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We determined the phase diagram of a three-dimensional uniaxial antiferromagnetic particle in the presence
of an external magnetic field parallel to its easy axis through Monte Carlo calculations. The structure of the
particle is a simple cubic lattice, where its magnetic moments are distributed in spherical shells centered around
a given site. The magnetic moments are continuous vectors that interact via a Heisenberg classical Hamil-
tonian. We consider particles with radii ranging from 3 to 12 spacing lattice units in order to determine their
phase diagram in the plane field versus temperature and to get the explicit dependence of the transition fields
on the diameter of the particle. The asymptotic low-temperature behavior of the transition fields is determined
and, for particles with radii larger than three lattice spacings, we get good agreement with the predictions from
the spin-wave theory.
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I. INTRODUCTION

The investigation of the phase diagram of uniaxial anti-
ferromagnets has received a lot of attention since the predic-
tion of Néel that phase transitions could be induced in these
systems by strong magnetic fields 1. In the microscopic de-
scription of Néel, below the transition field �HSF�, parallel to
the easy axis of the particle, the magnetic moments are or-
dered into two sublattices with opposite magnetizations
along the easy axis. However, increasing the magnetic field,
we attain the transition field HSF, where the sublattice mag-
netizations rotate, becoming almost perpendicular to the
magnetic field, at the so-called spin-flop transition. Increas-
ing even more the magnitude of the magnetic field, the sub-
lattice magnetizations continue to rotate into the field direc-
tion until they reach a critical field, HP, where the system
enters into the paramagnetic phase. In this way, the very
well-known phase diagram in the plane temperature versus
magnetic field of a uniaxial antiferromagnet exhibits three
distintic phases: an antiferromagnetic, a spin-flop, and a
paramagnetic phase. Interestingly, due to the necessity of us-
ing very large magnetic fields, it took over 20 years before
experiments confirmed the occurrence of spin-flop
transitions.2,3 Since then, these phase transitions have been
intensively investigated both experimentally4–6 and
theoretically.7–15

The uniaxial antiferromagnetic structures in reduced di-
mensionalities have also received some attention since the
prediction of a surface spin-flop state in a semi-infinite
system.16,17 After that, the magnetic measurements
performed by Wang et al.18 confirmed the presence of
a spin-flop transition on magnetic superlattices. This type
of investigation continued and other theoretical19–21 and
experimental22–24 studies have appeared, focusing on the sur-
face effects and size dependence of the phase diagram of
antiferromagnetic systems. In particular, concerning the stud-
ies of antiferromagnetic small particles, we call attention to
the recent work of Zysler et al.,25 where they investigated the
phase diagram obtained for hematite particles.

Finite-size and surface effects play a crucial role in the
magnetic behavior of antiferromagnetic small particles. For

instance, it is well known that, as the particle size decreases,
a net magnetization moment appears due to the nonexact
compensation of the magnetic sublattices—i.e., an imbalance
in the number of up and down spins.26 Besides, for the anti-
ferromagnetic small particles, a superparamagnetic suscepti-
bility, due to uncompensated spins, can dominate over the
antiferromagnetic contribution itself. On the other hand, be-
cause of the structural disorder and broken bonds, the surface
spin directions deviate from the normal antiferromagnetic
alignment, inducing remarkable hysteresis at low tempera-
tures and having noticeable coercivities and loop shifts.27–30

We consider in this work a three-dimensional antiferro-
magnetic small particle that has a single-ion uniaxial aniso-
tropy. We perform Monte Carlo simulations to obtain the
phase diagram of the system with the external magnetic field
parallel to the easy axis of the particle. The magnetic mo-
ments of the particle are represented by continuous vectors,
and they interact through a classical Heisenberg Hamil-
tonian. In order to investigate the dependence of the phase
diagram on the size of the particle, we consider particles with
radii from 3 up to 12 lattice spacings. We also determine the
behavior of the phase boundaries as a function of tempera-
ture in the region of very low temperatures, and the results
are compared with the well-known predictions based on
spin-wave theory.

In the remainder of this work, in Sec. II we present the
model and we describe the Monte Carlo simulations. Next, in
Sec. III, we present our results and summarize our main con-
clusions.

II. MODEL AND MONTE CARLO SIMULATIONS

To describe the antiferromagnetic particle, we consider a
finite simple cubic structure, where we inscribe a spherical
particle. Each site inside this sphere harbors a magnetic mo-
ment of the particle, which is represented by vectors of mag-

nitude �Si
� � =1, where we write Si

� = �Six ,Siy ,Siz� for the com-
ponents of the spin at the site i of the particle.

The classical Heisenberg Hamiltonian of the system is

PHYSICAL REVIEW B 74, 094408 �2006�

1098-0121/2006/74�9�/094408�4� ©2006 The American Physical Society094408-1

http://dx.doi.org/10.1103/PhysRevB.74.094408


H =
J
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i=1

N

Siz − k�
i=1

N

Siz
2 ,

�1�

where only the couplings among nearest neighbors are con-
sidered. N is the number of spins in the particle, q is the
coordination number of the magnetic moments �q=6 for the
internal spins�, J is the exchange coupling, H represents the
magnitude of the external magnetic field, and k is the single-
ion uniaxial anisotropy constant. We assume that the mag-
netic field and the easy axis lie in the z direction and that the
exchange couplings are of the antiferromagnetic type with
the same value for all pairs of spins in the particle—that is,
J�0.

The particle was simulated by employing the Metropolis
algorithm.31 In each Monte Carlo step �MCS�, we performed
N trials to change the state of the spins of the particle. To
calculate the average magnetic properties we took in general
5�104 MCS, where the first 2�104 MCS were discarded
due to the thermalization process.

In our algorithm we calculated the average and staggered
magnetizations of the particle, as well as its components
along the x, y, and z directions, as a function of temperature,
external magnetic field, and anisotropy. These average values
were first obtained by calculating the mean values of the
magnetic moments inside the particle for each MCS after the
thermalization:

mx =
1

N
�
i=1

N

Six, �2�

my =
1

N
�
i=1

N

Siy , �3�

mz =
1

N
�
i=1

N

Siz, �4�

mtot = �mx
2 + my

2 + mz
2, �5�
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1

N
�
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N

�Six
�a� − Six

�b�� , �6�

msy =
1

N
�
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�Siy
�a� − Siy

�b�� , �7�

msz =
1

N
�
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N

�Siz
�a� − Siz

�b�� , �8�

ms = �msx
2 + msy

2 + msz
2 . �9�

Si�
�a� and Si�

�b� are the components of the ith magnetic moment
along the � ��=x ,y ,z� direction in the �a� and �b� sublat-
tices, respectively. Afterwards, the averages are taken by
considering all Monte Carlo steps, after thermalization. Fi-

nally, we obtain the mean values of interest, �mx� to �ms�,
related to Eqs. �2�–�9�, for each value of temperature, exter-
nal magnetic field, and anisotropy. We also calculated the
corresponding fluctuations of the magnetization, defined as

�mtot = ��mtot
2 � − �mtot�2� �10�

and

�ms = ��ms
2� − �ms�2� . �11�

These fluctuations are used to determine the transition
lines of the phase diagram as a function of temperature and
magnetic field for different particle sizes.

III. RESULTS

By looking at the typical magnetization curves, as well as
their corresponding fluctuations obtained through Monte
Carlo simulations as a function of temperature and magnetic
field, we can find the transition fields and, from them, we
construct the phase diagram of the antiferromagnetic par-
ticles. The phase diagrams obtained for particles with radii
ranging from three to nine spacing lattice units are shown in
Fig. 1. In this figure, the symbols AF, SF, and P represent the
antiferromagnetic, spin-flop, and paramagnetic phases, re-
spectively. The thermodynamic limit of the system is already
observed for a particle with radius r=9a �a is the lattice
parameter�. As we can see, the Néel temperature and the
transition fields increase with the size of the particle up to
where we reach the thermodynamic limit of the particle. For
a particle with radius r=9a, for example, we obtain for the
Néel temperature TN= �1.70±0.05�J /kB. At T=0, the transi-
tion field between the antiferromagnetic and spin-flop phases
is HSF= �3.22±0.05�J, and the transition field between the
spin-flop and paramagnetic phases is HP= �10.96±0.05�J.
These values are in very good agreement with the well-
known results found in the literature for an infinite system.7,9

Indeed, we determine the boundaries of the phase diagram
exhibited in Fig. 1 by looking at the total and staggered
magnetizations of the particles and their fluctuations by both
fixing the temperature and changing the magnetic field and

FIG. 1. Phase diagram in the plane temperature vs magnetic
field for a uniaxial antiferromagnetic particle obtained through
Monte Carlo simulations. From bottom to top the radius of the
particle changes from three to nine lattice parameters.
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by fixing the magnetic field and changing the temperature.
The transition lines that separate the paramagnetic phase
from the antiferromagnetic and spin-flop phases represent
continuous phase transitions. On the other hand, the phase
boundary between the antiferromagnetic and spin-flop
phases denotes first-order phase transitions, where the total
magnetization changes abruptlly from zero to a nonzero
value. Also, at this transition, the staggered magnetization
changes its direction from parallel to perpendicular to the
magnetic field.

The two continuous transition lines and the line of first-
order transitions meet at the bicritical point �Tb, Hb�. We
have found that both Tb and Hb increase with the size of the
particle up to its thermodynamic limit. For instance, for a
particle with radius r=6a we obtain Tb= �1.30±0.05�J /kB

and Hb= �3.28±0.05�J. Although we do not present here cal-
culations based on mean-field theory, for this size of particle
the coordinates of the bicritical point are given by Tb
=1.34J /kB and Hb=4.90J. As is well known the mean-field
calculations overestimate the values of the critical fields and
temperatures, due to the long-range character of the interac-
tions. In fact, the mean-field approach serves only to yield a
rough description of the properties of the system.

By examining the values of HSF and HP at T=0 for dif-
ferent particle sizes, we found that both decrease with a 1/d�

dependence, where d is the diameter of the particle. In the
case of HSF�0� we obtain �=0.97±0.05, which is the same
behavior found for the hematite particles.25 This appears to
be a typical surface effect on a first-order transition. At the
antiferromagnetic to spin-flop phase transition, the total mag-
netization changes suddenly from zero to a nonzero value.
As the spins at the surface present a lower coordination num-
ber and they are less bounded than the core spins, they can
rotate more easily into a direction almost perpendicular to
the field. For the critical field between the spin-flop and para-
magnetic phases, HP�0�, we have �=2.54±0.05.

We also have determined the coordinates of the bicritical
point as a function of the particle size. We have seen that Hb
and Tb increase with the size of the particle exhibiting the
same 1/d� behavior, with �=1.98±0.05 and �=1.97±0.05,
respectively. The Néel temperature �H=0� also decreases
with decreasing diameter following a law of the type 1/d�

with �=1.51±0.05. The � exponent in our model is the in-
verse of the critical exponent �. For a three-dimensional
model this exponent assumes very close values for the Ising
and isotropic Heisenberg models: ��0.64 and ��0.70, re-
spectively. Then, within the error bars, the value we found
for the uniaxial Heisenberg model, ��0.66, is in reasonable
agreement with this picture.

We have also investigated through Monte Carlo simula-
tions the dependence of the phase boundaries on temperature
in the asymptotic region of very low temperatures �see Fig.
2�. We have seen that for particles with radius r�3a, the
critical field between the spin-flop and paramagnetic phases
decreases with temperature following a T3/2 law, which
agrees with the predictions of spin-wave theory for uniaxial
antiferromagnetic systems.7,9,14 The critical field is given by
HP�T�=HP�0�−��r�T3/2. Although the dependence on tem-
perature is already seen for small particles, the coefficient �

depends on the size of the particle. For instance, � decreases
with the size of the particle: ��r=3a�=7.96, ��r=6a�=1.55,
and ��r=9a�=1.31. That is, when the ratio between the
number of spins at the surface and at the volume is large, the
finite-size effects become important. On the other hand, the
transition field separating the antiferromagnetic and spin-flop
phases increases with temperature according to a T7/2 law,
which is in agreement with the spin-wave calculations for the
thermodynamic boundary between these two phases.15

Summarizing, in this work we have considered Monte
Carlo simulations to study the phase diagram of uniaxial
antiferromagnetic spherical particles. We have investigated
the magnetic behavior of the particle as a function of tem-
perature, external magnetic field, and size of the particle. We
have shown that particles with sizes as large as nine lattice
parameters already behave as a bulk system. For particles
with radii 3a�r�12a, we have obtained the phase diagram
in the plane field versus temperature and we have calculated
the asymptotic values of the transition fields as a function of
their diameter. We have shown that the critical field separat-
ing the spin-flop and paramagnetic phases decreases with
temperature according to a T3/2 law. On the other hand, the
transition field between the antiferromagnetic and spin-flop
phases increases with temperature following a T7/2 behavior
in the region of very low temperatures. Although these
asymptotic low-temperature behaviors are well established
by spin-wave calculations for uniaxial antiferromagnets, we
have seen that they are already observed for small spherical
particles with radius equal to three lattice parameters.
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FIG. 2. Low-temperature behavior of the �a� phase boundary
between the spin-flop and paramagnetic phases and �b� phase
boundary between the antiferromagnetic and spin-flop phases.
HP�0� and HSF�0� are the corresponding transition fields at T=0.
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