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Formation of stationary longitudinal amplitude patterns by propagating nonlinear spin waves has been
discovered and studied experimentally by means of space-resolved Brillouin light scattering spectroscopy. The
pattern formation is observed for spin waves propagating in narrow, longitudinally magnetized yttrium iron
garnet stripes, characterized by attractive nonlinearity in both the longitudinal and transverse directions. A clear
crossover of the effective dimensionality describing the propagation of spin waves in the stripe is observed
with increase of the wave amplitude.

DOI: 10.1103/PhysRevB.74.092407 PACS number�s�: 75.30.Ds, 75.40.Gb

Pattern formation in nonlinear media of different physical
nature has been attracting significant attention as one of the
universal phenomena in nonlinear physics.1 Recently, forma-
tion of spatially extended patterns has been intensively stud-
ied in optical media,2,3 as well as in Bose-Einstein conden-
sates of ultracold gases.4,5

Symmetry plays a decisive role in pattern formation.
From this point of view ferromagnets are uniquely posi-
tioned, since an important inversion symmetry intrinsic for
most physical systems is broken in a ferromagnet, because
its magnetization is characterized by an axial vector. Thus,
spin waves represent a superb object for nonlinear studies,
allowing the observation of certain nonlinear effects, e.g.,
two-dimensional propagating wave bullets,6,7 that are diffi-
cult to observe experimentally in other nonlinear systems.8

Therefore experimental studies of pattern formation by spin
waves can significantly contribute to this area. Many nonlin-
ear wave phenomena that are common for all nonlinear sys-
tems, such as self-focusing, modulational instabilities, and
temporal and spatial solitons, have been successfully ob-
served and studied for spin waves �see, e.g., Refs. 9–15 and
literature therein�. At the same time, such an important non-
linear effect as the formation of spatially extended spin-wave
patterns still remains insufficiently addressed. Several theo-
retical publications16,17 predicting formation of interesting
patterns in spin-wave systems have not been supported by
appropriate experimental studies up to now.

In this Brief Report we report on the observation and
experimental study of stationary patterns that have no analog
in other nonlinear media. The observed longitudinal patterns
result from strong nonlinear interaction between the wave
modes created in the sample due to transverse confinement.
We show that a special combination of nonlinear and disper-
sion properties of the waves under consideration, which is
hard to realize experimentally in other nonlinear systems, is
necessary for existence of these patterns. We also present a
theoretical model describing them.

The spatiotemporal evolution of a spin wave with fre-
quency � and wave vector k0 propagating in a two-
dimensional medium along the direction z is described by
the �2+1�-dimensional nonlinear Schrödinger equation18
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is the nonlinear coefficient, and �r is the relaxation fre-
quency. The early analysis of Eq. �1� performed in Ref. 19
has shown that, in the particular case of waves with SN�0
and DN�0, the uniform distribution of wave amplitudes is
unstable in both the longitudinal and the transverse direc-
tions. The transverse instability leading to the spatial self-
focusing effect has been experimentally observed for both
stationary beams and wave packets.6,7,9,10

However, in a medium confined in the y direction �i.e., in
a stripe� transverse instability is strongly suppressed, if the
width of a stripe is smaller than the instability half
wavelength:20
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Rewriting the inequality �2� for light waves in a medium
with the Kerr nonlinearity, one gets W�� /2�n /�n, where �
is the wavelength, n is the refraction index of the medium,
and �n is its nonlinear change. Taking the value �n, typical
for optical systems,21 �n /n�10−4, one gets W�30 �m. On
the contrary, for spin waves propagating in yttrium iron gar-
net �YIG� films with a thickness of several micrometers the
above condition �2� is satisfied, if the width W�1.5–2 mm.
A magnetic stripe with such a width can be easily prepared
and investigated by means of standard experimental meth-
ods. This allows one to study nonlinear spin-wave propaga-
tion in a unique case where the attractive nonlinearity acts in
the transverse direction, but the self-focusing effects are sup-
pressed.

In this work we studied the propagation of intense mono-
chromatic spin waves in longitudinally magnetized YIG
stripes with a thickness of 5.1 �m, widths W of 1.1 and
1.6 mm, and length of 30 mm. The realized geometry corre-
sponds to the so-called backward volume magnetostatic spin
waves �BVMSWs�, satisfying the above conditions SN�0
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and DN�0. The waves were excited by one or two
25-�m-wide and 2-mm-long microstrip transducers sepa-
rated by 7.8 mm and placed perpendicularly to the stripe
axis. To analyze spatial distributions of the spin-wave ampli-
tude, the space-resolved Brillouin light scattering �BLS�
technique in the forward scattering geometry22 was used.
This method allows one to measure two-dimensional maps
of the spin-wave amplitude ���y ,z��, with a spatial resolution
down to 10 �m.

Figure 1 demonstrates the development of spin-wave am-
plitude maps in the stripe with W=1.1 mm, as the micro-
wave power Pin supplied to the input transducer increases.
The magnetic field and the excitation frequency were H0
=1420 Oe and � /2�=5.98 GHz. The scanned area has di-
mension of 1.2 and 5 mm along the transverse and the lon-
gitudinal directions, respectively.

For a relatively small input microwave power Pin
=2 mW �see Fig. 1�a�	 spin waves propagate in the form of a
well-defined beam showing a monotonic exponential decay
along the propagation coordinate, ����e−z/�. Although the
decay is relatively slow ��=5.3 mm�, for the above presen-
tation it conceals the fine structure of the beam. Therefore for
the sake of clearness the original data in Figs. 1�b�–1�e� are
multiplied by ez/�. Figures 1�a� and 1�b�, presenting the same
data without and with the compensation, illustrate the advan-

tage of the latter presentation. As seen from Fig. 1�b�, the
amplitude of the beam is almost uniform along the propaga-
tion direction, whereas it decreases toward the edges of the
stripe due to strong pinning of the magnetic precession at the
lateral edges.23 Implying complete pinning, the transverse
profile of the mode can be described24 as

A�y� = sin� p�

W
y� , �3�

where p=1,2 ,3 , . . . is the transverse quantization number. In
experiment several transverse modes can be excited simulta-
neously. However, since the exciting microwave field is
practically uniform over the stripe, it can efficiently excite
only the odd modes with p=1,3 ,5 with efficiency propor-
tional to 1/ p2.25

In the case of linear propagation, the spin-wave beam is
mainly constituted by the mode with p=1. As the excitation
power is increased �see Fig. 1�c�	, a modulation of the beam-
width becomes visible, which is associated with the growth
of the amplitude of the mode with p=3 with respect to that
of the basic mode with p=1. This is connected with energy
transfer from the intense lowest transverse mode to the
higher mode due to the nonlinear interaction between them.
Two modes have different longitudinal phase velocities;
therefore their interference leads to the appearance of a pe-
riodic spatial structure. The period of this structure can be
approximately evaluated as �=W�H0 /4�Ms�, if the disper-
sion of the spin waves is neglected. Here Ms is the saturation
magnetization of YIG, 4�Ms=1750 G.

With further increase of the input power the periodic
structure becomes more pronounced and, at a certain value of
the power, transforms into a sequence of strongly localized
amplitude maxima �see Fig. 1�d�	. A clear longitudinal pat-
tern is created, consisting of several well-defined periodi-
cally situated areas where the spin-wave amplitude is nearly
uniform in the transverse direction. As the numerical analysis
shows, such a structure cannot result from linear interference
between the transverse modes. Instead, it is a stable, phase-
correlated bound state of many transverse modes strongly
interacting with each other due to the nonlinear coupling,
similar to the spatial-soliton states in continuous magnetic
films.10

The pattern was found to exist in a certain range of the
input power only. As seen from Fig. 1�e�, a further increase
of Pin leads to an abrupt breaking of the pattern.

Figure 1 also demonstrates a crossover with respect to the
effective dimensionality of the spin-wave propagation in the
stripe. In fact, in the linear case a well-defined transverse
spin-wave quantization similar to that found in
microstripes26 is observed. Transverse modes with different
quantization numbers p are independent of each other and
the wave propagation is described as quasi-one-dimensional
as illustrated by Fig. 1�b�. With increasing input power �see
Fig. 1�c�	 an intensive nonlinear interaction between the
transverse modes starts and the wave propagation demon-
strates a two-dimensional pattern, in which the width of the
beam is significantly modulated. With further growth of the
spin-wave amplitude the dimensionality crossover occurs in

FIG. 1. �Color online� Two-dimensional maps of spin-wave am-
plitude measured by BLS at different values of the microwave
power Pin supplied to the input transducer. The scanned area has
dimensions of 1.2	5 mm2. H0=1420 Oe, � /2�=5.98 GHz.

BRIEF REPORTS PHYSICAL REVIEW B 74, 092407 �2006�

092407-2



the opposite direction: quasi-one-dimensional spatial patterns
with a constant width are formed �see Fig. 1�d�	. The above
scenario is similar to that for the nonlinear soliton eigen-
modes recently observed in active magnetic rings:27 the sym-
metry of the stable nonlinear soliton mode differs dramati-
cally from the symmetry of the linear eigenmodes in the
system.

The formation of a stationary longitudinal pattern has
been also observed in a ferromagnetic stripe with a width of
1.6 mm. For the same values of the frequency and the ap-
plied field the pattern period is increased by approximately
55% with respect to that in the stripe with a width of
1.1 mm. This fact clearly indicates the important role of the
transverse modes in the pattern formation process. However,
confirming the results of the above discussion of the inequal-
ity �2�, in the wider stripe the pattern has an essentially two-
dimensional character. Therefore, for a detailed study of the
patterns the stripe with a width of 1.1 mm was used. In par-
ticular, we studied the properties of the pattern as a function
of the wave vector of the wave. For this the static magnetic
field was fixed at H0=1420 Oe and the excitation frequency
was decreased from the upper spin-wave cutoff frequency,
which is equal to 6.00 GHz for the given field. The measured
dependence of the threshold value of the input power Ppt at
which the pattern formation starts on the input frequency is
shown in Fig. 2 by solid circles. Since BVMSWs possess a
negative group velocity, decrease of the frequency corre-
sponds to increasing wave vctors. As seen from the figure, at
frequencies near the cutoff frequency �small wave vectors�,
the pattern formation starts at relatively low powers below
20 mW. As the wave frequency decreases �wave vector in-
creases�, the threshold power Ppt rises exponentially and
reaches values of more than 100 mW for a frequency offset
of 60 MHz. The spatial period of the pattern, Tpt, was also
found to be dependent on the excitation frequency as shown
in Fig. 2 by open circles. However, the variation of Tpt over
the studied frequency range does not exceed 10%.

The observed weak dependence of the pattern period on
the frequency is not obvious, since the above changes of the
spin-wave frequency correspond to drastic changes of the
wave vector in the linear case. In order to measure the actual
wave vectors of the nonlinear waves forming the patterns, a
standing spin wave has been created in the sample by send-
ing an additional probing, small-amplitude spin wave of the

same frequency in the opposite direction using the second
transducer. The data obtained in such a way are summarized
in Fig. 3 where solid circles show spin-wave wave vectors kz
for relatively small input power of 2 mW, whereas open
circles illustrate the same dependence for values of the input
power just below the threshold of the pattern formation. A
clear nonlinear negative shift of the spin-wave spectrum for
high excitation power, manifesting itself as a significant shift
of the carrier wavevector at a given frequency, is seen in the
figure. Using the approximate value of the nonlinear coeffi-
cient, calculated for the spin-wave spectrum of a continuous
film N /2�=23 GHz/rad2, and the measured nonlinear shift,
one obtains the maximum precession angle of the spin wave,
at which the pattern formation starts, �=0.04 rad=2°. This
value is of the same order of magnitude as the threshold of
the soliton formation in continuous magnetic films.22

As mentioned above, the period of the observed longitu-
dinal pattern only slightly depends on the spin-wave wave
vector. Instead, a significant change of the period was ob-
served if the field H0 was varied. Since the variation of H0
results in a strong shift of the cutoff frequency, the excitation
frequency for every field was fixed at a value of 20 MHz
below the cutoff frequency. Figure 4 shows the experimental
dependence of the pattern period Tpt as a function of the

FIG. 2. Dependences of the power at which the pattern forms
�solid circles� and the pattern period �open circles� on the excitation
frequency. H0=1420 Oe.

FIG. 3. Longitudinal wave vectors corresponding to different
excitation frequencies for the case of linear propagation regime
�solid circles� and for the power corresponding to the threshold of
pattern formation �open circles�. H0=1420 Oe.

FIG. 4. Period of the longitudinal pattern as a function of the
amplitude of the static magnetic field. Lines show the result of the
numerical calculation as described in the text.
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field. For the given range of H0 the cutoff frequency grows
from 4.00 GHz �790 Oe� to 8.00 GHz �2090 Oe� as is also
shown in the figure. As seen in Fig. 4, with increasing mag-
netic field the spatial period of the pattern is approximately
proportional to the field and increases from 0.76 to 1.11 mm.
The field dependence of the pattern period has been calcu-
lated numerically using the spin-wave dispersion relation28

and the mode profile law �3� corresponding to complete pin-
ning. The result is shown in Fig. 4 by the dashed line. The
solid line represents the result of calculation taking into ac-
count the exact pining conditions at the edges of the stripe
derived in Ref. 23 and using the pinning strength as a fit
parameter. As seen in the figure, the agreement between the
experiment and the calculation is convincing.

In conclusion, formation of longitudinal spin-wave pat-
terns has been observed and studied. The period of the

formed pattern is proportional to the width of the ferromag-
netic stripe, demonstrates monotonic dependence on the ap-
plied magnetic field, and is only weakly dependent on the
wave vector of the wave. The patterns were found to be
formed in a well-defined interval of the input microwave
power and result from the nonlinear interaction of different
transverse spin-wave modes of a ferromagnetic stripe. A
simple model describes the dependence of the pattern period
on the external field, stripe width, and the excitation fre-
quency.
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