)

where S, and Sy are the total spins of each sublattice, and S
is the total spin of the system. From here on we will focus
entirely on this collective Hamiltonian, as it is the only part
of the Heisenberg-like Hamiltonians that is relevant for the
spontaneous symmetry breaking of the antiferromagnet as a
whole. Notice that the internal ordering of the individual
spins within the antiferromagnet can be destroyed by fluc-
tuations of finite wavelength that we do not consider in this
collective, long ranged model. We assign to the Hamiltonian
Hypy the superscript sym because this Hamiltonian, as we
will show below, describes the symmetric (symmetry unbro-
ken) state of the antiferromagnet.

In H})j each spin on the A sublattice interacts with all
spins on the B sublattice and vice versa, thus creating infinite
range interactions. The energies of the Hamiltonian are trivi-
ally identified as ﬁ[S(S+ 1)=S,(S4+1)=Sz(Sg+1)] and the
corresponding eigenfunctions are labeled by their quantum
numbers |SA,SB,S ,M). Here the z component of the total
spin S is denoted by M. Clearly the ground state of Hy); is a
singlet of total spin: the state with lowest energy has $=0. In
fact there is an exact proof that the groundstate of any finite
spin system of this sort is a total spin zero (S=0) singlet."
Notice that all states which differ only in M are degenerate.
For simplicity (and without loss of generality) we henceforth
take the quantum number M to be zero.?

The groundstate singlet |N(r/ 2,Na/2,0,0), with both S,
and Sz maximal and S=M=0 is separated by energies of
order J/N from states with higher S. The set of these ex-
tremely low energy states that only differ in their total spin
quantum number forms the thin spectrum.®%!! Since (27) is
contained in (23) as its k=0 and k=7 components, and since
the thin spectrum of the Lieb-Mattis model is formed by the
k=0 component, exactly the same thin spectrum must gov-
ern the collective dynamics of other antiferromagnets with
short-range interactions.!>~!7

There are also excitations in (27) that can be created by
lowering S, or Sp. This costs an energy of order J, and it can
easily be shown that these excitations correspond to the el-
ementary excitations, the magnons, of the Lieb-Mattis
system.” Because of the extremely long ranged interactions
the magnons are gapped and dispersionless.
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A. The Lieb-Mattis Hamiltonian with symmetry breaking field

Having defined the Lieb-Mattis model in its symmetric
form, we now review how to explicitly break its SU(2) spin
rotation symmetry. We will show that in the thermodynamic
limit the symmetry breaking occurs spontaneously.’ Since
the groundstate of Hy); is a singlet of total spin, this state is
orthogonal to the Néel state, which is the ground state of a
classical antiferromagnet. We should stress here that there is
a marked difference between ferro- and antiferromagnets.
Even if spontaneous symmetry breaking is very often dis-
cussed with the example of a ferromagnet at hand, the spon-
taneous symmetry breaking in a ferromagnet is not the ge-
neric situation for an interacting quantum system. The reason
is that the total magnetization (pointing along, e.g., the z
axis), which is the order parameter of a ferromagnet, com-
mutes with the Hamiltonian: it is nothing but the projection
of the total spin along that axis, S} ,. So the situation arises
that the order parameter is a constant of motion, which is a
pathology of the ferromagnet. This same pathology leads to
the absence of an interesting thin spectrum, because in the
ferromagnet states with different S7, are strictly degenerate.
Quantum systems in general, however, have nontrivial thin
spectra.

Refocusing on antiferromagnets, we need to proof that the
Néel state is a stable groundstate in the thermodynamic limit.
In order to do so, an explicit symmetry breaking field B is
introduced (Ref. 12).

HLM=H?)\ZI_B(SZ71_S2)~ (28)

Clearly the symmetry breaking field induces a finite sublat-
tice magnetization. The field couples the different total spin
states of the thin spectrum by the matrix elements

<SA’SB’S’M|S5‘; - SZ’

S/A,S/B,S’,M’>
= 5sA,s’A5sB,S’B5M,M'[fs+1 .11+ 850551 + fsOs,s1111,
(29)

where

_ \/[52 — (S5 = Sp)*I[(Ss +Sp+1)* - S’I[S” - M”]
B (25 +1)(25 - 1)8?

Is

Lo (4= S+ Sp+ DM
n =
anc &s S(S+1)

(30)

These matrix elements are found by performing a rather te-
dious sum over Clebsch Gordon coefficients in the following
expression (see also the Appendix):

(SpsSp.S.M|S — S5|S" .S . S" . M)

S, M S’ M
= ; [CSA’SB’MA’M_MACSA’SBvMAyM—MA(ZMA — M)]
A

X(SSA’S,A(SSB’SlggM’M,' (31)

The spectrum of eigenstates |n) in the presence of a symme-
try breaking field can now be found by expanding these
states in the basis of total spin states: |n)=2qu§|S) (for clarity
of notation we suppress the dependency of ug and other vari-
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ables on the quantum numbers S, Sz and M). In this basis,
Schrodinger’s equation becomes (Ref. 12)

" JS(S+1) ;
HLM|n>=E0|n><:>2 [—u§+ Ty — Bf g U,
s
—stu§_1}|5>=E82 uslS), (32)
s

where E})/ is the groundstate energy of Hy); and Ej is the
energy of eigenstate |n) of the symmetry broken
Hamiltonian—its thin spectrum. Here we restricted ourselves
to the zero-magnon subspace, where S,=Sz=No/2 (hence
the subscript 0 in Ej). The generalization to systems with a
finite number of magnons will be straightforward.

In the continuum limit where N is large and 0 <S<<N, the
matrix elements due to the symmetry breaking field simplify
considerably. It is easy to show that in this case
No ( S )2

1-|—| =Noa/2. (33)

No

We will see shortly that only the first = VN total spin states
contribute to the groundstate wave function, so that an ex-
pansion in S/N is justified. Notice that when the sublattice
spin S, is reduced by one, i.e., when there is a spin wave
present, the matrix element f is reduced: fs fSN;J; = fs(
NU) for large N. This reflects the fact that a magnon re-
duces the Néel order parameter (the staggered magnetiza-
tion) by unity. This effect is small, but turns out to be essen-
tial when we shall consider the quantum coherence of
magnons: dephasing will occur because magnons give rise to
a subtle change in the level splitting of the thin spectrum.
This change in level splitting turns out to be inversely pro-
portional to N, the total number of spins in the antiferromag-
net.

In the continuum limit the Schrodinger’s equation (32)
reduces to (Ref. 12)

1
—us+ Sy = v,u, (34)

where again we have used 0 <<S<N. In this equation we

1 [2T Eo ELM

introduced w——\r— and v,=— + 1. Obviously this is the
differential equation of a harmomc oscillator. The eigenstates
us thus are well known and the corresponding eigenvalues
are v,=(n+1/2)w, so that

1
Ey=E}y/—-BNo+ <n+E)E,h,-n, (35)

where the quantum of energy for the states labeled by n is
E in=\20JB. For the harmonic oscillator n is a nonnegative
integer. However, in the present situation we have to meet
the boundary condition that S=0 or, equivalently, that u
=0 if $<0. So ug has to vanish at the origin. This boundary
condition is trivially met by eigenfunctions that are odd and
have a node at S=0, see Fig. 1. Thus solutions to the
Schrodinger’s equation (34) are harmonic oscillator eigen-
functions of order n, where n is an odd positive integer. In
Fig. 2 the groundstate wave function in the continuum limit
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Us

S

FIG. 1. Wave functions of the thin-spectrum state in presence of
a symmetry breaking field, in the continuum limit. The boundary
condition =0 implies that of the harmonic oscillator solutions
(left) only the odd ones are allowed (right), as these have a node at
the origin.

is compared with the exact wave function for large N. It
makes clear that the continuum approximation is very good
one.

Let us consider the energy spectrum in Eq. (35) in more
detail. Clearly if B is zero we recover the groundstate energy

| - egxact
L — - continuum approx.

0.75

0.5

--»overlap < g.5. 1S >

0 1 2
g2

FIG. 2. Comparison of the exact symmetry broken Néel wave
function (for N=500 spins) and the Néel wave function in the con-
tinuum limit (a harmonic oscillator eigenstate). The overlap of the
Néel state with the different total spin states is shown as a function
of the total spin quantum number. The parameters are /=1 and the
symmetry breaking field is B=1/10. The wave functions are res-
caled such that the maximum of the harminic oscillator wave func-
tion is unity.
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Order parameter versus symmetry breaking field

Y S pump——
— exact =
— - continuum 1
Z
~
AN
N
M
I A R N
<
7]
\Y
J’
7
——r
-6 ~1000

0 . 1000
-->4N"B/]

FIG. 3. Order parameter as a function of symmetry breaking
field. The exact result for N=100 spins, the continuum expression
for the order parameter is derived in the Appendix.

E}y of the symmetric case that we discussed before. How-
ever, if there is a finite staggered field B, there is a gain in
groundstate energy proportional to BN, which reveals that
the energy spectrum in Eq. (35) is the one of a Néel state.
The same conclusion is reached by directly calculating the
order parameter (see the Appendix). The result is shown in
Fig. 3. Apparently, for the symmetry broken Néel state to be
stable, the symmetry breaking field can be exceedingly
small, as long as N is large enough. In other words: in the
thermodynamic limit the spin rotation symmetry of Hy); can
be spontaneously broken by an infinitesimal field B. Putting
it in a more formal manner: spontaneous symmetry breaking
gives rise to the singular limit

S%— 82
lim lim< 4 B> =0 and
N—o B—0 No

74 Z
lim lim<M> =1. (36)
Bl0 N—=\ No
This in fact defines spontaneous symmetry breaking, just as
it did in the case of the quantum crystal. That for the Lieb-
Mattis Hamiltonian this limit is singular is directly clear
from Fig. 3.

In the symmetry broken Néel state, the excitations labeled
by n now act as the thin spectrum, with excitation energies
that are multiples of E,,;,=\20JB. The magnon excitation
energy is still of order J.

We now repeat the analysis above for a Néel state with m
magnons (by setting Sy=Sz=No/2-m/2 and using f§ in-
stead of f). In this case the energy spectrum becomes

m
Ey=E;j+mQ20]+B) - ——(n+1/2)Ey,,,  (37)
2No

see Fig. 4. Note that as we stated before, there is a subtle
effect of the magnons on the thin states: m magnons cause a
change in energy of the thin spectrum of the order of m/N.
This effect will turn out to be essential for the decoherence
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Energy level diagram

two magnon

state
[2.n) !
zero magnon L ithin
state — spectrum
lon) —
~E thin E |2) m— :
L ithin *
— spectrum
— P 2)

¥

|o)

FIG. 4. (Color online) Energy level scheme with the zero and
two magnon states, each with its tower of thin spectrum states. The
level spacing in the thin spectrum is E,,;,, magnons live on an
energy scale J.

mechanism that we will discuss in the following section.

Physically the change in energy of the thin states due to
the presence of a magnon can easily be understood. If there
are m magnons present in the antiferromagnet, then the order
parameter of the total system is reduced by m. Since the thin
spectrum describes the global excitations of the order param-
eter, its energy is proportional to the order parameter itself.
The ratio of the Néel order parameter of the excited state
with m magnons and the one of the groundstate with a fully
developed order parameter is (N—m)/N. Therefore, when
there are m magnons present, the relative change of the order
parameter is m/N and the change in energy of the thin states
is therefore of the order mE,,;,/N which explains the last
term in expression (38).

B. Preparing the many-spin qubit

Using the many-body Lieb-Mattis model with N spins and
o=1/2, we now study the coherence of the antiferromagnet
when it is used as a qubit. Again there are many ways in
which one can define a two-level system to be used as the
qubit states. The best possible choice in this case is provided
by the gapped and dispersionless magnons: we use as a qubit
(or cat state) the superposition of a perfectly ordered antifer-
romagnet and the state of the antiferromagnet with one mag-
non on each sublattice. Due to the long-range nature of the
interaction in the Lieb-Mattis model the gapped magnons
themselves are not damped and as such do not decay or
decohere. Also, in analogy to the quantum crystal we expect
the magnons or Goldstone modes of the antiferromagnet to
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influence the thin spectrum as little as possible. A magnon
has an energy J, which we assume is the energy scale that is
available to the (thought-)experimentalist to prepare, ma-
nipulate, and read out the qubit.??

With the exact expressions for all eigenstates and energies
of both the symmetric and the symmetry broken Hamiltonian
at hand, we are in the position to set up the initial state for
our many-particle qubit. Instead of simply assuming that we
are in a previously prepared superposition of states with zero
and two magnons, we will explicitly construct this initial
state. This can be done by coupling at time =%, a two spin
singlet to the symmetry broken N-spin Lieb-Mattis system,
see Fig. 5. From this the desired superposition results. So for
times <t(, the Lieb-Mattis antiferromagnet is completely
decoupled from the two spin singlet and the total wave func-
tion is thus the direct product of the wave functions of the
N-spin magnet and the two-spin singlet state:

|¢,<t0> =0,n) ® |singlet). (38)

Here we denote the Néel state with m magnons and 7 thin
spectrum excitations by |m,n). The state [singlet) is
%[|l1T2>—|T1l2>]- Upon instantaneous inclusion at t=t, of
the two spin state in the Lieb-Mattis lattice, the groundstate
of the decoupled system at <<z, can be expressed in terms of
the eigenstates of the N+2 spin system at r=t,. The exact
groundstate wave function is then given by the following
formidable expression:
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Semi—Classical Qubit
t<t, t="1, t>t,

vE- 4y vt 4y Rabi Oscillations
\—/ IEERERANE RE R E R loy —]2)
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vhvtie PRty L e
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et | |0)N+2 - |2)N+2 |

FIG. 5. (Color online) Semiclassical time evolution of a two
spin qubit that at t=¢, starts interacting with a N-spin Lieb-Mattis
magnet, thus forming at r>1f, a many-body qubit made out of N
+2 spin. Quantum coherence is preserved at all times, since in this
semiclassical approximation the thin spectrum is neglected.

N-1

|¢z<z0> = E i
§=0

S,0) ® |singlet)

N-1
_ n 5,0 .0 Sp1-Mp+M
=2 U5 CN/4,N/4,MA,—MAC(1)/2,1/2,M1,—M1 NIA1/2,M M|
5=0
< CSm—Ma=My 50

NIA2=M =M | S 41,8 gy, M 4+ M| ~M \—M |
X5S,ST|SAI9SBZ’S’O>’ (39)

where we sum the Clebsch-Gordon coefficients over M , M,
and over the total spins S,;, Sp,, and S, A/B denote the spins
on sublattices A and B and the spins on sites 1 and 2 make up
the singlet. With A1(B2) we denote the set of spins on sub-
lattice A(B) combined with spin 1(2). The sums can be
evaluated and we obtain

N-1
B u (N=2+2S)(N+4+2S)|N+2 N+2 [28(S+ 1)
|¢t<to>_ g ”S( \/ 4 7S70> + (N+ 2)2

N+2 N-2
, ,S,0

2(N+2)? 4 4 4
2S(S+1)|N-2 N+2 (N=-2S)(N+2+2S)|[N-2 N-2
- 5 , ,S,0 ) + > , ,S,07 . (40)
(N+2) 4 4 2(N+2) 4 4

Again the equations simplify drastically in the continuum
limit of large N, where as before 0 <S<<N. In this case the
wave function of the system at <<, expressed in the eigen-
states of the N+2 spin system at =t is

2,2, (41)

0,n) +

|¢z<r0> = [

Here all states on the right-hand side, i.e., all the thin spec-
trum states labeled by their quantum number n with either
zero or two magnons, refer to configurations of N+2 spins.

To account for a finite temperature of our many particle
qubit, we combine initial states with different n into a ther-
mal mixture before we let it interact with the two spin sin-
glet. We should stress that we only consider temperatures

that are much below the magnon energy: kzT<<J so that
there is no thermal occupation of the magnon states.”® This
implies that the order parameter is not affected by the ther-
mal fluctuations. So, all that we introduce is an incoherent
mixture of the low lying thin spectrum states, which all sup-
port a finite sublattice magnetization. Still, the implicit as-
sumption is that the thin states are in thermal equilibrium—
and it is an important assumption as our final result relies on
it. In principle it can of course not be excluded that occupa-
tion distribution of the thin spectrum states is far from ther-
mal equilibrium. But as we have not a priori prepared the
thin states in some particular way, we assume them to be
thermally occupied. Then the density matrix at times <<t is
then
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1 n
Pi<iy= 22 e Po|0,n) ® |singlet)(singlet| ® (0,n

1 n
= E; e PEo(|0,n)0,n| + 0,n)(2,n
+12,n)0,n| + 2,n)(2,n]), (42)
where, by definition, the partition function is Z =2ne‘BE3 and

B_l=kBT.

IV. TIME EVOLUTION AND DECOHERENCE

By coupling the symmetry broken Lieb-Mattis model to
the two spin singlet, we have created the initial state of our
N+2 spin qubit. This initial state is precisely equivalent to
the initial state (9) of the general description, and we can
thus follow Egs. (10)—(12) directly. That way we compute
the exact time evolution of the initial state density matrix,
trace away the thin spectrum states which have vanishing
thermodynamic weight, and finally define the off-diagonal
element of the reduced density matrix as follows:

1 N
p,0>D[o = 22 e—ﬁEoe—z(EO—Ez)(t—to)/ﬁ,. (43)
n

We can then substitute the exact expressions for E)' in this
matrix element, and perform the summation. We find

l=e™ 1= e—N(X+iT)

p2h = (44)

>ty - —x—i s
1y l_eNx 1 = e ¥i7

E/ in : o
where nghr and T=%AE,,1,-,,(t—t0), with E,;,=VJB and
AE,;,i,=E /N (see Fig. 6). We again define the coherence
time 7, as the half-time of | pf)>130|. For x,7<1, expression

(44) becomes a Lorentzian, and in that limit one thus finds

Quantum Coherence versus Time

— Nn=10°
— N=10°
= 4

N=10
N=10"

Off-diagonal element of density matrix
|

| | | |
10" 10" 10 10* 107 10°
--> time (s)

FIG. 6. (Color online) The time dependence of the entanglement
between states |0) and |2), p,OD , for different number of spins N at
T=10 K and t,,,./4,.=10>. For clarity curves for different N have
an offset of 1/2.
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our main result.

Notice that just as in the case of using a quantum crystal
with an interstitial excitation, the coherence time 7y, in the
end does not depend on any details of the underlying model.
The fact that AE,;,;, is proportional to E,,;, itself removes all
dependence of f,,,, on the model parameters J and B.

A. Physical interpretation

It is remarkable that the coherence time is such a univer-
sal time scale, independent of the detailed form of the thin
spectrum—which, after all, is determined by the parameters
J and B in the Lieb-Mattis Hamiltonian. Mathematically this
is due to the fact that both x and 7 are proportional to E,,;,.
Physically one can think of this universal time scale as aris-
ing from two separate ingredients. First, the energy of a thin
spectrum state |n) changes when magnons appear, as we
pointed out above. The change is of the order of nE,,;,/N,
where E,;;, is the characteristic level spacing of the thin spec-
trum that we happen to be considering. The fact that each
thin state shifts its energy somewhat at > 1, leads to a phase
shift of each thin state and in general these phases interfere
destructively, leading to dephasing and decoherence. The
larger nE,,;,/ N, the faster this dynamics.

But from the argument above it is clear that in order for
this dephasing to occur, it is necessary for a finite number of
thin states to participate in the dynamics of decoherence.
Since temperature is finite (but always small compared to the
magnon energy) a finite part of the thin spectrum is available
for the dynamics. Thin spectrum states with an excitation
energy higher than kT are suppressed exponentially due to
their Boltzmann weights. Therefore the maximum number of
thin states that do contribute is roughly determined by the
condition that n"*~kgT/E,,,. Putting the ingredients to-
gether, we find that the highest energy scale that is available
to the system to decohere is approximately n”“E,,;, /N
=%% All together, the thin spectrum drops out of the
equations. The time scale at which the dynamics take place is
determined by the inverse of this energy scale, converted into
time. From this argument we immediately find again the co-
herence time t,,, ~ 222

spon kpT

This physical picture also suggests an alternative way of
introducing decoherence into the many particle qubit. Instead
of raising the temperature and making an incoherent super-
position of more and more thin spectrum states, we could
start out at t<<f, with the Lieb-Mattis antiferromagnet in its
(zero temperature) symmetric ground state, and then instan-
taneously turn on the symmetry breaking field B at r=#,. At
t>1, the eigenstates are the Néel-like thin spectrum states
|n). No magnons are created by switching on the symmetry
breaking field. As we can expand the states |n) in the basis of
total spin states as |ny=Zqu§|S) we can, by the inverse trans-
formation, expand the total spin singlet state in the basis of
the Néel-like thin spectrum states as [S=0)=3,u°|n). We can
now use this singlet state as the initial state for our qubit.
This singlet state is a superposition of all of the different
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Néel-like states, which are separated by energies E,,;,. This
procedure thus roughly corresponds to creating a “maximal
temperature” kg~ NE,,;,. When time evolves all of these
states pick up different phases, which leads to decoherence
when we trace over them. The coherence time due to this
switching on of the symmetry breaking field is therefore

_ 27
tSB_ JB *

B. Symmetric case and short-ranged models

This raises the question what would have happened if we
had not broken the symmetry in the Lieb-Mattis magnet (by
introducing a finite symmetry breaking field B) at all. In the
symmetric case S, Sy, and Sp are good quantum numbers at
all times. It is easy to see that in this situation the thin spec-
trum, determined by the quantum number S, is independent
of the "magnon” states, which are determined by the quantum
numbers S, and Sp. Since in the symmetric Lieb-Mattis
Hamiltonian the thin spectrum does not communicate with
the magnons and vice versa, we will find AE,,;,,=0, and ac-
cordingly no decoherence.

The fact that S, S,, and Sy are all good quantum numbers,
may be regarded as a pathology of the Lieb-Mattis model. In
fact, the model is integrable just because there are so many
conserved quantities. In a more general, short-ranged
Heisenberg model the magnons will acquire a finite lifetime
and it is expected that they will in general influence the
structure of the thin spectrum, even if the symmetry breaking
field is absent. In this sense, the Lieb-Mattis model can really
be seen as the best case scenario for avoiding decoherence in
SU(2) symmetric models. Its infinitely long ranged interac-
tions introduce a large energy gap for all magnons, which
thus become extremely silent excitations. On top of that the
coupling to the collective dynamics is so subtle that it can
only be seen because of the existence of a singular limit:
Only because we need to always consider an infinitesimal
symmetry breaking field when looking at the thermodynamic
limit do we find decoherence at all.

C. Recurrence

Finally we notice that the off-diagonal elements of the
density matrix, Eq. (44), are periodic in time, and the initial
density matrix recurs when N7=2m or, equivalently, 7,,.
=mh/E,,;, Such a periodicity is required by the fact that the
time evolution is unitary. As the recurrence time is inversely
proportional to the level spacing of the thin spectrum, it de-
pends on the microscopic parameters of the model. It be-
comes infinitely long if the symmetry breaking field van-
ishes. In the physical limit the recurrence time is always
much longer than the decoherence time as f,../f,,
=kpT/Ey;,> 1.

V. CONCLUSIONS

A many-body qubit has an intrinsic limit to its maximum
coherence time. In this paper we have presented in detail the
considerations and calculations that lead to this conclusion.

The limit to coherence is caused by the thin spectrum. In
quantum systems a continuous symmetry can spontaneously
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be broken in the thermodynamic limit due to these states.
The thin modes can be identified with the collective, zero
momentum, excitations of the order parameter. In this paper
we have outlined a general procedure for finding the thin
spectrum states in a quantum systems. The states within the
thin spectrum are extremely low in energy and at the same
time they are so few that their contribution to the thermody-
namic partition function vanishes.

If a symmetry breaking field is introduced, the resulting
symmetry broken ground state is a superposition of (only)
these thin spectrum states. The fact that the formation of the
symmetry broken state occurs spontaneously in the thermo-
dynamic limit can then easily be checked by considering the
noncommuting limits of disappearing field and sending the
number of involved particles to infinity.

This has important consequences when a many-body
quantum system is brought into a superposition of two dif-
ferent internal states. We have shown that in that case the
thin states will in general participate in the time evolution of
the full many-body system, even if their effect on any ther-
modynamic quantity vanishes. This leads to dephasing and
therefore decoherence when the thin states are integrated out.
We have found that the time scale corresponding to the
dephasing process depends only on the energy scale of the
thin spectrum and the energy shifts induced in the thin spec-
trum by the superposed initial states. Because the shifts in
energy generally are proportional to the level spacing itself,
the decoherence time in the end depends only on the tem-
perature and size of the system, and not on the underlying
details of the model.

We have shown how such superpositions can be defined
and studied in a quantum crystal and in the Lieb-Mattis an-
tiferromagnet. The obvious question is to what extent the
Lieb-Mattis qubit is representative of a general many-body
qubit. In fact the Lieb-Mattis qubit is the best case scenario
for the kind of many-body qubits envisaged in main stream
quantum information theory, as its behavior is extremely
close to semiclassical due to the presence of the infinite
range interactions. Qubits characterized by short range inter-
actions carry massless Goldstone modes and these will
surely act as an additional heat bath limiting the coherence
time. It is of course not an accident that the most “silent”
systems are qubits based on superconducting circuitry, which
have a massive excitation spectrum in common with the
Lieb-Mattis system. We have demonstrated here that even
under these most favorable circumstances quantum coher-
ence eventually has to come to an end, because of the un-
avoidable condition that even the most silent qubits are sub-
tly influenced by their quantum origin. These effects become
noticeable in the mesoscopic realm and we present it as a
challenge to the experimental community to measure the

. . L 2mhN
maximum coherence time that they give rise to: f,,, ~ ol -
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APPENDIX

1. Thermodynamic weight of thin spectrum states

It is easy to show that the contribution of the thin spec-
trum of the symmetric N-spin Lieb-Mattis Hamiltonian to the

N

Zlhin = E (ZS + ])e_BEthin =~
5=0

N N
f (28 + 1) PINS(SHgg ~ —
0
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free energy density is proportional to %V and thus vanishing
in the thermodynamic limit. The energy of a state with total
spin S is E;,=J/NS(S+1) and its degeneracy is 25+1, so
that the contribution of the thin states to the partition func-
tion is

5 (A1)

in the limit of large N. Therefore its total contribution to the free energy is Fy,;,,=—71In Z,;,*—In N and for large N its
contribution to the free energy per spin—and the free energy density—is proportional to 1“7

2. Matrix elements

By expressing the matrix elements of all components of the spin operators S, and Sz in terms of Clebsch-Gordon
coefficients, one can evaluate them by performing the appropriate summations. The resulting matrix elements are:

NS4+ Sg+1)2=8"2(S" +M)(S" +M +1)

<S;‘S,§S’M’

S2—(S4-8
SalSASpSM) = lI s s+1 \/[ Ga=39)

4(48"2-1)8"?

[(Sy=Sp)(Sy+ S5+ 1) +S(S+ DINES =M+ 1)(S F M)

+ g1 5

25(S+1)

\/[52 — (S, = Sp Sy +Sg+ 12 =SNSEM)(GSTM—-1)
* Ogr 51

] 5SA,SA 8SE,SB5M’,M:1

(A2)

4(48%-1)8?

“(Sa+Sp+1)* =SS - M?)

<S/QS;,S’M’

§2—(5,-S8
SZ|SASBSM>: [55',5+1 \/[ ( A B)

4(48"*-1)8"?

[(Sy=Sp)(S4+Sp+1)+S(S+1)|M

+ 1 5

25(S+1)

\/[SZ— (S4 = S5)°I[(Sy + S+ 1)> = $71(S* - M?)
+ Os1 51

(SSS'M'|SE|S,SpSM) = — (S),SpS'M'|SE|S,SpSM) + 851 (S = M + 1)(S F M),

(SHSpS'M'

S

3. The Bogoliubov transformation
We have used a Bogoliubov transformation to diagonalize

bosonic bilinear Hamiltonians of the form

B
H= Abib, + ?k(bkb_k +bib')), (A6)
k

where A_;=A; and B_;=B,. The relevant transformed bosons
B} are defined through

bz = cosh(uk)ﬁik — sinh(uy) By,

SASESM) = — (S4SpS'M'[S5|S4SpSM) + M S .

4(48%-1)8? ] 05,5, 9535, Om" 1> (A3)

(A4)

(A5)

b_;. = cosh(uy) B, — sinh(u) B7,. (A7)
The parameters u; obey u,=u_; and are chosen such that the
Hamiltonian reduces to diagonal form. This implies that

A
cosh(2uy) = —A—z L e

/ -

k k

By

sinh(2u;) = ———= and
¢ \/A,% - B,%
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1
H= Emk (ﬁkﬁk+ >—5Ak. (A8)

We can also use the exact same definition of u; to diagonal-
ize the Hamiltonian

H=2, Aajay+biby) + Bylayb_y +abl).  (A9)
k

In that case the transformed bosons and Hamiltonian are
given by

a} = cosh(uy) BT, — sinh(u;) oy,

bl = cosh(uk)aik — sinh(u;) B; and

H= VA2 -BXajoy + BiBc+ 1) —A,.  (A10)
k

4. The order parameter

Consider the symmetry broken Lieb-Mattis Hamiltonian:

2J

If the number of spins N is large, then the eigenfunctions |n)
of this Hamiltonian are to a very good approximation given
by the eigenfunctions of (half of) a harmonic oscillator:

|n) EMS|S> 2

—l/ZwS H (\(J)S |S>
\’7T n!

(A12)

where |S) are the total spin eigenstates, H, are the Hermite
. 2 [7 .
polynomials, w equals V%, and n can only be an odd inte-
ger number. Using this exact expression to calculate the
ground state expectation value of the order parameter, we

find:

(S5~ S5y = 2 usug, ('S5 — S3lS)
S.8'

2 2y ¢2
_22 . 1\/((N/2+1) 1S)S (AL3)

The shape of the function u; guarantees that S<<N, so that
for large N the expectation value is approximately given by:
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gf /1_6w3/2se—(1/2)w52(s _ l)e—(uz)w(s— l)zdS
1 7T
- ]X e—(l/4)w(1 _ lw)(l _ erf( \/E)) + \/Ee—(l/Z)o)
2 2 4 4

_ %’e—\f_ww)(n/(zzv) +o(). (A14)

which reduces to the classically expected order parameter in
the thermodynamic limit. Note that in this expression it is
immediately clear that the limit of vanishing symmetry
breaking field does not commute with the limit of infinitely
many spins: they form a singular limit.

5. Relation to the quantum measurement process

Having seen the interaction between the Lieb-Mattis anti-
ferromagnet and a two spin singlet, and the subsequent de-
coherence, one could be tempted to claim that what we have
here is a description of a quantum measurement process.
Indeed we started out with a macroscopic, symmetry broken,
classical state (the antiferromagnet) and coupled it to a mi-
croscopic spin state. The classical mixed state that we end up
with at times #)¢,,,, seemed to consist only of states with
either zero or two magnons, since the off-diagonal matrix
elements which mix the two states had disappeared. It should
be noted however, that this is not enough to constitute a
description of quantum measurement. If we consider the cou-
pling of a single two spin singlet to the antiferromagnet the
calculations imply that the resulting state is a macroscopic
superposition of zero and two magnon states, which in fact
remains coherent forever. The apparent reduction to a classi-
cal mixture of states is due to the fact that we choose to trace
away a certain portion of the available Hilbert space (i.e., the
thin spectrum). This leads to decoherence. If we were to wait
long enough, the unitarity of quantum mechanical time evo-
Iution guarantees that after a time f¢,,. the original quantum
superposition of zero and two magnons shows up again.
Since t,,. turns out to be a very long time, one could be
tempted to make the case that for all practical purposes our
description gives the same result as a true measurement pro-
cess would give. This is not so. It should always be kept in
mind that decoherence of states, as we have here, is very
different from a projection of states.?! Projections are non-
unitary. A single quantum measurement is a projection of the
wave function. The statistical interpretation of quantum me-
chanics of course circumvents this problem: ensembles of
our decohered states and ensembles of measured states have
exactly the same density matrix. However, if one aims to
describe a single measurement then decoherence cannot ex-
plain the projection of states that apparently takes place ex-
perimentally.

17, van Wezel, J. van den Brink, and J. Zaanen, Phys. Rev. Lett.
94, 230401 (2005).

21. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij,
Science 299, 1869 (2003).

3C. H. van der Wal, A. C. J. ter Haar, F. K. Wilhelm, R. N.
Schouten, C. P. M. Harmans, T. P. Orlando, S. Lloyd, and J. E.
Mooij, Science 290, 773 (2000).

4Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Nature (London)

094430-13



VAN WEZEL, ZAANEN, AND VAN DEN BRINK

398, 786 (1999); Y. Nakamura, Yu. A. Pashkin, T. Yamamoto,
and J. S. Tsai, Phys. Rev. Lett. 88, 047901 (2002).

5D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina,
D. Esteve, and M. H. Devoret, Science 296, 836 (2002).

6J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, Phys.
Rev. Lett. 76, 3830 (1996).

D. D. Awschalom, J. F. Smyth, G. Grinstein, D. P. DiVincenzo,
and D. Loss, Phys. Rev. Lett. 68, 3092 (1992).

8E. Lieb and D. Mattis, J. Math. Phys. 3, 749 (1962).

°P. W. Anderson, Phys. Rev. 86, 694 (1952); P. W. Anderson,
Science 177, 393 (1972).

10See, for instance, S. Coleman, Apects of Symmetry (Cambridge
University Press, Cambridge, 1985), Chap. 5.

T A, Kaplan, W. von der Linden, and P. Horsch, Phys. Rev. B 42,
4663 (1990).

12C. Kaiser and I. Peschel, J. Phys. A 22, 4257 (1989).

I3B. Bernu, P. Lecheminant, C. Lhuillier, and L. Pierre, Phys. Rev.
B 50, 10048 (1994).

141, Capriotti, Int. J. Mod. Phys. B 15, 1799 (2001).

I5B. Bernu, C. Lhuillier, and L. Pierre, Phys. Rev. Lett. 69, 2590
(1992).

PHYSICAL REVIEW B 74, 094430 (2006)

6H. Neuberger and T. Ziman, Phys. Rev. B 39, 2608 (1989).

17D. S. Fisher, Phys. Rev. B 39, 11783 (1989).

18M. Gross, E. Sdnchez-Velasco, and E. D. Siggia, Phys. Rev. B
40, 11328 (1989).

19See, for instance A. Auerbach, Interacting Electrons and Quan-
tum Magnetism (Springer-Verlag, New York, 1994), and refer-
ences therein.

20D, C. Mattis, The Theory of Magnetism I: Thermodynamics and
Statistical Mechanics (Springer-Verlag, Berlin, 1988).

213, L. Adler, Stud. Hist. Philos. Mod. Phys. 34, 135 (2003).

22Because of a technicality we choose to use a state with two mag-
nons instead of a single one. By doing so we ensure that our
system stays in the subspace of zero total magnetization (M
=0), which considerably simplifies the calculations without loss
of generality.

23Note that in a d-dimensional system the number of spins is N
=L4 where L is the linear extent of the system. So the energy
scale for the lowest possible spin wave (magnon) excitation is
J/L. However, the energy scale of the thin spectrum is J/N
=J/L¢ and is thus—in any dimension higher than one—much
lower than the magnon energy scale.

094430-14



