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We have analyzed the dynamics of a single hole doped in a canted antiferromagnet using the t-J model.
Within the self-consistent Born approximation we have found that the hole propagates at two different energy
scales along the antiferromagnetic and the ferromagnetic components of the canted order, respectively. While
the many body quasiparticle excitation has its origin in the coherent coupling of the hole with the magnon
excitations of the antiferromagnetic component, the ferromagnetic component gives rise to a free-like hole
motion at higher energies. We have found a nontrivial behavior of the hole spectral function with the canting
angle �. In particular, in the strong coupling regime, the quasiparticle weight strongly depends on the momenta,
vanishing inside the magnetic Brillouin zone for ��60°.
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I. INTRODUCTION

The underlying physics behind the doped Mott insulators
is essential to elucidate the mechanism that leads to the high
temperature superconductivity. The major challenge is to ex-
plain, microscopically, how an antiferromagnetic �AF� insu-
lator evolves into a superconductor.1 In this sense, angle re-
solved photoemission spectroscopy �ARPES� is one of the
most refined experiments that gives access to the one particle
excitations of doped Mott insulators.2 Although the photo-
emission spectra of the cuprates have been well characterized
by ARPES experiments as a function of doping, there is still
no consensus about the theoretical description of the multiple
features observed. Even the most simple case, that is, the
dynamics of a hole injected in an antiferromagnetic matrix,
remains still a controversial issue. In particular, the main
disagreement is that in most of the theoretical calculations—
based on the t-J model—the low energy excitations corre-
sponds to quasiparticle excitations,3 while in the ARPES
spectra the width of the low energy peaks is so large that
they cannot be associated with a physical lifetime of
quasiparticles.2,4 A first proposal to resolve such a disagree-
ment invoked the spin-charge separation scenario,5 although
several recent works6 have pointed out that the electron-
phonon coupling can lead to the observed overdamped qua-
siparticle excitations. In addition to this controversy ob-
served in the cuprates, there has been an increasing interest
in the study of the hole motion in different antiferromagnetic
backgrounds in order to test the validity of the coherent
quasiparticle—or spin polaron—picture. For the unfrustrated
180° Néel order it has been shown, numerically and
analytically,3,7–11 that the quasiparticle excitations exist for
all momenta and for all J�0. On the other hand, in a highly
frustrated case such as the kagomé lattice, which is believed
to be magnetically disordered, completely incoherent spec-
tral functions have been found12 for all momenta, J / t=0.4,
and both t signs—it should be noted that in the square lattice
unfrustrated case the particle-hole symmetry leads to the
same behavior for both signs of t. In addition, we have re-
cently found13 that in the triangular antiferromagnet, with a

120° Néel order, an intermediate situation between the
square and the kagomé geometries arises, since the quasipar-
ticle weight only vanishes for t�0. This result is particularly
interesting because it means that the conventional quasipar-
ticle picture can be broken in a semiclassical magnetic back-
ground, without invoking spin liquid phases. In addition to
the mechanism of hole motion assisted by spin fluctuations,
already existing in the unfrustrated case, in the triangular
antiferromagnet there appears a free hopping hole mecha-
nism as a direct consequence of a ferromagnetic component
of the underlying magnetic structure. The latter implies a
finite probability of hole motion without emission or absorp-
tion of magnons. In our previous work we have shown that it
is the subtle interference between both processes for hole
motion that produces the vanishing of the quasiparticle
excitations.13

In the present article we will study the hole dynamics in
canted antiferromagnetic states where, by varying the cant-
ing angle, it is possible to consider the evolution of the mag-
netic background from the antiferromagnetic to the ferro-
magnetic state. This kind of study, little explored in the
literature,14 allows us to investigate the spectral functions
continually from the AF state—only spin flip assisted
processes—to the ferromagnetic state—only free hopping
process—so as to investigate more carefully how the non-
trivial interference between both hole-motion processes in-
fluences the formation of a coherent quasiparticle. To carry
out the study we have derived an effective Hamiltonian from
the t-J model using the spinless fermion representation for
the kinetic part, and a canted spin wave state for the mag-
netic part. Within the self-consistent Born approximation we
have found that, for J� t, the hole propagates preferably at
two well separated energies: as a coherent spin polaron ex-
citation at low energy, and as a quasifree hole at higher en-
ergy. We were able to associate the former energy scale to
the AF component, while the latter to the ferromagnetic one.
As the canting angle increases we have observed an impor-
tant spectral weight transfer from low to higher energy sec-
tors leading to the reduction of the quasiparticle weight. In
particular, inside the magnetic Brillouin zone �MBZ�, the
quasiparticle weight vanishes for ��60°.
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This article is organized as follows. In Sec. II we formu-
late the effective Hamiltonian for a hole moving in a canted
AF. In Sec. III we briefly draw the calculation of the hole
Green function within the self-consistent Born approxima-
tion. In Sec. IV we present and discuss the results for the
hole spectral functions, and in Sec. V we state the conclu-
sions of our work.

II. EFFECTIVE HAMILTONIAN FOR A HOLE IN A
CANTED ANTIFERROMAGNET

To study the hole motion in a canted antiferromagnet we
will study the t-J model in the square lattice.9 In order to
stabilize a canted phase we add a Zeeman term that couples
only with the spin operators, so that we can vary the canting
angle � by tuning a fictitious uniform magnetic field B. Thus,
we use the following t-J Hamiltonian:

H = Ht + HJ = − t�
�i,j�

�ĉi,�
† ĉj,� + H . c . � + J�

�i,j�
Si · S j + B�

i

Si
z,

�1�

where the kinetic part Ht represents the hopping between
nearest neighbors ��i , j�� of the square lattice, with the con-
straint of no double occupancy ĉi,�=ci,��1−ni,−�� and HJ rep-
resents the AF Heisenberg part along with the Zeeman term.

It should be stressed that the realization of canted
phases—stabilized in our study by a fictitious magnetic
field—actually can be a consequence of the interplay of
Dzyaloshinskii-Moriya and further anisotropy terms, such as
those that are responsible for the weak ferromagnetism in
La2CuO4. Furthermore, a similar effective Hamiltonian, as
the one we will obtain below �see Eq. �8��, can be derived in
the pure t-J model with additional hopping terms to second
and third neighbors. The latter model may be relevant to
describe recent ARPES spectra of Ca2CuO2Cl2.15 So, the
hole dynamics in both cases—canted and further hoppings
t-J models—will be closely related.

A. Magnetic part

The magnetic part is treated in the spin wave
approximation.16 It is assumed that the semiclassical un-
canted AF order lies in the x-y plane while the magnetic field
B points in the z direction. So, the effect of the magnetic field
is to tilt the spins an angle � out of the x-y plane. The gen-
eralized Holstein-Primakov transformation for the canted
case results

Si
x = cos ��S − ai

†ai� − i�S/2 sin ��ai − ai
†� ,

Si
y = �S/2�ai + ai

†� ,

Si
z = − sin ��S − ai

†ai� − ı �S/2 cos ��ai − ai
†� ,

for i� sublattice A, and

S j
x = − cos ��S − bj

†bj� + ı �S/2 sin ��bj − bj
†� ,

S j
y = �S/2�bj + bj

†� ,

S j
z = sin ��S − bj

†bj� + ı �S/2 cos ��bj − bj
†� ,

for j� sublattice B. The Fourier transform of the bosonic
operators a’s and b’s are defined as

ai
† =� 2

N
�
k

eıkRiak
†, bj

† =� 2

N
�
k

eıkRjbk
† ,

where N is the number of lattice sites and k runs along the
magnetic Brillouin zone �half of the square lattice Brillouin
zone�. Up to quadratic order, the magnetic part of the t-J
Hamiltonian takes the form

HJ = EC + �
k

�A�ak
†ak + bk

†bk� + D�k�ak
†bk + akbk

†�

+ C�k�akb−k + ak
†b−k

† �� �2�

with A=4JS cos 2�+B sin �, D=JS sin2 �, C=JS cos2 �, and

Ec = − 2JS2N cos2 � − BNS sin � .

Minimization of Ec with respect to � leads to B=8JS sin �.
This value cancels the linear bosonic terms of the magnetic
part and justify the use of the quadratic form �2�. Further-
more, if this value of B is replaced in Ec and A, HJ can be
written as function of the canting angle � only. If HJ is ex-
pressed in a matrix form the dynamical matrix has a dimen-
sion 4�4. The diagonalization of HJ is performed in two
steps: first, a transformation �k

† =ak
† +bk

† and 	k
† =ak

† −bk
† that

renders the dynamical matrix diagonal by blocks of 2�2
and, then, a Bogoliubov transformation from � ,	 to the new
bosonic operators 
 ,�

�k = uk
+
k + vk

+
−k
† ,

	k = uk
−�k + vk

−�−k
†

with Bogoliubov coefficients

uk
± = 	A ± D�k

2�k
± +

1

2

1/2

and

vk
± = 


�k

��k�	A ± D�k

2�k
± −

1

2

1/2

.

Once these transformations are taken into account the har-
monic magnetic part results

HJ = Ec − 2JSN + �
k

���k
+ + �k

−� + �k
+
k

†
k + �k
−�k

†�k�

with the two magnon dispersion branches

�k
± = 2JS��1 ± �k��1 
 cos ��k� , �3�

defined in the magnetic Brillouin zone and �k= �cos kx

+cos ky� /2. As k→ �0,0�, the dispersion �k
−→0 linearly,

while �k
+→4JS sin � quadratically. For this reason, hereafter,

�k
− and �k

+ will be called the AF and ferromagnetic bands,
respectively. Furthermore, since �k+��,��

+ =�k
−, it can be seen

that in the one magnon operator description, where the trans-
lational symmetry of the square lattice is not broken, it is
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recovered the same dispersion of Ref. 17 if �k
+ is unfolded to

the square Brillouin zone.

B. Kinetic part

In order to fulfill the basic requirement of the t-J model,
the no double occupancy constraint, we use the following
spinless fermion transformation3 for the canted case:

ĉi↑ = cos
�

2
gi + sin

�

2
gi

†ai,

ĉi↓ = cos
�

2
gi

†ai − sin
�

2
gi, �4�

for i� sublattice A

ĉj↑ = sin
�

2
f j + cos

�

2
f j

†bj ,

ĉj↓ = sin
�

2
f j

†bj − cos
�

2
f j , �5�

for j� sublattice B, where gi , f j are the fermionic hole op-
erators and ai ,bj are the Holstein Primakov bosons. Replac-
ing Eqs. �4� and �5� in the kinetic part of Eq. �1�, and retain-
ing terms up to third order it results

Ht = − t sin � � �k�gkfk
† + fkgk

†�

− t� 2

N
cos ��

k·k�

��kgkfk�
† bk�−k

− �k�gkfk�
† ak−k�

† + H . c . � . �6�

Now, it is convenient to define the new fermionic bonding
and antibonding operators

gk =
lk + mk

�2
, fk =

lk − mk

�2
, �7�

respectively. When fermions g and f are expressed as a func-
tion of the bonding and antibonding fermions �7�, and the
bosons a and b in terms of the Bogoliubov operators 
, �,
the kinetic part �6� can be rewritten as

Ht = �
k

�k�mk
†mk − lk

†lk� +� 2

N
�
k·q

��Mq,k
+ 
k−q

† �mklq
† − lkmq

†�

+ H.c.� + �Mq,k
− �k−q

† �lklq
† − mkmq

†� + H.c.�
 , �8�

with the free hopping band �k=4t sin ��k and the vertex in-
teractions

Mq,k
± = −

t

2
cos ��uk−q

± �q − vq−k
± �k� . �9�

There are two mechanisms for charge motion. The first one is
a free hopping process, first term of Eq. �8�, that naturally
appears with the canting of the AF order. The second one
represents a hopping process magnon assisted by the ferro-
magnetic and the antiferromagnetic bands, respectively.

When the canting angle �=0°, the free hopping term van-
ishes and two degenerate antiferromagnetic bands are recov-
ered. So, as it is expected for the case of hole motion in a
pure AF matrix, the kinetic part is only described by a hole
coupled to AF magnons.3,7 On the other hand, when the cant-
ing angle is such that the underlying magnetic order is fer-
romagnetic, �=90° , the magnon assisted hopping disappears
and the only mechanism available for hole motion is the free
hopping term. Therefore, it is possible to interpolate the hole
motion continually between the pure AF state and the ferro-
magnetic state, so as to investigate carefully how the non-
trivial interference between both hole-motion processes in-
fluences the formation of a coherent quasiparticle.

III. THE SELF-CONSISTENT BORN APPROXIMATION

The use of the two magnetic sublattices requires the defi-
nition of the two Green functions �see Eq. �8��

Gk
m��� =

1

� − �k − �k
m���

, Gk
l ��� =

1

� + �k − �k
l ���

along the magnetic Brillouin zone. Taking into account the
interacting terms of the Hamiltonian �8� within the self-
consistent Born approximation, it is straightforward to see
that there are two contributions to each self-energy �see, for
instance, Fig. 1 for the self-energy of the antibonding fer-
mion mk�.

A standard procedure leads to two coupled self-consistent
equations for the self-energies,

�k
m�l���� = �

q
��Mk+q,k

+ �2Gk+q
l�m��� − �q

+�

+ �Mk+q,k
− �2Gk+q

m�l��� − �q
−�
 , �10�

that will be solved numerically. At this point, it is enlighten-
ing to relate the bonding Gk

m��� and antibonding Gk
l ���, de-

fined in the magnetic Brillouin zone, with the more physical
hole Green function Gk

h��� defined in the whole Brillouin
zone. The hole operator h is defined as hi= f i for i� sublat-
tice A and hi=gi for i� sublattice B. Then, if hk is splitted as

hk =
1

N
�
i�A

fie
ık·Ri +

1

N
�
i�B

gie
ık·Ri,

it is straightforward to find the operatorial relations hk

= 1
�2

�fk+gk�= lk for k inside the magnetic Brillouin zone and

FIG. 1. Relevant contributions in the SCBA to the self-energy of
the Green function corresponding to the antibonding fermion m.
The wiggly lines represents free magnon Green functions for � and

, while the straight lines represents the dressed fermionic Green
functions Gm and Gl. For the self-energy of the bonding fermion l,
m, and l must be interchanged.
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hk= 1
�2

�fk+Q−gk+Q�=mk+Q for k outside the magnetic Bril-
louin zone. These relations between the hk, lk, and mk, imply
the following relation between the Green functions:

Gk
h = Gk

l inside MBZ,

Gk
h = Gk+Q

m outside MBZ. �11�

IV. RESULTS

A. Spectral function

We have numerically solved the self-consistent equation
�10� for �k

m�l����, using cluster sizes up to N=40�40 and a
frequency grid of 20 000 points. Then, we calculated the cor-
responding spectral function Ak

h���=− 1
� Im Gk

h��� for sev-
eral canting angles.

In Fig. 2 it is shown the spectra for k= �� /2 ,� /2� and
J / t=0.1. We have chosen these particular momentum and
coupling regime since for them, the main features of the
spectra are clearly differentiated, and therefore it is easier to
identify the underlying mechanisms for hole motion. The
case �=0° �upper panel� corresponds to the spectral function
of a hole in a pure AF matrix. This result has been already
obtained by one of us7 and others authors3 using the SCBA.
The spectra extend over a frequency range �8t with a low
energy sector composed by a delta peak at the bottom of the
spectra along with several resonances of finite lifetime above
it. The former is associated with a quasiparticle excitation
�QP�, whose bandwidth is of order J; whereas the latter reso-
nances can be identified with string excitations since its en-
ergies scale as Estring��J / t�2/3. On the other hand, there is an
incoherent part corresponding to the shoulder located at an
energy �3t.

The low and high energy structure of the spectra can be
traced back to the coupling between the hole and the under-
lying AF order. Low energy sector: as the hole moves, with a
characteristic time of order 1 / t, the AF order is locally dis-
turbed leaving a string of overturned spins. Meanwhile, the
zero point spin fluctuations above the classical Néel state
�N�, contained in the quantum AF ground state �AF�

=exp�−�ijuijai
†bj

†� �N�,18 repair pairs of frustrated spins at a
characteristic time of order 1 /J. It is clear that, in the weak
coupling regime �J� t�, the magnetic string of overturned
spins can be completely erased by the zero point spin fluc-
tuations, and the hole surrounded by an AF cloud emerges as
a coherent quasiparticle excitation. However, in the strong
coupling regime �J� t�, the magnetic string is only partially
erased and, besides the low energy QP excitation, there are
higher energy processes—strings excitations—corresponding
to the hole inside a linear potential generated by the over-
turned spins. This picture has been widely confirmed by sev-
eral numerical and analytical techniques.3,7,9–11 High energy
sector: to describe the incoherent part of the high energy
sector, it is convenient to take a closer look at the zero point
spin fluctuations. In particular, if the exponential function in
�AF� is developed in a Taylor series, the quantum AF ground
state can be written as �AF�= �N�+ �fluct�, where the fluctua-
tions can be seen as a sum of Sz conserving terms such as
ai1

† ai2
†
¯ain

† bj1
† bj2

†
¯bjn

† �N�. As we have stated before, these
fluctuations erase part of the strings, but they also generate
small ferromagnetic clusters wherein the hole can propagate
freely. This explains the broad shoulder centered at ��3t,
that is, the finite probability to find the hole propagating at
considerable high energies above the QP excitation. In fact,
we have extended our calculation to the anisotropic Heisen-
berg model, and we have effectively found a suppression of
the shoulder as well as an enhancement of the string reso-
nances as the Ising limit is approached.

Now we discuss the evolution of the spectra with the cant-
ing angle. At �=20° �middle panel of Fig. 2�, there appears a
classical ferromagnetic component in the underlying mag-
netic order, while the zero point spin fluctuations get re-
duced. This adds a free hopping mechanism for the hole
motion, represented by the tight binding term of Eq. �8�.
Such an additional mechanism competes with the magnon-
assisted, as well as with the incoherent hopping processes
driven by the zero point spin fluctuations, resulting in a spec-
tral weight transfer from the low energy sector and the inco-
herent shoulder to an energy located at ��0. For �=40°
�lower panel of Fig. 2� most of the spectral weight is domi-
nated by this new mechanism, signaled by a finite lifetime
resonance, t resonance, located at an energy close to �k=
−t sin ��k. So that, as the canting angle increases, the prob-
ability of finding the hole moving freely along the classical
ferromagnetic channel becomes more important than both,
the magnon assisted and the incoherent hopping processes
driven by zero point spin fluctuations. A similar scenario of a
low energy excitation coexisting with a higher energy long-
lived resonance, dispersing as a free band, has been found in
recent high-resolution photoemission spectra from the insu-
lating cuprates Ca2CuO2Cl2.15 While in the cuprate the ap-
pearance of the high energy part of the spectra has been
ascribed to hoppings to first and further neighbors, in our
present calculation the high energy part, dispersing as a free
band, is obtained with the canting angle.

The evolution of the spectral function with � becomes
more complex when the k dependence is taken into account.
In particular, for k outside the magnetic Brillouin zone the
QP and string excitations start to overlap with the t resonance

FIG. 2. Spectral function for k= �� /2 ,� /2� and J / t=0.1.
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at the low energy sector �see Fig. 3�, while for k inside the
magnetic Brillouin zone something similar to k
= �� /2 ,� /2� in Fig. 2 occurs, namely, the peaks are quite
separated. As the canting angle is increased, there is a trans-
fer of spectral weight from the magnon assisted to the free
hopping process as a consequence of the reduction of the
vertex interaction with �, Mq,k

± �cos �. It is worth stressing
that the low energy QP excitation has its origin in the coher-
ent scattering between the hole and the magnons, so the re-
duction of the scattering rate renders the magnon-assisted
hopping process less effective than the free hopping one, that
is originated by the ferromagnetic component of the under-
lying magnetic structure. Finally, for �=90°, the only al-
lowed hole motion process is the free one along the com-
pletely ferromagnetic order, thus, the whole spectral function
becomes a single delta peak.

B. Quasiparticle excitations

In this section we analyze the quasiparticle excitations in
the low energy sector of the spectra. This can be quantified
by the QP weight zk= ���k �hk

† �AF��2 that gives a measure of
the overlap between the state of a bare hole created on the
AF background and the quasiparticle state ��k�. In our case
we computed the QP weight using the well known relation
zk= �1−��k��� /���Ek

�−1. It is worth to note that the complex
k dependence of the spectral weight transfer with �, men-
tioned in the previous section, is clearly manifested in the QP
excitations. In Fig. 4 it is shown the QP weight versus � for
J / t=0.4 and several momenta.

On one hand, for k inside the magnetic Brillouin zone the
effect of the canting is to monotonically decrease the QP
weight until it vanishes at around ��60° �see, for instance,
k= �� /2 ,� /2� and k= �0,0� of Fig. 4�. In this region the
spectra is characterized by the two well separated peaks �see
�=40° in Fig. 2� where the QP excitations have a magnon
assisted origin. So, the vanishing of the QP weight with � is

due to the reduction of the vertex interaction with �. On the
other hand, for k outside the magnetic Brillouin zone—k
= �� ,�� and k= �0.8� ,0.8��—initially the QP weight in-
creases with �. This is an unexpected behavior if the � de-
pendence of the vertex interaction is taken into account
again. However, in this sector of the Brillouin zone, the mag-
non assisted and the free hopping processes merge at the low
energy sector increasing the QP weight �see �=30° in Fig.
3�. This can be seen as a constructive interference between
the hole motion processes in the formation of the QP. For
greater angles the QP weight is dominated by the vertex
interaction and goes to zero as �→90°. At �=90° the mag-
non assisted process vanishes for all k and the only allowed
process is the free hole motion along the ferromagnetic chan-
nel, jumping zk from zero to unity. k= �� ,�� is a unique case
where the QP weight increases monotonically to unity due to
the strict energy coincidence of both hole motion processes.
For this case we can say that there is always a constructive
interference of the processes. It should be noted that the QP
ground state momentum evolves with the canting angle
along the diagonal �� /2 ,� /2�→ �� ,��, �� ,�� being the
ground state momentum for � greater than 40° when J / t
=0.4.

The advantage of using explicitly two sublattices in our
calculation is the possibility to analyze separately the cou-
pling of the hole with the ferromagnetic and AF magnons.
For instance, if we cancel M+ �M−� in the kinetic part �8�, the
coupling of the hole with the ferromagnetic �AF� band is
omitted. Under this condition the self-consistent equations
�10� for �k

m�l���� can be solved and, via the relations �11�, it
is obtained Gk

h��� without the effect of the ferromagnetic or
the AF excitations on the hole motion.

For instance, in Fig. 5 it is shown separately the ferro
�dashed line� and the AF �dotted line� contributions to the QP
weight, along with the complete prediction �solid line�, for
J / t=0.4 and �=40°. It is observed that the QP weight is
greater for the ferromagnetic than for the AF contribution.
Furthermore, when both magnetic bands are considered, the
QP weight resembles that of the AF character. This can be
seen as a consequence of the different momentum depen-
dence of the interaction vertices M+ ,M−. For all k and q
�0, the vertex Mq,k

− ��q, while Mq,k
+ �const+q. As stated

FIG. 3. Spectral function for k= �0.8� ,0.8�� and J / t=0.1.

FIG. 4. QP weight as a function of the canting angle � for
several momenta and J / t=0.4.
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before, since the QP excitation has a magnon assisted char-
acter driven by the vertex interaction, a stronger coupling
produces an enhancement of the QP weight. So that, the
coupling of the hole with the ferromagnetic band is more
coherent than with the AF one, and when both couplings are
considered together the QP weight follows the less coherent
AF contribution.

Now we discuss the J / t dependence of the QP excitations.
As J / t increases, we have observed that the character of the
QP excitations changes from a many body state resulting
from the dynamical coherent coupling of the hole with the
magnons, to a free hole state weakly perturbed by the mag-
nons. This crossover can be seen in more detail analyzing the
QP wave function ��k�.13,19,20 In general, ��k� can be ex-
pressed as a sum of terms with one hole and different num-
ber of magnons, that in our case can be written as

��k� = ak
�0�hk

†�AF� + �
q1,�

ak,q1

�1��hk−q1

† ����
q1

† �AF� + ¯ ,

where �=±, and ���� represents the Bogoliubov operators
��+�=
 and ��−�=�. As J / t increases, the multimagnon pro-
cesses are energetically more expensive and their contribu-
tions to the QP wave function are notably reduced, whereas
the zero and the one magnon terms become the relevant
ones.13 Within the SCBA �Ref. 20� the one magnon coeffi-
cient is ak,q1

�1�� =zkMk,q1

� Gk−q1

h �Ek−�q1

� �, while the zero magnon

coefficient is ak
�0�=zk. The many-body state character of the

QP excitation is signaled by the dependence of a�1�� with the
hole Green function, which carries the information of the
dynamical coupling of the hole with the magnons. In the
weak coupling regime, large values of J / t, as zk→1 and
Ek→�k �see below�, a�1�� becomes the first-order coefficient
of a conventional Rayleigh-Schrödinger perturbation theory,
ak·q

�1��=Mk,q
� / ��k−�k−q−�q

��. In this coupling regime, the
character of the QP wave function is that of a free hole state
weakly renormalized by the one magnon excitations. This
state correspond to the above mentioned t resonance.

In Fig. 6 we show the QP, the t resonance, and the bare
hole energy dispersions for a canting angle �=50°, in the
strong, J / t=0.4, and the weak, J / t=3 coupling regimes. On
one hand, for strong coupling �top panel�, the QP energies
are well separated from the bare hole and the t-resonance
energies, indicating the highly nonperturbative character of
the hole motion assisted by the magnons. On the other hand,

once the crossover took place, for weak coupling �bottom
panel�, the QP and the t-resonance excitations have merged
into a weakly perturbed state, whose dispersion closely fol-
lows the bare hole energy one. We have verified that the
t-resonance dispersion is very well approximated by the
weak coupling expression

Ek
t = �k + �

�q

�Mk,q
� �2

�k − �k−q − �q
� ,

in both, the strong and the weak coupling regimes. So, we
can assure that the t resonance can always be identified with
the bare hole propagating along the ferromagnetic compo-
nent, weakly perturbed by magnons. Another indication of
the perturbative character of the t resonance is the scaling of
its linewidth with M2�cos2 � �see inset of Fig. 6�. It is worth
to stress that, while the decrease of the vertex interaction M
renders the t resonance more coherent due to its perturbative
character, it suppresses the coherence of the nonperturbative
magnon assisted process. Finally, we have found that, in the
weak coupling, the QP weight is well approximated by the
expression8

zk =
1

1 + �q�
�Mk,q

� /�k − �k−q − �q�2
→ 1.

C. Strings excitations

In this section we analyze the dependence of the strings
with the canting angle. Our general picture is based on Fig.

FIG. 5. QP weight along �0,0�→ �� ,�� for J / t=0.4 and �
=40°. Contribution from the ferromagnetic band �dashed line�, AF
band �dotted�, and both �solid line� in the SCBA.

FIG. 6. Energy dispersion of the QP excitation �dashed line�,
bare hole excitation �solid line�, and t resonance excitation �dotted
line� for an angle �=50°. Top panel is for J / t=0.4. Inset: linewidth
of the t resonance �solid line� and cos2 � �dashed line� as a function
of �. Bottom panel is for J / t=3. For this regime the QP and the
t-resonance excitations are the same.
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2. For �=0° there are several resonances above the QP peak
which are interpreted as string excitations that result from the
linear potential generated by paths of overturned spins in the
AF background. This was confirmed in the SCBA3 by noting
that their energies scale as Estring��J / t��, with �=2/3. No-
tice that in the string picture the same exponent 2 /3 is ob-
tained for the QP energy since the precursors of the quasi-
particle excitation are just the strings.9 As the ferromagnetic
channel of the underlying magnetic background is enhanced,
as a consequence of greater canting angles, the AF channel is
weakened and the string excitations start to smear out gradu-
ally until at angles around �=40° they disappear. This can be
related to the fact that, at greater angles �, the AF channel
has been reduced, so that the hole feels a weaker �sublinear�
confining potential. To quantify this behavior we have com-
puted the dependence of the QP and first string energies with
J / t by varying the canting angle, for a range of 0.01�J / t
�0.3. In general, for all the momenta investigated, we have
found values of the exponent � quite close to 2/3 for the QP
and the first string excitation energies. As � is increased the
value of � remains approximately constant until for angles
greater than 40° there is a depart from 2/3 to larger values.
In Table I we display the dependence of the � exponent for
several angles for the QP and the first string energies, at
momentum k= �� /2 ,� /2�. To provide a deeper insight of
the type of potential implied by these energy exponents �, it
is useful to make a simple variational calculation of one par-
ticle within a one-dimensional potential. Let us assume a
Hamiltonian H=T+V where T is the kinetic energy and the
potential energy is of the type V�x�= �J / t� �x�	. Then, if we
propose a variational wave function for the particle of Gauss-
ian form ��x�=A exp− K2x2

2 , with K the variational parameter,

it is straightforward to calculate the energy E�K�=
���H���

����� .

Subsequent minimization with respect to K leads to an en-
ergy dependence E��J / t�2/�	+2�. For a linear potential it is
recovered the expected value �=2/3, whereas a sublinear
potential, 	�1, implies ��2/3, in agreement with Table I.

V. CONCLUSIONS

We have made a detailed analysis of the competing
mechanisms for hole motion in a canted antiferromagnetic
background. To study the hole dynamics we have introduced
the spinless fermion representation for the constrained fermi-

ons of the t-J model on a square lattice. We have modeled
the canted antiferromagnetic background adding a Zeeman
term to the t-J model, whose effect is to tilt the Néel order
giving rise to a ferromagnetic component. The problem thus
formulated allows to study the hole dynamics continually
from the pure antiferromagnetic case to the pure ferromag-
netic one. As it is well known, in an unfrustrated Néel order
a hole can only propagate by emitting and absorbing mag-
nons, while for the pure ferromagnetic case the hole propa-
gates freely. Here we have analyzed the evolution of the hole
dynamics as a function of the canting angles by computing
the hole spectral function. For this purpose we have use a
reliable analytical method for the single hole case such as the
self-consistent Born approximation.

We have found a complex momentum and canting angle
dependence of the spectra. For t�J, the hole propagates
preferably at two well separated energies: as a coherent spin
polaron excitation at low energy, and as a quasifree hole at
higher energy. In particular, from moderate to large canting
angles, the quasiparticle spectral weight is considerably re-
duced, vanishing for momenta inside the magnetic Brillouin
zone. This unexpected result is a consequence of the inter-
ference of the two mechanism for hole motion, originated
from the antiferromagnetic and the ferromagnetic compo-
nents of the underlying magnetic order. In the strong cou-
pling regime �t�J� the quasiparticle excitation has its origin
in the AF component, namely, it is a many body state com-
posed by a hole coherently coupled with the magnons. For
this reason, when the canting angle increases, so AF compo-
nent of the magnetic order is reduced, the QP weight goes to
zero. Closely related to the QP excitations, we have found
string excitations that rapidly smear out as the canting angle
is increased. On the other hand, at higher energies we have
found rather long-lived resonances related to the motion of
the hole along the ferromagnetic component. As the ferro-
magnetic component increases with the canting angle, these
resonances become more pronounced. Even in the strong
coupling regime, we were able to fit the position and the
linewidth of these resonances by a conventional perturbative
calculation. As the system moves to the weak coupling re-
gime we found that the character of QP excitations under-
goes a crossover from the many-body spin polaron to a free
hole state weakly perturbed by magnons.

We would like to emphasize that these features, obtained
for the hole motion in a canted antiferromagnet, are generic
and they could also be observed in other magnetic systems,
where the anisotropies of the magnetic interactions lead to a
canted magnetic state such as Dzyaloshinskii-Moriya or
Ising anisotropies.
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TABLE I. Exponents � for the energy scaling E��J / t�� of the
QP and the first string calculated for a lattice of N=40�40 and
several angles for k= �� /2 ,� /2�. In the case of QP energies the
parameter region is 0.01�J / t�0.3 while for the strings 0.01
�J / t�0.1. To obtain better fits it has been considered the energy
contribution of the magnetic background as in Ref. 7.

� 0° 10° 20° 30° 40° 50°

QP 0.66 0.66 0.67 0.69 0.72 0.74

String 0.68 0.68 0.65 0.65 0.67 0.74
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