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We investigate a model for randomly layered magnets, viz., a three-dimensional Ising model with planar
defects. The magnetic phase transition in this system is smeared because static long-range order can develop on
isolated rare spatial regions. Here, we report large-scale kinetic Monte Carlo simulations of the dynamical
behavior close to the smeared phase transition, which we characterize by the spin (time) autocorrelation
function. In the paramagnetic phase, its behavior is dominated by Griffiths effects similar to those in magnets
with point defects. In the tail region of the smeared transition the dynamics is even slower: the autocorrelation
function decays like a stretched exponential at intermediate times before approaching the exponentially small
asymptotic value following a power law at late times. Our Monte Carlo results are in good agreement with

recent theoretical predictions based on optimal fluctuation theory.
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I. INTRODUCTION

In recent years, there has been a resurgent interest in the
influence of defects, impurities, or other types of quenched
disorder on the properties of phase transitions and critical
phenomena. This renewed attention is largely due to the dis-
coveries of disorder effects that go beyond the framework of
perturbation theory and the perturbative renormalization
group.

A particularly interesting class of nonperturbative phe-
nomena are the so-called Griffiths or rare region effects that
are produced by rare strong spatial-disorder fluctuations.
They can be easily understood in the example of a diluted
magnet: Due to the dilution, the critical temperature 7', of the
disordered system is lower than its clean value 7°. In the
temperature interval 7, <T< T? the diluted bulk system is in
the disordered phase. However, in an infinite size sample
there is an exponentially small, but nonzero probability for
finding an arbitrary large spatial region devoid of impurities.
Such a rare region, a “Griffiths island,” displays local order
in the temperature interval 7, <7< T(C) Due to its size, such
an island will have very slow dynamics because flipping it
requires changing the order parameter over a large volume.
More than 30 years ago, Griffiths' showed that the presence
of these locally ordered islands produces a singularity in the
free energy in the whole region 7. <7< T(C), which is now
known as the Griffiths region or the Griffiths phase.> In ge-
neric classical systems with uncorrelated or short-range cor-
related disorder, thermodynamic Griffiths effects are very
weak because the singularity in the free energy is only an
essential one.>™ To the best of our knowledge, classical ther-
modynamic Griffiths singularities have therefore not been
verified in experiment (see also Ref. 6).

In contrast to the thermodynamics, the long-time dynam-
ics is dominated by the rare regions. Inside the Griffiths
phase, the spin autocorrelation function C(r) decays very
slowly with time ¢, as In C()~—(In)¥%D for Ising
systems>’1 and as InC(t)~-t"?> for Heisenberg
systems.”!! These results were recently confirmed by a more
rigorous calculation for the equilibrium'?!3 and dynamic'#!>
properties of disordered Ising systems.

The effects of impurities and defects are greatly enhanced
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by long-range spatial disorder correlations. In particular, if
the disorder is perfectly correlated in some spatial directions,
the rare regions are extended objects, which are infinite in
the correlated dimensions. This makes their dynamics even
slower and so increases their effects. In Ising models with
linear defects (disorder perfectly correlated in one dimen-
sion), the thermodynamic Griffiths singularities are of
power-law type, with the average susceptibility actually di-
verging in a finite-temperature region. The critical point itself
is an exotic infinite-randomness critical point and displays
activated rather than power-law scaling. This was first found
in the McCoy-Wu model,'®!” a disordered two-dimensional
(2D) Ising model in which the disorder is perfectly correlated
in one dimension and uncorrelated in the other. Later it was
studied in great detail in the context of the quantum-phase
transition of the random transverse-field Ising model where
the imaginary time dimension plays the role of the “corre-
lated” direction.'®!?

Recently, it has been shown that even stronger effects
than these power-law Griffiths singularities can occur in
Ising models with planar defects.??! Because the disorder is
perfectly correlated in two directions, the effective dimen-
sionality of the rare regions is two. Therefore, an isolated
rare region can undergo the phase transition independently
from the bulk system. This leads to a destruction of the glo-
bal sharp phase transition by smearing. Similar smearing ef-
fects have also been found in itinerant quantum magnets®?
and at a non-equilibrium transition in the presence of linear
defects.® A recent review of these and other rare region ef-
fects can be found in Ref. 24.

In this paper, we study the dynamics of an Ising model
with planar defects in the vicinity of this smeared phase
transition by large-scale kinetic Monte Carlo simula-
tions. The paper is organized as follows. In Sec. II we intro-
duce the model and briefly summarize the results of the op-
timal fluctuation theory?%>*?3 for smeared phase transitions
to the extent necessary for the analysis of our data. In Sec.
III, we explain the simulation technique, we present our re-
sults for the spin autocorrelation function, and we compare
them to the theoretical predictions. Conclusions are pre-
sented in Sec. I'V.
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II. THEORY
A. Three-dimensional Ising model with planar defects

We consider a three-dimensional classical Ising ferromag-
net with planar defects, the same model whose thermody-
namics was studied in Ref. 21. Ising variables S; ;,=+1 re-
side on the sites of a cubic lattice. They interact via nearest-
neighbor interactions. In the clean system all interactions are
identical and have the value J. The defects are modeled via
“weak” bonds randomly distributed in one dimension (uncor-
related direction). The bonds in the remaining two dimen-
sions (correlated directions) remain equal to J. The system
effectively consists of strongly coupled slabs (layers) of
varying thickness, separated by parallel layers of weak
bonds. The Hamiltonian of the system is given by

- s

JiSi jaSisjk

J(S;j xS jrr ke + SijuSijaar)s (1)
i=1...L,
jhk=lo. Lo

where L, (L) is the length in the uncorrelated (correlated)
direction, i, j, and k are integers counting the sites of the
cubic lattice, J is the interaction energy in the correlated
directions, and J; is the random interaction in the uncorre-
lated direction. The J; are drawn from a binary distribution
c¢J with probability p 2

"~ |J  with probability 1 - p

characterized by the concentration p with 0<p<1 and the
relative strength ¢ of the weak bonds (0<c¢<1).

The Hamiltonian (1) does not contain any internal dynam-
ics. Instead, the dynamics must be added ad hoc by specify-
ing an appropriate dynamical algorithm. We consider a
purely relaxational local dynamics without any conservation
laws, i.e., model A in the Hohenberg-Halperin
classification.?® Microscopically, it can be realized, e.g., by
the Glauber or Metropolis algorithms.?”-?8

B. Smeared phase transition and optimal fluctuation theory

In the absence of impurities (p=0), the system (1) under-
goes a ferromagnetic phase transition at the clean critical
temperature 7“8:4.511], with the order parameter being the
total magnetization

1
m= ‘_/E (Sijn- (3)
ij.k
Here, V=L lLZC is the volume of the system and () denotes
the thermodynamic average.

In the presence of disorder (p > 0), a crucial role is played
by rare strong disorder fluctuations: In analogy to the Grif-
fiths phenomena1 discussed in the Introduction, there is a
small but finite probability for finding a large spatial region
containing only strong bonds in the uncorrelated direction.
Such a rare region can be locally in the ferromagnetic state
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while the bulk system is still in the disordered (paramag-
netic) phase. The ferromagnetic order on the largest rare re-
gions starts to emerge right below the clean critical tempera-
ture T? Since the defects in the system are planar, these rare
regions are infinite in the two correlated dimensions but fi-
nite in the uncorrelated direction. Each rare region is thus
equivalent to a two-dimensional Ising system that can un-
dergo a real phase transition independently of the rest of the
system. The resulting effect is much stronger than conven-
tional Griffiths effects: the global phase transition is de-
stroyed by smearing, and the order parameter develops very
inhomogeneously in space with different parts of the system
(different rare regions) ordering independently at different
temperatures.?0-21-24

The leading thermodynamic behavior in the tail of the
smeared transition can be determined using optimal fluctua-
tion theory.?%>* The approach is similar to that of Lifshitz?
and others for the description of the tails in the electronic
density of states of disordered systems. The theory can be
easily developed for a general d-dimensional system with d
correlated dimensions and d | =d—d, uncorrelated dimen-
sions. In the case of the Hamiltonian (1), do=2 and d | =1.

In the tail region of the smeared transition, the system
consists of a few isolated ferromagnetic rare regions embed-
ded in a paramagnetic bulk. We start from the probability w
for finding a large region of linear size Lgp containing only
strong bonds. Up to preexponential factors, it is given by

w~ (1 - )i = explLigg In(1 - p)]. @)

Such a rare region develops static ferromagnetic long-range
order at some temperature 7,.(Lgg) below the clean critical
temperature 7°. The value of T,(Lgg) varies with the size of
the rare region; the largest islands will develop long-range
order closest to the clean critical point. To determine
T.(Lgg), we can use finite-size scaling® for the clean system
because a rare region is equivalent to a “slab” of a clean
Ising model. This yields

70— T(Lgg) = Ir(Lgg)| = ALR, (5)

where ¢ is the finite-size scaling shift exponent of the clean
system and A is the amplitude for the crossover from d
=dc+d, dimensions to a slab geometry infinite in the d.
(correlated) dimension but with finite length in the other (un-
correlated) directions. The reduced temperature r=7T—-T"
measures the distance from the clean critical point. As long
as the clean d-dimensional Ising model is below its upper
critical dimension (d;=4), hyperscaling is valid and the
finite-size shift exponent is related to the correlation length
exponent v by ¢=1/v, which we assume from now on.
Combining Egs. (4) and (5), we obtain the probability for
finding an island, which becomes critical at some r, as

w(r,) ~ exp(= B|rJ™+") forr,—0—, (6)

with the constant B=-In(1-p)A?L”. The total (average)
magnetization m at some reduced temperature r is obtained
by integrating over all rare regions, which are ordered at r,
i.e., those with r.>r. Since the functional dependence on r
of the local magnetization on the island is of power-law type
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it does not enter the leading exponentials but only pre-
exponential factors. To exponential accuracy, we therefore
obtain

m(r) ~ exp(= B|r[9+") forr—0-. (7)

Thus, the total magnetization develops an exponential tail
towards the disordered phase, which reaches all the way to
the clean critical point. Analogous estimates show that the
homogeneous magnetic susceptibility does not diverge any-
where in the tail region of the smeared transition. At r=0, the
exponentially decreasing island density overcomes the
power-law divergence of the susceptibility of an individual
island; and once a nonzero magnetization has developed, it
cuts off any possible singularity. However, there is an essen-
tial singularity in the free energy at the clean critical point
produced by the vanishing density of ordered islands.

C. Dynamics at the smeared transition

After having briefly discussed the optimal fluctuation
theory for the thermodynamics, we now consider the dy-
namical behavior at the smeared phase transition of our dis-
ordered magnet (1). The interesting physics in the tail of the
smeared transition is local with respect to the uncorrelated
dimensions because different rare regions are effectively de-
coupled from each other, and the spatial correlation length in
these directions remains finite. An appropriate quantity to
study the rare-region dynamics is therefore the time autocor-
relation function of the Ising spins

€)=+ 3 (5,7400)81,40). (®)
Viik
The leading long-time behavior of C(¢) in the tail of the
smeared transition can be determined using optimal fluctua-
tion arguments similar to that of Sec. II B.?+?°
According to finite-size scaling,’® the behavior of the cor-
relation time &, of a single rare region of size Lgp in the

vicinity of the clean bulk critical point can be modeled by
(for T< 7?, ie., r<0)

&(r,Lgg) ~ L& r 4 ALY 7. (9)

Here, v and z are the correlation length and dynamical expo-
nents of a d-dimensional system and 7 and Z are the corre-
sponding exponents of a d--dimensional system.

Let us first consider the time evolution of the autocorre-
lation function C(z) at the clean critical point 7?_, ie., the
boundary between the conventional paramagnetic phase and
the smeared tail of the ordered phase. For r=0, the correla-
tion time (9) simplifies to &~ L. The rare region contribu-
tion to C(¢) is obtained by simply summing over the expo-
nential time dependencies of the individual islands with
Lgrgr-dependent correlation time. Using Eq. (4) we obtain to
exponential accuracy

an~JuWw@u%ma-m-mmhL (10)

where D is a constant. This integral can be easily estimated
within the saddle-point method. The leading long-time decay
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of the autocorrelation function C(7) at the clean critical point
is given by a stretched exponential,

In C(r) ~ = [~ In(1 = p) P11+ (r=0). (11)

In the conventional paramagnetic phase 7>7" (r>0) the
correlation time does not diverge for any Lgg. Instead, the
correlation time of the large islands saturates at &(r,Lgg)
~ 7% for Lgg>(r/A’)"". The autocorrelation function C(r)
can again be evaluated as an integral over all island contri-
butions. We find that there are two regimes separated by a
crossover time

1y~ ||, (12)

For intermediate times #<t,, the autocorrelation function fol-
lows the stretched exponential (11). For times larger than the
crossover time f,, we obtain a simple exponential decay

InC(t) ~-t/T fort>t, r>0, (13)

with the decay time 7~r*". Our results for TBT? agree
with the corresponding conventional dynamical Griffiths
effects’ for systems with point defects. This is not surprising,
because above T?, there is no qualitative difference between
the Griffiths and the smearing scenarios: In both cases, all
rare regions are locally still in the disordered phase.

This changes in the tail of the smeared transition below
the clean critical point 7‘3 For r<<0, we repeat the saddle-
point analysis with the full expression (9) for the correlation
length. Again, for intermediate times 7 <<t,, the decay of the
average density is given by the stretched exponential (11).
For times larger than the crossover time ¢, the system realizes
that some of the rare regions have developed static order and
contribute to a nonzero long-time limit of the autocorrelation
function C(¢). The approach of C(¢) to this limiting value is
dominated by finite-size islands with Lz~ (—r/A)™" because
they have a diverging correlation time. As a result, we obtain
a power law

Ct)-C(e)~r? fort>t, r<o0. (14)

The value of ¢ cannot be found by our methods since it
depends on the neglected pre-exponential factors.

In Ref. 25, the predictions (11), (13), and (14) have been
compared to results from a local dynamical mean-field
theory. The purpose of the present paper is to verify these
relations by large-scale kinetic Monte Carlo simulations of a
realistic model with short-range interactions, viz., the Hamil-
tonian (1).

III. COMPUTER SIMULATIONS
A. Method

We now turn to the main part of the paper, kinetic Monte
Carlo simulations of our three-dimensional Ising model with
nearest-neighbor interactions and planar bond defects, as
given in Eq. (1). Since the smearing of the transition is a
result of exponentially rare events, sufficiently large system
sizes are required in order to observe it. In the production
runs, we have mostly used system sizes of 260° or 300 sites.
In this context, let us briefly comment on finite-size effects.
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FIG. 1. Total magnetization m and susceptibility y as functions
of T for L, =100, L-=200, and p=0.2 averaged over 200 disorder
realizations (from Ref. 21).

Because the phase transition in an Ising model with planar
defects is smeared, conventional finite-size scaling30 does not
directly apply. Nonetheless, there are two types of finite-size
effects, whose consequences for the thermodynamics were
discussed in detail in Refs. 20 and 21. A finite size in the
uncorrelated direction limits the possible sizes of the rare
regions and thus cuts off the probability distribution (6),
while a finite size in the correlated directions rounds the
local phase transitions of the rare regions. We have carried
out test runs using 50%, 100°, and 200° sites to ensure that our
results are not influenced by these finite-size effects.

We have chosen J=1 and ¢=0.1 in Eq. (2), i.e., the
strength of a “weak” bond is 10% of the strength of a strong
bond. The simulations have been performed for various dis-
order concentrations p={0.2,0.3,0.4,0.5,0.6} over a tem-
perature range of 7=4.25 to 5.00, covering both sides of the
clean critical point at T?=4.511. To suppress the statistical
disorder fluctuations we have averaged the results over a
large number of disorder configurations ranging from 100 to
5000 depending on the parameters.

For each disorder configuration, the simulation proceeds
as follows. After the initial setup, the system is equilibrated
using the highly efficient Wolff cluster algorithm.3' (Using a
cluster algorithm is possible for our Hamiltonian because the
disorder does not induce frustration.) The length of the
equilibration period is 50 Wolff sweeps. (A Wolff sweep is
defined as a number of cluster flips such that the total num-
ber of flipped spins is equal to the number of sites, i.e., on
the average each spin is flipped once per sweep.) The actual
equilibration times have typically been of the order of 10-20
sweeps at maximum. Thus, an equilibration period of 50
sweeps is more than sufficient.

After the system is equilibrated, the spin configuration is
stored and the simulation time is set to #=0. The actual time
evolution of the system according to model A dynamics is
performed using the Metropolis algorithm.”’ After each
sweep (a Metropolis sweep consists of one attempted spin
flip per site), the spin configuration is determined and the
spin autocorrelation function is calculated from Eq. (8). The
length of this measurement period is up to 5000 Monte Carlo
(Metropolis) sweeps.

B. Results

In this section, we present the results of our kinetic Monte
Carlo simulations and compare them to the theoretical pre-
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FIG. 2. (Color online) Spin autocorrelation function C as a func-
tion of time ¢ for L, =L-=260, p=0.3. The number of disorder
realizations ranges from 100 at the lowest temperatures to 5000 at
the highest temperatures. The power-law time axis corresponds to
the stretched exponential predicted in Eq. (11).

dictions of Sec. II C. For later reference, we first give a brief
overview of the thermodynamics as determined in Ref. 21.
Figure 1 shows total magnetization and susceptibility as
functions of temperature averaged over 200 samples of size
L, =100 and L =200 with an impurity concentration p
=0.2. For temperatures above T=4.2, ...,4.3, the magnetiza-
tion shows a pronounced tail, i.e., it vanishes very gradually
when approaching the clean critical temperature 72:4.51 1. It
should be emphasized that this tail is not due to finite-size
effects. Indeed, a detailed analysis®! has shown that the mag-
netization nicely follows the prediction (7) of the smeared
transition scenario over more than a magnitude in m. Analo-
gously, an analysis of the susceptibility has shown that it
does not diverge in the thermodynamic limit, instead, it dis-
plays a rounded peak.

We now turn to the spin autocorrelation function C(z).
Figure 2 gives an overview over its behavior for an impurity
concentration p=0.3 and times up to t=5000 over the entire
temperature range studied. In this figure the data are plotted
in the form In C vs 3% such that the stretched exponential
(I11) predicted for the time dependence at the clean critical
temperature Tg=4.511 gives a straight line. Here we have
used d | =1 and a value of z=2.04 for the dynamical expo-
nent of the clean three-dimensional Ising model with model
A dynamics (see, e.g., Refs. 32-34). The figure shows that
the autocorrelation function at 7° indeed follows the
stretched exponential over more than two orders of magni-
tude in C. At temperatures 7 # 7?, the autocorrelation func-
tion initially follows the same stretched exponential, but
eventually crosses over to a different asymptotic form: For
T> T?, it decays faster than the stretched exponential, while
it seems to saturate at a nonzero value for T<<T°. In the
following, we investigate the different temperature regions in
more detail.

Let us begin by analyzing the autocorrelation function
C(r) right at the clean critical temperature T? Figure 3 shows
C(tr) for several impurity concentrations p=0.2,...,0.6,
again plotted as In C vs 1*32°. After the initial transients, all
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FIG. 3. (Color online) Spin autocorrelation function C(z) at the
clean critical temperature 78=4‘511 for L, =L-=300 and several
impurity concentrations p. The data are averages over 100 disorder
realizations (1000 realizations for p=0.3). The statistical errors are
not bigger than a symbol size for C> 103, For p=0.3, they reach
about twice the symbol size at the right end of the curve.

curves are straight lines, indicating that C(z) follows the the-
oretical prediction (11) over at least two orders of magnitude
in C for all concentrations. From the curves in Fig. 3, one
can determine the decay constants (i.e., the slopes) as a func-
tion of impurity concentration p. According to Eq. (11), the
decay constant should be proportional to [-In(1—p)]¥/@1+?
=[-In(1-p)]°7!. Figure 4 shows the corresponding plot for
our data. It shows that the behavior of the decay constants is
in good agreement with the theoretical predictions.

After the behavior at the clean critical temperature 7°, we
now consider the conventional paramagnetic phase 7> T‘C) In
Fig. 5, we plot the autocorrelation function C(¢) for p=0.3,
L, =L=260, and temperatures 7> Tg as InC vs t such
that a simple exponential decay gives a straight line. For
all shown temperatures, the long-time behavior of the
autocorrelation function is indeed an exponential decay
in agreement with the theoretical prediction (13). To deter-
mine the decay time 7 we fit the long-time behavior of C(z)
to Eq. (13). The inset of Fig. 5 shows 7! as a function of

25

2..
]
Q.
[s)
9150

1 L

0.3 04 05 06 07 08 09 1

[-In(1 _p)]0.671

FIG. 4. Decay constants (slopes) of the stretched exponentials of
Fig. 3 as a function of impurity concentration p, plotted according
to the prediction (11).
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FIG. 5. (Color online) Log-linear plot of the spin autocorrelation
function for temperatures above Y{C) (from the top: T
=4.6,4.7,4.8,5.0). The other parameters are as in Fig. 2. The solid
lines are fits of the long-time behavior to Eq. (13). The statistical
errors are not bigger than a symbol size for C>107*. Inset: Inverse
decay time 7! as a function of (T— 7?)”.

(T- Y{Z)Z” with the three-dimensional clean correlation-length
exponent given by v=0.628 (see, e.g., Ref. 35) and z=2.04
as before. As predicted by the optimal fluctuation theory
in Sec. II C, the inverse decay time depends linearly on
(T-T°)?. (The remaining small deviations can probably be
attributed to the preexponential factors neglected in the op-
timal fluctuation theory.) We have performed analogous
simulations for an impurity concentration of p=0.5 and
found the same qualitative behavior. Of course, nonuniversal
prefactors have different values.

Finally, we turn to the properties of the spin autocorrela-
tion function C(r) below the clean critical temperature 7,
i.e., in the tail of the smeared phase transition. For these
temperatures, the total equilibrium magnetization is nonzero
because some of the rare regions have already developed a
static magnetization (see also Fig. 1).2%2! Consequently, the
autocorrelation function does not decay to zero in the long-
time limit but rather approaches the limiting value m? as can
be seen in the overview of Fig. 2. The dynamical correlations
of the magnetization fluctuations (S; ;,—m) are represented
by the deviation C(r)—C(%) of the autocorrelation function
from its long-time limit. Figure 6 shows a double-
logarithmic plot of C(t)—C(%) for p=0.3, L, =L-=260, and
temperatures 7=4.35, 4.40, and 4.45. For all three temp-
eratures, the long-time behavior of C(r)—C(%) follows a
power law. Fits to Eq. (14) give exponents of ¢=0.80 for
T=4.35, 0.90 for 7=4.40, and 1.23 for 7=4.45. Thus, as
predicted, the exponent of the power-law (14) is nonuniver-
sal. (We note that the apparent crossing of the curves in Fig.
6 is not related to the long-time dynamics, but simply the
result of the subtraction of C(«). At lower temperatures,
C(e0) is larger, and since C(z) cannot exceed 1, the difference
C(t)—-C() at early times must decrease with decreasing T.
Since in the long-time limit the decay is faster for larger 7,
the curves must cross.)

We have carried out analogous simulations for the impu-
rity concentration p=0.5, and we have obtained equivalent
results.
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FIG. 6. (Color online)Double-logarithmic plot of the dynamical
part C(1)—C(x) of the autocorrelation function for temperatures
below 7? The other parameters are as in Fig. 2. The straight lines
are fits of the long-time behavior to the power law (14) giving
exponents of $=0.80 (7=4.35), 0.90 (T=4.40), and 1.23 (T
=4.45).

IV. CONCLUSIONS

To summarize, we have studied the dynamic behavior of
randomly layered Ising magnets by performing large-scale
kinetic Monte Carlo simulations of a three-dimensional Ising
model with planar defects. In this system, the magnetic phase
transition is smeared because rare strongly coupled spatial
regions (i.e., thick strongly coupled layers) independently
undergo the phase transition. We have found that the dynam-
ics in the rare-region dominated tail of the smeared transition
is very slow. The spin autocorrelation function approaches its
stationary value following a power law in time. At the clean
critical temperature 7? (which marks the boundary between
the conventional paramagnetic phase and the tail of the
smeared transition), the autocorrelation function decays like
a stretched exponential in time. In the paramagnetic phase
above T?, the decay is of a simple exponential type. How-
ever, the decay time 7 of this exponential diverges in the
limit 7T— Tg+. Our numerical results (both the functional
forms and the exponent values of the various time and dis-
order dependencies) are in very good agreement with a re-
cent optimal fluctuation theory.?

All our explicit results are for strong impurities (¢=0.1).
We have chosen this value because strong impurities allow
us to easily observe the smeared transition in a finite-size
simulation. If the impurities are weak (¢ close to 1), the
smeared transition is too close to the clean critical point.
Strong bulk fluctuations thus compete with the smearing, and
the latter can only be observed in larger systems and/or at
longer times. The behavior of our model for ¢=0 (dilution) is
special, because for this value, the system is decomposed
into an ensemble of noninteracting slabs.
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We emphasize that we have considered a purely relax-
ational (local) dynamics corresponding to model A in the
Hohenberg-Halperin classification.?® Other dynamic algo-
rithms require separate investigations. For instance, model B
dynamics globally conserves the order parameter. In this
context, an interesting question is: How does the interplay of
the local thermodynamics of the rare regions and the global
conservation law modify the dynamic behavior in the tail of
the smeared transition?

Let us briefly compare the dynamics at a smeared phase
transition studied here to the behavior in a conventional Grif-
fiths phase (as produced by uncorrelated or short-range cor-
related disorder such as point defects). Both in a Griffiths
phase and at a smeared transition, rare regions dominate the
long-time dynamics. In a conventional Griffiths phase, the
finite-size rare regions remain fluctuating for all temperatures
above the dirty critical point, i.e., their island correlation
times remain finite. As a result, the autocorrelation function
decays like In C(r) ~—(In 1)~ for Ising systems>’'* and
In C(1) ~—t"? for Heisenberg systems.>!! In contrast, in the
tail of a smeared transition, the effects of the rare regions are
even stronger because individual islands can undergo the
phase transition independently, connected with a divergent
island correlation time. Summing over all islands then leads
to an even slower power-law decay of the spin autocorrela-
tion function.

Let us also comment on experiments. A direct realization
of the scenario discussed here could be achieved by growing
alternating layers of two ferromagnetic materials with differ-
ent critical temperatures 7. To introduce disorder, the thick-
ness of the layers should be random. In the tail of the
smeared transition, i.e., for temperatures close to but below
the higher of the two 7., the dynamic magnetic response of
this system will be dominated by the rare region contribu-
tions. Specifically, the dynamic susceptibility y(w) will be
dominated by its local part, which is essentially the Fourier
transform of the autocorrelation function. Thus measuring
the dynamic response in such a randomly layered magnet
should provide an experimental verification of our results.

Finally, while the results here have been derived for an
Ising model with planar defects, we expect analogous results
for other disorder-smeared phase transitions. Indeed, in the
tail of the smeared nonequilibrium phase transition of a con-
tact process with extended impurities, a power-law decay of
the density was recently found.??3¢
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