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Static and dynamic critical properties of the quasi-two-dimensional antiferromagnet MnPS;
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A comprehensive study of the static and dynamic critical properties of the quasi-two-dimensional antiferro-
magnet MnPS; is presented. The relatively large spin S=5/2 of the Mn ions ensure predominantly classical
behavior, and the compound is believed to be a good example of a Heisenberg-type system on a honeycomb
lattice. The sample has been measured using a variety of neutron-scattering techniques and instrumentation.
The results are compared to the three-dimensional (3D) Heisenberg model, the two-dimensional classical O(3)
rotator model, the two-dimensional XY model, and the related two-dimensional anisotropic Heisenberg model.
The critical properties appear to be best described by the last model almost entirely over the measured
temperature range, except just below the Néel temperature where the critical behavior seems to be 3D. There
are some discrepancies, particularly in the rescaling of the spin stiffness and the energy widths of the structure
factor. A possible explanation for the XY-like behavior is offered, involving the magnetic anisotropy in the

system and its influence on the Hamiltonian.
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I. INTRODUCTION

The physics of critical phase transitions has been driven
by theories of magnetism. The magnetic order-disorder phase
transitions are often critical in nature and, as the magnetic
exchange Hamiltonian is relatively simple, developing a
theory to describe a magnetic phase transition is often trac-
table and sometimes analytically solvable. This is particu-
larly so when the system has less than three dimensions
where, when the problem cannot be solved analytically, re-
cent advances in computing power allow ab initio calcula-
tions to be performed on large arrays of magnetic moments
and the critical dynamics to be analyzed.

To date, the majority of both theoretical and experimental
studies on two-dimensional (2D) magnetic systems have
been on square lattice compounds. This is understandable, as
there are many real compounds that are, to a good approxi-
mation, two-dimensional square lattice systems, including
highly researched compounds, such as superconducting cu-
prates and the colossal magnetoresistive manganates. In con-
trast, less effort has been spent on the study of 2D magnetic
systems on a honeycomb lattice. The hypothesis of univer-
sality states that the critical behavior is determined by the
dimensionality of the system, the symmetry of the order pa-
rameters, and the length scale of the forces; thus the conclu-
sions of the extensive studies on square lattice systems
should be equally applicable to a honeycomb lattice. It is of
interest to measure the critical behavior of honeycomb lattice
systems, not least as a check on the hypothesis of universal-
ity.

Perhaps one of the reasons why honeycomb lattice sys-
tems have not been so heavily investigated is that there ap-
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pear to be relatively few examples of compounds that might
have model behavior. The BaM,(XO,), (M=Co,Ni;X
=P, As) family of compounds is a rare example.! These com-
pounds have attracted interest independently from their hon-
eycomb structure, since they are one of the few known ex-
amples of systems that show model XY-like behavior, where
the magnetic moments are confined to the plane. Recently,
experiments on BaNiy(VO,), have also been published.>?
The compound has the same crystal structure as
BaM,(X0,),, and it is suggested that this compound is an
even better example of an XY system, with electron-spin-
resonance experiments, showing evidence of a Kosterlitz-
Thouless phase transition.?

The MPX; (M=Mn,Fe,Co,Ni;X=S,Se) family of com-
pounds are also good candidates for 2D honeycomb
magnets.*> The magnetic transition metal atoms lie in the ab
planes, which are held together by weak van der Waals
forces. The coupling between the planes is therefore weak
both magnetically and atomically. Of this family, MnPS;
would seem to be the simplest to understand. It has a mono-
clinic structure, space group C2/m, with lattice parameters
a=6.077 A, b=10.524 A, ¢=6.796 A, and B=107.35°.° The
manganese atoms have valence (2+), thus having a half-
filled 3d shell and spin S=5/2. Classical theory should there-
fore be adequate to describe the spin dynamics, and orbital
contributions should not exist. The magnetic susceptibility is
isotropic at high temperatures,”® and consequently the mag-
netic Hamiltonian is believed to be Heisenberg-type. An
ideal 2D Heisenberg magnet should not order at a finite
temperature;9 however, MnPS; does order antiferromagneti-
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FIG. 1. Schematic showing the magnetic structure of MnPS;.
The magnetic moments, given by S=5/2, point normal to the ab
planes.

cally below a Néel temperature of 7Ty=78 K. The structure of
the ordered state was established by neutron diffraction,'”
with each manganese atom being antiferromagnetically
coupled with its nearest neighbors in the plane. The moments
point normal to the planes, and there is ferromagnetic cou-
pling between the planes. Figure 1 shows a schematic of the
magnetic structure.

Theory shows that a dipole-dipole anisotropy, if strong
enough, would be sufficient to induce long-ranged order in a
2D Heisenberg antiferromagnet.'’'? Calculations using the
theory estimated the dipolar anisotropy in MnPS; to be
strong enough to create a gap in the spin-wave dispersion
surface at the Brillouin zone center of 0.7 meV.'? A Néel
temperature can also be derived using the theory, which for
MnPS; was calculated to be Ty=73 K. The presence of sig-
nificant dipolar anisotropy would lift the degeneracy of the
two spin-wave branches present in the antiferromagnetic
phase. The spin-wave dispersion surface has been measured,
showing a gap of 0.499+0.003 meV and, within instrument
resolution, degenerate spin-wave branches.'? The gap could
be modeled by including an easy-axis term in the Hamil-
tonian, whose size was estimated to be gugzpH,4
=0.0086+0.0009 meV. The dipolar anisotropy was therefore
judged to be insufficiently strong to cause long-ranged order.

Even a weak interplanar exchange coupling will lead to a
3D ordering. As temperature is lowered, the in-plane mag-
netic correlation length & diverges. The area of the correlated
regions amplifies the interplanar exchange, J'. The system
will order at the temperature where this energy scale sur-
passes thermal fluctuations, Ty~J'&. A small spin-wave
dispersion between the layer planes is present in MnPS;, and
the interplanar exchange coupling was calculated to be J’
=0.0019+0.0002 meV. This small exchange on its own
gives a calculated Néel temperature far smaller than the mea-
sured Ty=78 K. Long-ranged ordering is therefore believed
to result from a combination of the anisotropy with the weak,
interplanar coupling.

The dispersion in the ab plane could be modeled if up to
the third nearest neighbors were included. The exchange pa-
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rameters for the first, second, and third nearest neighbors in
the ab plane were J;=-0.77+£0.09, J,=-0.07+0.03, and J3
=-0.18+0.01 meV, respectively.'3

Initial experiments to measure the critical properties of
MnPS; found some unusual behavior. While the Hamiltonian
is believed to be Heisenberg-type, measurements of the mag-
netic Bragg peak intensity showed that the sublattice magne-
tization decreased with temperature in a manner that sug-
gested XY-like behavior.!? This was further emphasized by
the discovery that a Kosterlitz-Thouless model could suc-
cessfully be applied to the magnetic correlation length above
Ty.'* This is particularly interesting, considering the recent
observations of XY-like behavior in other 2D honeycomb
systems,’ potentially hinting at a more general trend.

MnPS; is therefore quasi-2D, with a weak interplanar ex-
change and a weak anisotropy that appears to be a combina-
tion of both dipolar (out-of-plane) and single-ion (in-plane)
contributions. It represents a system that is only slightly re-
moved from the currently derived universality classes and
their associated dynamical behavior. It is therefore interest-
ing to compare and see which, if any, of the models currently
in the literature correspond. The critical dynamics of MnPS;,
therefore, has been comprehensively measured using neutron
scattering techniques. Measurements of the temperature be-
havior of the widths, amplitudes, and renormalized energies
of the inelastic scattering at various points in the Brillouin
zone above Ty are grouped together with measurements of
the magnetization, static correlation length, and static ampli-
tude. The data are compared with the theories for a 2D clas-
sical O(3) rotator (CLRM) model, which holds for a
Heisenberg-type system, for a two-dimensional XY (2DXY)
model, and the closely related two-dimensional anisotropic
Heisenberg (2DAH) model. Very close to Ty the data are
compared with the theory of a three-dimensional Heisenberg
(3DH) model. An explanation for the dynamical critical be-
havior of MnPS; is offered in Sec. V.

II. MODELS FOR DYNAMICAL SCALING

The theories for critical phenomena have been summa-
rized in a number of reviews and books (e.g., Refs. 15-17).
The theory generally establishes a range of scaling relation-
ships between important physical quantities (e.g., magnetiza-
tion, correlation length, susceptibility) and the independent
variables of temperature and the external magnetic field. The
scaling relationships correspond to the nature and dimension-
ality of the Hamiltonian and can have quite different func-
tional forms.

A. The Heisenberg model in three dimensions (3DH)

Being quasi-2D, it is expected that a 3D model will only
be applicable to MnPS; at T~ Ty. For T<T), the critical
exponent for the sublattice magnetization, M, of the 3DH is,
on average, 8~ 0.37'7 and the characteristic frequencies Yy
at reduced scattering vector g will renormalize according to
the relation'

,yqocéfl/zq’ (1)

where £ is the magnetic correlation length.
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Above Ty, & will decrease with reduced temperature as a
power law with exponent v~ 0.71.!7 Propagating spin waves
cease to exist and are replaced by quasielastic spin fluctua-
tions with a width, at a sufficiently small reduced scattering
vector, of 7y, This width will vary with the correlation
length according to the relation

Yoo €. 2)

B. The two-dimensional classical lattice O(3) rotator model
(CLRM)

A 2D Heisenberg model can only have long-ranged order
at T=0 K:° however, the model allows for a wide tempera-
ture range with critical fluctuations at sufficiently low tem-
peratures. Scaling relationships for these fluctuations have
been derived by mapping them onto the classical rotator
0O(3) model or classical lattice rotator model (CLRM).!8-20
The relations have been applied with some success to mea-
surements on 2D antiferromagnets,>’>? all of which were
square lattice systems. As a potential example of a quasi-2D
Heisenberg antiferromagnet, the model should also apply to
MnPS; at temperatures above T, where 3D correlations be-
come negligible.

Two parameters are necessary for the theory to predict
both the static and the dynamic critical behavior of the
CLRM: the spin stiffness, pg (=/S? in two dimensions); and
the zero-temperature spin-wave velocity, ¢ (=2v2JSa/# in
2D, where a is the lattice parameter). These quantities can be
calculated for MnPS; from the measured spin wave disper-
sion curve.”> Using the nearest-neighbor interaction
(/1| /kz=8.9 K) gives a spin stiffness of ps/ky=>56 K, and
the gradient of the spin-wave dispersion along the [0,k,0]
direction gives a spin-wave velocity of c/kz=346 K A.
Quantum corrections are often applied to pg; however, they
are negligible for S=5/2 systems and will be ignored.

Spin waves can exist in the CLRM at low temperatures;
however, they will be heavily damped.'® The dynamic order-
parameter correlation function is then written'®

S(g.0) = ¥,L0S(q) D (g€ 0y, ). 3)

The equal-time correlation function, S(g), has a Lorentzian
form'® with the width being inversely proportional to the
correlation length & The correlation length is expected to
scale with temperature as>

21pg kgT
xp( kT )(1 " 2o + 0(T)2>, (4)

e fic

B gZ’JTpS

and the amplitude of the equal-time correlation function,
S(g=0)=S,, is expected to scale with temperature and ¢ and
T as

Sy o ET7. (5)
The scaling relation for the quasielastic width is given by!'8
Yg~0= & (kgT/2mpg) "2 (6)

Renormalization of the spin-wave energies is only impor-
tant very close to the Brillouin zone center, where it scales
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with T and £'®!” The spin-wave damping 7, renormalizes
with temperature. The scaling relations differ as a function of
the wavelengths of the spin waves, with the damping of the
long wavelength fluctuations increasing fastest with
temperature. '’

C. The two-dimensional XY model (2DXY)

The 2DXY model constrains the magnetic moments to lie
in the plane, and has been applied in the analysis of a number
of 2D antiferromagnets, including some with honeycomb
lattices.'3 The model predicts a phase transition temperature,
Tkr, associated with the unbinding of spin vortices. All the
real systems discovered so far have a 3D ordering at a tem-
perature just above Txz. Over length scales smaller than L
=\5W, however, the model predicts that a system will be-
have in a true 2D fashion.?

The 2DXY model has a sublattice magnetization, M, with
a critical exponent 8=0.231.2> A previous measurement of
the temperature dependence of the magnetization in MnPS;
found a critical exponent 8=0.25+0.01, very close to that
expected for a 2DXY model."?

The correlation length ¢ will scale with temperature ac-
cording to the equation®*

R
&=A exp(bg\Tyr/(T - Tky)), (7)
where A and by are nonuniversal constants. The length L is
calculated from the exchange parameters, which are known
for MnPS;, but must also be consistent with the equation®®
Ty—Tkr _ b%(T
TN (IOge L)2 ‘

(8)

Propagating spin waves can exist below Tk, and the char-
acteristic frequency will scale with temperature and correla-
tion length in a similar manner as Eq. (1), with a slightly
different exponent on &.'5 Unlike the CLRM, no propagating
spin-wave modes exist above the transition temperature, 7.

D. The anisotropic two-dimensional Heisenberg model
(2DAH)

The Hamiltonian for the spin dynamics is often written to
be anisotropic

H=-J2 (SIS +S)S) + \S;59), )
()
where 0=\ =1. In the limit A=1, the Hamiltonian becomes
isotropic and the dynamics will map onto a Heisenberg
model. In the limit A=0, there is exchange coupling only
between x and y components of the moments, as for the
2DXY model. Unlike the 2DXY model, however, the mo-
ments are allowed to fluctuate in the z direction; thus the
model is more representative of real systems. The transition
from CLRM to 2DXY behavior as a function of A has been
expressed analytically.?

There have been a large number of theory studies of the
2DAH model.'” The critical behavior for A <1 falls into the
same universality class as the 2DXY model; thus the tem-
perature behavior of M and & is the same as discussed in Sec.
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I C. The 2DAH generally deals with the thermodynamics of
vortices.

The dynamic structure factor, S(g,w), can be expressed in
the same manner as Eq. (3). Two structure factors are rel-
evant to the 2DAH model. The first, $*(g,w), is derived
from the in-plane correlation function, while the second
S$%(q, w) is derived from the out-of-plane correlations. Above
Tkr, the spin fluctuations become quasielastic. The func-
tional form for $**(¢, ) has been calculated to be a squared
Lorentzian form, while S$%(g,w) takes the form of a
Gaussian.?®

For T> Ty, the function $%(g) is a Lorentzian to the
power 3/2 whose amplitude, S*(g=0)=S}", will scale as>®

S§tec &2, (10)
The width scales according to the relation??
T\
vq“52<1——> [1+(q&)]". (11)
Tkr

The critical dynamics of the 2DAH model has been inves-
tigated numerically.?®3! Just above Ty, the calculations
show that propagating spin waves can still exist. The in-
plane structure factor quickly becomes quasielastic with in-
creasing temperature, but the out-of-plane structure factor
will show spin waves to higher temperatures. The impor-
tance of the out-of-plane component depends on the value of
\ in Eq. (9), as this anisotropy determines the orientation of
the vortices. It has been calculated that, for a honeycomb
lattice, the vortices will develop an out-of-plane component
when A >0.86.30

III. EXPERIMENTS

The sample used in the experiment was a single crystal
made by techniques explained previously.!* The sample was
aligned such that the scattering plane was spanned by the
[0,0,1] and [0,1,0] vectors. MnPS;, with two magnetic atoms
per unit cell, has a magnetic propagation vector of (0,0,0)
and therefore all magnetic Bragg peaks are also nuclear
Bragg peaks. The scattering plane therefore contained the
(0,2,0) Bragg peak, which is also one of the strongest mag-
netic Bragg peaks. The critical scattering rods were expected
to be parallel to [0,0,1], thus in the plane of scattering. The
sample orientation was therefore suitable for all the critical
scattering experiments.

A qualitative examination of the critical scattering was
carried out on the PRISMA spectrometer at the ISIS neutron
spallation facility, Rutherford Appleton Laboratories, UK.
The time-of-flight instrument was used in diffraction mode
with no energy analysis. When used in this configuration,
PRISMA is able to quickly detect any diffuse scattering, in-
cluding rodlike structures. Temperature control was achieved
with a helium cryorefrigerator. Measurements were made at
three temperatures: 300 K, where MnPS; is expected to be
paramagnetic; 8 K, where the system is antiferromagnetic;
and 100 K, approximately equal to the maximum in the mag-
netic susceptibility.

The critical behavior of the sublattice magnetization and
the magnetic correlation length ¢ were measured using the
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RITA neutron three-axis spectrometer at Risg National Labo-
ratories, Denmark. The sample was mounted in a helium
cryostat, capable of controlling the temperature of the sample
to <x0.1 K. Higher-order wavelength contamination was
suppressed with a velocity selector. The instrument was ini-
tially configured with a graphite monochromator and ana-
lyzer. The Néel temperature 7, was carefully determined by
measuring the temperature dependence of the (0,2,0) Bragg
peak and was in close agreement with previously published
values. Measurements well above T, were used to estimate
the nuclear intensity, which was subtracted from the data
below Ty to determine the magnetic contribution. These
measurements permitted an accurate determination of the
critical exponent for the magnetization, 8. The analyzer was
then removed and the instrument subsequently used in a two-
axis mode with the incident energy fixed at £;=4.84 meV.
Collimators of 30" were put before and after the sample to
limit divergence, and the resolution of the instrument was
measured by making a reciprocal space map around the
(0,2,0) Bragg peak. To measure the temperature dependence
of &, scans were carried out along (0,2+k,0.6) as a function
of temperature above Ty. These scans were chosen for three
reasons. The scan trajectory is perpendicular to the critical
scattering rods; the (0,2,0.6) position is relatively free of
contamination due to Bragg peaks and their mosaic tails; and
at (0,2,0.6) the final wave vector k is aligned parallel to the
critical scattering rods. The measurements integrate all the

scattering along ﬁp, limited by the kinematic constraints of
the incident neutron energy, and therefore, the scans repre-
sent a measurement of the equal-time structure factor,
JEi S(q, w)dw=S(g). The RITA spectrometer is particularly
suitable for this type of measurement as the velocity selector
allows flexibility in choosing an appropriate incident energy
free of higher order contamination, and the 2D position-
sensitive detector allows for a precise estimation of back-
ground.

The dynamic critical scattering was measured using the
IN12 and IN14 cold neutron three-axis spectrometers at the
Institut Laue-Langevin, France. Both instruments were con-
figured with graphite monochromators and analyzers. The
sample was mounted in a helium cryostat for temperature
control. Higher order contamination was filtered from the
scattered beam, using a cooled beryllium filter.

The IN14 spectrometer was used to follow the critical
behavior of the dynamics. Two resolution configurations
were used. In both configurations the monochromator was
curved to focus the beam in the vertical direction and the
final wave number kr was 1.55 A~!. When measuring close
to Ty, the instrument was configured with a flat analyzer and
40’ analyzers were placed before and after the sample. This
configuration was also used to establish 7 from the mag-
netic intensity of the (020) Bragg peak. Further from the
Néel temperature, where the measured intensity became
weak, the collimators were removed and the analyzer was
curved for horizontal focusing.

The IN12 spectrometer was used to measure the inelastic
scattering very close to Ty. The instrument was used with a
vertically curved monochromator and a flat analyzer. Colli-
mators of between 30’ and 60’ were between monochro-
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mator and sample, sample and analyzer, and analyzer and
detector. A number of combinations of collimator and
choices of kr were chosen as better resolution or intensity
was required.

The resolutions of all configurations were measured by
scanning around the (0,2,0) Bragg peak and by measuring
the energy width of the incoherent scattering. Resolution cal-
culations showed an adequate comparison with the measure-
ments, being within ~10% of the measured dimensions of
the resolution ellipsoids.

IV. RESULTS

A. Qualitative measurement of the two-dimensional critical
scattering

The neutron diffraction measurements from the PRISMA
spectrometer are shown for the three measured temperatures
in Fig. 2. The Bragg peaks are clearly seen at positions that
can be indexed to give lattice parameters b=10.52 A and ¢
=6.080 A, consistent with the expected values.® Also visible
are two aluminum powder rings from the sample holder. A
number of very small peaks at positions other than those
allowed for Bragg peaks show that the crystal is not perfect,
but has very small crystallites attached to the large single
crystal. Care was taken in all subsequent experiments to
choose scans in reciprocal space that are free of these extra
peaks.

As expected from the magnetic structure factor, rods are
clearly visible along (0,2,]) and (0,4,l), but not along
(0,6,1). Traces of the rods are visible at all temperatures;
however, they are strongest at 100 K. This is clearly demon-
strated in Fig. 3, which shows the scattering along (0,2,/) as
a function of temperature. Also shown in Fig. 3 is the scat-
tering along (0,6,1) below and above Ty. Consistent with the
magnetic structure factor, the magnitudes of the (0,6,0) and
(0,6,2) Bragg peaks remain unchanged with temperature.

The data in Fig. 3 also appear to show satellites at

(0,2,1/3) and (0,2,1/3), which are present because the
monoclinic structure of MnPS; is only slightly distorted from
being hexagonal with a periodicity of three unit cells along
[0,0,1]. Similar peaks have been observed and explained in
x-ray powder diffraction from MnPS;.33 The peaks are of
similar width to the (0,2,0) Bragg peak, and scale with tem-
perature in a similar manner. They are therefore useful as
they show the temperature behavior of the (0,2,0) Bragg
peak, which is off-scale in Fig. 3; the peaks at 100 and 300 K
are similar in intensity, as the sample is above the Néel tem-
perature and consequently, only nuclear scattering contrib-
utes to the Bragg peaks, whereas strong magnetic scattering
at 8 K results in a doubling of the Bragg peak intensities.

B. The critical behavior of the magnetization below Ty

Figure 4 shows the magnetic Bragg peak intensity from
the (0,2,0) Bragg peak, measured on the RITA spectrometer,
as a function of the reduced temperature (1-7/Ty). The data
follow a power-law relationship over the entire temperature
range, which is consistent with critical scaling. The critical
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FIG. 2. Neutron scattering intensity in the »"c" plane of MnPS;
below Ty (8 K), at the maximum in the magnetic susceptibility
(100 K) and at room temperature. The data were measured using
the PRISMA spectrometer in diffraction mode.

exponent, B, is shown to be =0.25+0.01 for (1-T/Ty)
>0.03. This is identical to the value for 8 determined in a
previous experiment,'3 and is close to the signature value for
the 2DAH model of 8=0.231.23 The previously published
data hinted at a change in S close to Ty, although the quality
of the data was not sufficient to be certain. The data pre-
sented in Fig. 4 are the result of a more careful experiment,
and the figure indeed shows that there is a crossover in the
critical behavior to 8=0.32+0.01 for (1-T7/Ty) <0.03. This
change in S is consistent with a crossover from two- to three-
dimensional behavior.!®!7
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FIG. 3. Extracted intensities along (0,2,/) from Fig. 2 at the
three temperatures. The insert shows the extracted intensities along
(0,6,1), where the magnetic scattering is zero due to the magnetic
structure factor.

The crossover temperature coincides with a change in the
rate of decrease of the gap in the spin-wave energies at the
Brillouin zone center.'* The gap was also observed to de-
crease as a power law over the full range of temperature. At
low temperatures the exponent equaled 0.26+0.02, compa-
rable to the value of . Spin-wave gaps with the same tem-
perature dependence as the magnetization have been seen
before in a variety of 2D materials.?** For Ty>T
>0.96Ty, the exponent changed to equal 0.51+0.02, which
could be understood as the gap varying with the magnetiza-
tion to the power ~3/2. Similar changes have been dis-
cussed in the context of magnetic anisotropy, and related to
the Legendre polynomials that dominate in the expansion of
the anisotropic energy.’ It is plausible that, with the cross-
over to 3D behavior, different order Legendre polynomials
will become dominant, resulting in the observed change in
the exponent.

2
‘»
C
[0]
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(0]
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£
[e]
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10 103 102 107 10°

(1-T/T,)

FIG. 4. The temperature dependence of the staggered magneti-
zation, as estimated from the measured intensities of the (0,2,0)
Bragg peak. The Néel temperature was found to be 78.6 K. The
data have had the nuclear intensity subtracted and are normalized
by being divided by the intensity at the lowest temperature. Also
shown are fits of power laws to the magnetization, showing a cross-
over from B=0.25 to 8=0.32 at T~0.97T).
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FIG. 5. The temperature dependence of the correlation length
above Ty, as estimated from the fitted widths of the energy inte-
grated critical scattering rods. Also shown are the fits of Egs. (4)
and (7) to the data.

C. The magnetic correlation length above Ty

The temperature-dependent scans through the critical
scattering rods, as measured using the RITA spectrometer in
two-axis mode, were fitted with Lorentzian functions, con-
voluted with the full experimental resolution.'* The magnetic
correlation lengths are shown in Fig. 5. The correlation
length & falls from ~27.5 A at Ty to ~4.1 A at 280 K. The
data could then be compared to the models in Sec. II. Fits of
Egs. (4) and (7) are also shown in Fig. 5.

Equation (4) fits well to the data close to Ty; however, at
larger temperatures it falls much faster than the data. This is
not surprising as the function is expected to be valid only for
large correlation lengths.?” The fitted parameters gave an am-
plitude of efic/(167p,)=2.0+0.3 A and p,/ky=35+2 K.
The latter value is considerably smaller than the value ex-
pected, pg/ kg =56 K; thus, the parameters of the CLRM fail
to match the physical properties that they represent.

Equation (7) fits well to the experimental data over the
entire temperature range with the fitted parameters being A
=1.6+0.3 A, bg;=1.98+0.01, and Tx;=55+4 K. The pa-
rameter bgr is a nonuniversal constant, but was initially es-
timated to be bgy~ 1.5, which is not far from the fitted
value. The parameters are also consistent with Eq. (8). In-
serting values for the measured exchange integrals and the
measured &(Ty)=27.5 A gives A=1.37 A, close to the fitted
value.

The fitted amplitudes, corresponding to S, have been di-
vided by & and are shown in Fig. 6. In the CLRM, Eq. (5)
shows that the ratio should scale with 72. On the other hand,
the ratio is constant with temperature in the 2DAH models,
as is shown in Eq. (10). The measured ratio is approximately
constant with temperature, further confirming that the 2DAH
models better represent the static critical behavior of MnPS;.

D. The dynamic critical behavior at g~ 0

Above Ty, a magnetic Bragg peak becomes a quasielastic
rod, as seen in Fig. 2. The quasielastic energy width of the
scattering 7, was measured as a function of temperature
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FIG. 6. The amplitude of the critical scattering rods divided by
the correlation length squared as a function of temperature, as de-
termined from fitting Lorentzian functions to the data.

by measuring the inelastic scattering at constant 0=(0,2,1
—¢), where ¢ is small. Examples of the scattering at three
temperatures, measured on IN14, are given in Fig. 7. All the
data clearly showed a Gaussian-type peak at zero energy
transfer, corresponding to the incoherent scattering, with a
broad, quasielastic signal underneath.

The S(g~0,w) data were fitted with functions to deter-
mine the width, y,. Two forms of function were used—one
with a Lorentzian form, as suggested by the CLRM, and one
with a squared Lorentzian form, as suggested by the 2DAH.
At higher temperatures the functions gave fits of equal qual-
ity; however, close to Ty the Lorentzian function better rep-
resented the data. The parameters from both functions varied
identically with temperature; thus, only the data from fitting
the Lorentzian function will be presented.

The Lorentzian followed from the spectral weight func-

tion for critical scattering in the hydrodynamic limit*’
A0V~
Slg ~ 0,0) =[n(w) + 11757752 (12)
Yoot

where A, is the amplitude and n(w) is the Bose function,
n(w)=1/(1-exp(—f w/kgT)). Equation (12) has the correct
form for a dynamic structure factor, with finite moments and
proper weighting for mode population, and is similar in form
to equations used in the analysis of other 2D classical anti-
ferromagnets (e.g., Ref. 21). In fitting the data, the function
was convoluted with the resolution of the instrument using a
Monte Carlo algorithm, and a Gaussian peak was added to
model the incoherent scattering. Examples of the fits are
shown in Fig. 7. The widths of the fits y, are plotted as a
function of temperature in Fig. 8.

As expected, vy, increases with increasing temperature;
however, the nature of the increase appears to be at odds
with scaling theory. Scaling theory predicts that 7y, should
vary with the correlation length &, as shown in Egs. (2), (6),
and (11). Figure 8 shows that the widths appear to increase
linearly with temperature, rather than varying with & Thus
the data have been fitted with a straight line, also shown in
Fig. 8, with gradient 0.050+0.001 meV/K and intercept
—3.8+0.1 meV. That the data do not match the scaling rela-
tions predicted by the models is further illustrated in the inset
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FIG. 7. Examples of inelastic measurements close to the
(0,2,1) Bragg peak above Ty. All the data show a resolution-
limited incoherent peak with quasi-elastic critical scattering under-
neath. As discussed in the text, the inelastic data have been fitted
with Eq. (12), convoluted with the instrument resolution, with a
narrow Gaussian function included at zero energy transfer for the
incoherent scattering. The appropriate fits are also shown in the
figures.

of Fig. 8, where v, is plotted against the values of § at the
corresponding temperatures. The values for ¢ were calcu-
lated from Eq. (7). The data have been fitted with a power
law. Expected exponents from scaling theory would be —-3/4
(for the 3DH), —1 (for the CLRM), or —2 (for the 2DAH).
Not only are the data not particularly well fitted by a power
law, especially for smaller & but the value of the exponent
(=-2.6) differs considerably from the expected values.

The fitted amplitudes, Ao, also provide useful informa-
tion, as they should be proportional to the real part of the
magnetic susceptibility, X(;~0~37 A number of different instru-
ment configurations were used to measure the data in Fig. 8
and, due to the approximations inherent in estimating the
amplitude of the resolution function, it is very difficult to
quantitatively compare amplitudes between different con-
figurations. It is possible to compare fits for measurements
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FIG. 8. The variation of the width of the quasi-elastic scattering,
¥4~0- With temperature close to the (0,2,1) Bragg peak. The data
have been fitted with a straight line. The inset shows 7y, plotted
against the correlation length ¢ calculated for each of the tempera-
tures using Eq. (11), along with fits of a power law and an expo-
nential function to the data.

made with the same resolution, and the fitted amplitudes for
the configuration that covered the broadest range of tempera-
tures are shown in Fig. 9. The data were fitted with a power
law, x; o~ (T~ Ty)~¢, where Ty was the Néel temperature
determined experimentally. A Curie-Weiss behavior would

15

10

Amplitudes (arbitrary units)

O L L L L L L
80 90 100 110 120 130 140 150

Temperature (K)

FIG. 9. Some of the amplitudes determined by fitting the quasi-
elastic scattering close to the (0,2,1) Bragg peak above Ty. The
scans were all measured with the same instrument configuration,
and therefore the same resolution. The data have been fitted with a
power law. The fitted exponent equals —1.15, and is close to that
expected for a Curie-Weiss law. The value for 7y used in the fit was
that determined experimentally.
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FIG. 10. Measurements of the quasi-elastic scattering along the
¢" direction at a temperature of 85 K. Each scan has been shifted by
50 vertical units from its neighbors. Note that the Néel temperature
in MnPS; is ~78 K.

have {=1, which is close to but outside the error on the fitted
exponent, {=1.15+0.02. Departures from Curie-Weiss be-
havior are common in low-dimensional magnets, and that
may explain the small difference.

E. The dynamic critical scattering between the planes

As previously discussed, at T the gap in the spin-wave
energies goes to zero and the magnetic Bragg peaks in
MnPS; becomes quasielastic with a width y, . In a 2D
system, this would be true for all the spin waves normal to
the planes. MnPS; does have some exchange between the
layer planes, and above T there is some ¢ dependence in the
scattering along the ¢” direction, as is shown from IN12 mea-
surements in Fig. 10. The scattering along the ¢* direction
was measured to probe the correlation as a function of tem-
perature.

Constant-Q measurements were made at the (0,2,0.55)
position, which is close to the Brillouin zone boundary along
the ¢” direction and relatively free of spurious signal includ-
ing higher-order wavelength contamination. The data at this
position could be interpreted either as quasielastic or as
heavily overdamped dispersive modes. For consistency of
comparison with the analysis at ¢~0, the data were fitted
with Eq. (12) to determine the widths y,_pzp that are plotted
as a function of temperature in Fig. 11.

Inserted in the figure are examples of the fits to the data at
the two lowest-measured temperatures. The data at 79.1 K is
not particularly well represented by a Lorentzian; indeed, an
overdamped harmonic oscillator function better fits the data.
All the data from 85 K upwards are, however, very well
represented by Eq. (12).

Just above Ty the width of the quasielastic scattering
close to the Brillouin zone boundary is broader than the
width close to the Brillouin zone center. This is consistent
with the spin fluctuations between the planes being weakly
dispersive, but heavily overdamped. The width 7y, _pzp as-
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FIG. 11. The widths of the quasielastic scattering along the ¢
direction as a function of temperature. The widths at (0,2,0.95) are
as given in Fig. 8. The widths at (0,2,0.55) result from fitting Eq.
(12) to the data. Examples of the fits to the data at (0,2,0.55) are
shown in the inset.

ymptotes towards y,o with increasing temperature and the
two meet at ~105 K, above which the two widths are
equivalent. The temperature approximately coincides with
the maximum of the magnetic susceptibility,””® and above
this temperature it may be assumed that any critical dynam-
ics is completely confined to the ab planes.

F. The dynamical critical scattering within the planes

The inelastic scattering along (0,k,0) was also measured
above Ty. Unlike the scattering along the ¢” direction, the
scattering along (0,k,0) clearly showed dispersive, albeit
heavily damped, modes at temperatures well above T). Fig-
ure 12 shows examples of the dispersive scattering measured
on IN14 at 85 K.

The data were subsequently fitted with the function for a
damped harmonic oscillator, developed for the study of an-
harmonic phonons3®

_ [n(w) + 1]A 4wy, /7
[w®— Qg]2 + 4w2y(2/ ’

where (), is the renormalized frequency at reduced wave
vector ¢ and ,, is the spin-wave damping. Like Eq. (12), Eq.
(13) has the correct form for a dynamic structure factor. The
function was again convoluted with the instrument resolution
using a Monte Carlo algorithm.

To provide a general and systematically correct fit to all
the data measured at one temperature, the renormalized fre-
quency {2, was not used as a fit variable. Instead, {2, were
calculated at each value of g using an expression for the
spin-wave dispersion in MnPS;. The full expression requires
exchange interactions with up to the third nearest neighbor in
plane;13 however, for small g the expression can be reduced

S(q,w) (13)
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FIG. 12. Measurements of the inelastic scattering along (0,%,0)
at 85 K. The damped, dispersive modes have been fitted with Eq.
(13) via a Monte Carlo technique, and the fits are also shown in the
figure.

to a function that depends only on the nearest neighbor and
the anisotropy, i.e.,

2 2 2a
Qq~[g/.LBHA—6SJ1] - ZSJI exp\ — 3 k

2
(14)

i
+ 4587, cos(wh)exp( ?k>

The relevant parameter in fitting the data was therefore J,.

Figure 13 shows a comparison between Eq. (14) and the
full expression to the ground-state dispersion curve. Most of
the dispersion curve can be adequately reproduced using Eq.
(14) if J,=-0.95. The comparison breaks down close to the
Brillouin zone boundary; however, inspection of Fig. 13(b)
shows that Eq. (14) is valid for ¢=0.2.

In fitting the data, the anisotropy, gugH,, was set to zero,
in line with the observation that the gap anisotropy goes to
zero at Ty.'? Initially, J, was allowed to float. It was soon
found, however, that all the data for 7> Ty could be fitted
with the exchange interaction fixed to J;=-0.77 meV. The
value of J; was then fixed for all fits while y, and A, re-
mained free parameters. Examples of the fits are shown in
Fig. 12. Figure 13(b) shows the effect on the dispersion
curve of decreasing J; from —0.95 to —0.77 meV. While the
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FIG. 13. A comparison between the in-plane spin-wave disper-
sion curve and models with different exchange parameters. (a)
shows the entire Brillouin zone. The best model includes up to the
third nearest-neighbor; however, the low-¢g dispersion may be ad-
equately modeled by using only one exchange parameter with a
slightly larger value. Models with no anisotropy are also shown to
compare with the spin-wave energies above Ty. (b) has the small ¢
data along [0,k,0] on an expanded scale.

spin-wave energies have decreased, the change does not nec-
essarily reflect a renormalization of J;, since —0.77 meV is
the size of the nearest neighbor exchange in the ground
state.'3 A better explanation for the change is that, as T is
approached, the interaction between second- and third-
nearest neighbors diminishes. This finding is again at odds
with the scaling theory, which predicts a renormalization of
the spin-wave stiffness based only on the nearest-neighbor
exchange.

The fitted damping parameters 7, are shown as a function
of temperature and ¢ in Fig. 14(a). The data appear to have
some temperature and g dependence, although the two ap-
pear to be mutually exclusive. For T<<85 K, the values of v,
appear to be constant with y,~1 meV for all g. For T
>85 K, the values of 7y, remain approximately constant for

1.8 r r r r r
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T 4 A 0 q,=0.08
Ah L 4 k
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>
g 1ol <><> <> Jf A qk=0.2
al 1k 050 8 + o
oo o
L 0Po 04 g a
08} i
06 2 2 2 2 2 2
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1.6} (b) .
o 85K *
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FIG. 14. The fitted spin-wave damping along (0,k,0) above T.
The damping was one of the output parameters from fitting Eq. (13)
to the data. (a) shows all the data as functions of temperature. (b)
shows two data from two temperatures: one set close to T where
the damping appears to be independent of ¢; and one set at higher
temperatures where the damping appears to be ¢ dependent but
independent of 7.

g=0.08 rlu with y,-903~1 meV. A g dependence is seen,
however, for ¢>0.08. The width at g=0.1 rises to ,-0,
~1.2 meV and at ¢=0.2 to y,-9,~ 1.4 meV. The widths at
all g then remain constant with increasing temperature. Fig-
ure 14(b) shows the fitted v, for the range of ¢ at and above
85 K. The g dependence of the data can be compared to the
models. All of the models predict that v, should vary with g,
thus, the data for 7=285 K cannot be easily explained. Above
85 K, however, comparisons can be made. The CLRM di-
vides reciprocal space into two regimes, each with its own
renormalization function. The combined functions show
something like a linear dependence in 7y, at small g and a
saturating vy, at larger g." This is contrary to the data in Fig.
14(b), which appear to be approximately constant at small g,
and then to increase at large g. Equation (11) for the 2DAH
does have a functional form that has this behavior.?® The
equation applies to the width of a quasielastic peak and not
to spin waves, which do not appear in the analytical theory.
Computer simulations do show spin waves, particularly in
the out-of-plane direction.?>3! The damping appears to go to
zero at small g, however, it still has a form which resembles
the g dependence of y, for MnPS;, 7> 35 K.

The temperature behavior of Yoo however, does not seem
to correspond exactly to either of the models. The CLRM
shows that all v, should increase with increasing
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FIG. 15. Some of the amplitudes determined by fitting the data
along (0,k,0) with Eq. (13) above Ty. The scans were all measured
with the same instrument configuration, and therefore the same
resolution.

temperature,'® which is not observed. Equation (11) for the
2DAH model also predicts an increase; however, this is
much smaller and appears to only be at small ¢.2° While this
functional form appears to best match the vy, data for T
>85 K, computer simulations showing spin waves in the
2DAH show that the damping increases relatively quickly
above Tkr to the point where the spin waves become a quasi-
elastic central peak. This does not reproduce the observed
behavior.

The fitted amplitudes A, from data measured using iden-
tical instrument configurations at two values of ¢ are shown
in Fig. 15. Unlike the spin stiffness or the damping, the am-
plitudes show a clear dependence on temperature and on g.
The amplitudes decrease with increasing temperature and in-
crease with increasing g. The dependence of A, on T also
appears to be g dependent.

In principle, the amplitudes of the partial cross sections
are proportional to )(21. It must be stressed that Eq. (13) is not
a cross section and, while it gives a correct functional form
for the scattering, there will be g-dependent factors in A, that
will depend on the Hamiltonian for the system, the exact
form of which is open to debate in MnPS;. The fitted widths
¥, may, therefore, be regarded as quantitative, while the am-
plitudes should currently be regarded as self-consistent, but
qualitative. Figure 15 is thus added for completeness, should
there be any future developments in the theory.

V. DISCUSSION

The 2DAH model appears to come closest to describing
the critical properties of MnPS; over the entire temperature
range, with the exception close to Ty where there appears to
be a crossover to 3DH behavior. The sublattice magnetiza-
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tion below Ty and & above T are well described by the static
critical behavior of the 2DAH model, and certain qualitative
aspects of the dynamic critical behavior match. This is con-
trary to the widely held belief that the compound is a good
example of a Heisenberg system. The implication is that the
Hamiltonian for MnPS; is not isotropic, but is better de-
scribed by Eq. (9) for A< 1. The 2DAH model describes the
thermodynamics of vortices, opening the interesting possibil-
ity of their presence in MnPS;. The effect of an anisotropic
Hamiltonian must be small, however, otherwise the high
temperature susceptibility would not be isotropic.”8

The size of A can be estimated. As is seen in Fig. 13, there
is a gap in the spin-wave energies of MnPS; at the Brillouin
zone center. This has been modeled by including an aniso-
tropy term in a Heisenberg Hamiltonian with amplitude
gupH,."? The parameters N and gugH, are, however, inter-
changeable for a small anisotropy, linked through the
equation®

H 1
A:l—W#(l )

_ L) gpsty
4)J]| 28

<1. 15
Substituting for the values of MnPS; gives N=0.998. The
CLRM will only hold if A ~ 1. The small deviation thus puts
the Hamiltonian in the same universality class as the 2DXY
model. An explanation for why M\ is not greater than 1, as
might be expected given the orientation of the moments in
the ordered state, comes from reports of a second, competing
single-ion anisotropy that favors the moments to lie in the ab
plane.”* Dipolar anisotropy is believed to be important in
this compound;'? particularly as it can explain the fact that in
the ordered state the magnetic moments are normal to the ab
planes.** The measured anisotropy in MnPS; is approxi-
mately a quarter of the magnitude expected for the dipole-
dipole component.'34? Competition between the two
anisotropies may explain this discrepancy. The dipole-dipole
anisotropy determines the moment direction, however, the
influence of the second anisotropy, attempting to force the
moments in plane, is sufficient to tip the dynamics of the
compound to the new universality class. The source of the
second anisotropy is currently unclear, and the one outstand-
ing unknown in MnPS; regards the knowledge of its proper-
ties. Were this to be known, a complete theory for the mag-
netic properties of MnPS; could be developed.

Some aspects of the critical dynamics can also be ex-
plained by the 2DAH model. While the in-plane dynamical
structure factor becomes quasielastic slightly above Tk, spin
waves can still be present well above Tk if a significant
out-of-plane component to the vortices exists. Calculations
suggest that a critical value for N in a honeycomb lattice is
N=0.86.%0 For A >0.86, out-of-plane components will domi-
nate the dynamics, an inequality that is consistent with the
calculated value of A=0.998. In addition, the functional form
of Eq. (11) does appear to have a similar ¢ and T dependence
to the observed spin-wave damping above Ty, although it
applies to the quasielastic width of the in-plane components.

There are, however, a number of discrepancies regarding
the observed critical dynamics. Contrary to any of the mod-
els discussed here, the energy widths do not seem to scale
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TABLE I. Comparison of the measured transition temperatures with the calculated values derived from
the equations in Ref. 25. The measured Tk is derived from fitting Eq. (7) to the measured correlation length

& as shown in Fig. 5.

Tgr (K) [Txr! (JS)T? Ty (K)
Measured 55+4 6.06 78
Classical: [Tx7/(JS)]>>32,1J"1J| <1-\ 35 2.45 0
Classical: [Tx7/(JS)]>>32,1J"/J|>1-\ 35 2.45 186
Quantum: [Tx7/(JS)]><32,[J'/J| <1-\ 64 8.21 0
Quantum: [Txy/(JS)><32,[J'/J|>1-\ 64 8.21 305

with ¢, and the spin-wave exchange due to first nearest
neighbors does not seem to renormalize with temperature,
although the exchange due to second- and third-nearest
neighbors in-plane does seem to go to zero above Ty.

The source of the discrepancies may lie in the fact there is
interplanar coupling in MnPS; that is approximately the
same size as the anisotropy, |J'/J| ~1—N\. Irkhin and Kata-
min have derived expressions giving the transition tempera-
tures for a layered magnet with weak easy-axis anisotropy.?’
The theory successfully predicts the transition temperatures
of a range of systems, and may justifiably be applied to
MnPS;. The expressions are derived for two regimes; a clas-
sical regime, where [Tx;/(JS)]*>32, and a quantum regime
where [Tgr/(JS)]><32. The theory further gives a function
to calculate the Néel temperature, in the limit of a small
interplanar coupling and where |J'/J| is very different from
1=\.% The calculated values for the transition temperatures
are listed in Table I, as are the actual Néel temperature and
the value for Ty determined by fitting Eq. (7) to the data in
Fig. 5. The calculated values of T differ from the measured
value, although the difference is not enormous. Interestingly,
the values of [Txs/(JS)]? are less than 32. It would, there-
fore, appear that in the context of this model the properties of
MnPS; correspond to the quantum regime, and indeed the
calculated Ty in this regime is closer to the measured value.
In general, the agreement is not as close as with other
systems.25The calculated Néel temperatures, however, are
very different to the actual 7y. In the case of MnPS;,
[77/J]=0.0025~1-X\, thus, the necessary inequalities are
not satisfied. The theory said to be qualitatively correct up to
|J'/J] ~1=N\ with an appropriate renormalization of a uni-
versal constant, C. Manipulation of the equations soon shows
that no value of C can satisfy both of the measured values Ty
and Tkz; the value of C necessary to give Ty=78 K is C

~6, which differs greatly from the expected “universal”
value (C=-0.5) in magnitude and in sign. It is reasonable to
assume that theories for the critical dynamics will also have
difficulties in the limit |J’/J| ~1-X\. Further theoretical
work allowing for an interplanar exchange of similar size to
the anisotropy, and aimed specifically at MnPS;, would be
useful at this point.

VI. CONCLUSION

A comprehensive set of data measuring the critical prop-
erties of the antiferromagnetic phase transition in MnPS; has
been presented and the results have been discussed in the
context of theoretical models. Of the models, the 2D aniso-
tropic Heisenberg model with XY anisotropy appears to be
the closest to describing the critical behavior. The exact na-
ture of the anisotropy in the material is obviously the key to
a clear understanding of the magnetic properties, which is
currently thought to be a competition between dipole-dipole
and an in-plane, single-ion anisotropy of unknown origin.
That the 2DAH model appears to best describe MnPS; opens
some interesting questions, specifically regarding the pos-
sible presence of vortices in the compound. Such vortices are
believed to have a very strong out-of-plane component.
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