
Electrostatic forces acting on tip and cantilever in atomic force microscopy

Elmar Bonaccurso,1,* Friedhelm Schönfeld,2 and Hans-Jürgen Butt1
1Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

2Institute of Microtechnology Mainz, Carl-Zeiss-Strasse 18-20, 55129 Mainz, Germany
�Received 5 September 2005; revised manuscript received 2 May 2006; published 18 August 2006�

In this paper we quantitatively compare different electrostatic models, which describe the interaction be-
tween the tip of an electrically biased atomic force microscopy cantilever and a conducting flat substrate. The
models by Hudlet et al. �Eur. Phys. J. B 2, 5 �1998�� and Colchero et al. �Phys. Rev. B 64, 245403 �2001��
provide excellent descriptions of the experimental force, for tip parameters close to their typical values,
although an accurate treatment of the electrostatic force contribution due to the cantilever is still missing. We
introduce it here, together with a correction function which accounts for the tilting angle between the cantilever
and surface, and confirm it with several experiments. Since the electrostatic force acting between a cantilever
and a surface can be accurately tuned, force measurements with a defined voltage are also suitable for cali-
brating cantilever spring constants.
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I. INTRODUCTION

Electric forces govern many physical and chemical pro-
cesses and, correspondingly, many technological applications
are based on them. For pursuing the next step towards min-
iaturization, namely nanotechnology, the ability of under-
standing and making use of electrostatic interactions between
nanoscopic elements is paramount. In the last decade
progress in this field has been significant. Part of this
progress has been driven by the development of the scanning
tunneling microscope1 and the atomic force microscope2

�AFM�, which allows us not only to image and to character-
ize surfaces, but also to manipulate them on a nanometer and
even an atomic scale.3 The AFM has shown to be a versatile
instrument for the measurement of surface forces, and among
those also electrostatic forces. When electrostatic forces
dominate the total interaction in an AFM, one generally
speaks of electrostatic force microscopy �EFM�. EFM has
been used to image properties of semiconductors,4,5 local
surface potentials,6 and surface charges,7,8 electric properties
of organic and inorganic integrated circuits,9 and surface po-
larization forces.10 The ability of applying a potential to the
sharp tip of an AFM cantilever has been used as a powerful
nanolithography tool for structuring several types of
surfaces.11,12

The electrostatic interaction on a 10 nm scale is the one
with the highest strength, as well as the longest range com-
pared to other relevant molecular forces, such as van der
Waals or other so-called “chemical” forces.13 Several papers
have advanced our understanding of the electrostatic interac-
tion between an AFM cantilever and a surface.14–26 Numeri-
cal approaches for modeling the electrostatic force have been
proposed, among others, by Belaidi et al.18 The authors
present a thorough discussion of their model, and compare it
with two experimental force curves.27 So we believe that
more experiments are needed to confirm their results. An
elegant analytical model was presented by Hudlet et al.,19

where the authors model the tip as a cone with a spherical
apex, although they do not consider the contribution of the
cantilever. An experimental force curve is compared to their

calculations, but the spring constant of the cantilever was not
calibrated. Law and Rieutord24 go a step further, and incor-
porate also the cantilever contribution into the force calcula-
tions. In order to fit their data they introduce a so-called
“background force,” and add it to the electrostatic force. This
contribution is a constant, i.e., not-voltage and not-distance
dependent.

The purpose of the present paper is to add a further piece
to the puzzle, accounting for the tip and for the cantilever.
Special consideration is devoted to the dissimilar effect of
the electrostatic force when it interacts with the tip �a qua-
sipunctual load� and with the cantilever �a distributed load�,
causing bendings described by polynomials of different or-
ders �more details will be given in Sec. II�. A large number of
measurements have been carried out, by changing the prop-
erties of the cantilever, of the tip, of the sample surface, and
some environmental parameters. Finally we will also show
that the accurately tunable electrostatic force is well suited
for calibrating the spring constant K of cantilevers. The
quantitative determination of K is the indispensable param-
eter for obtaining quantitative informations on the magnitude
of interactions in AFM and force spectroscopy experiments.
Several techniques have been suggested and are applied �for
a review see Ref. 28�. These techniques are, however, tech-
nically demanding, limited in their range of applicability, and
a quantitative analysis is difficult. Therefore, any simple, ac-
curate, and reliable method would be welcome.

II. THEORY

The AFM cantilever and the attached tip �Fig. 1�, both at
potential V0 with respect to the grounded sample surface,
form a capacitor of complex geometry when they are brought
in close vicinity to the surface. The force on the tip-
cantilever system has the form

F = ��0V0
2g�z� , �1�

where �0 is the vacuum permittivity and g�z��dC /dz is re-
lated to the change of the capacitance C with respect to the
separation z between cantilever and surface. The term g�z�
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depends on the geometry of the tip �apex radius R, half-tip
angle �, and tip height H� and of the cantilever �length L,
width w, and inclination angle ��.

A. Force on the cantilever

Belaidi et al.,18 Colchero et al.,23 and Law and Rieutord24

provide similar equations for the electrostatic force acting on
a tilted cantilever �see Fig. 1�, which are deduced from the
equation of a plate capacitor, by neglecting border effects.
The distance of the cantilever from the surface depends on x
and is given by Z�X�=z+H cos �+L sin �−X tan �. Calling
B�X� the function describing the width of the cantilever, the
factor g�z� is

gCL = −
1

2�
�

X1

X2 B�X�dX

Z�X�2 . �2�

By convention, the negative sign indicates an attractive
force. In the case of a rectangular cantilever, B�X� is simply
the width w of the cantilever.

B. Force on the tip

Law and Rieutord24 recap equations from former
authors15,17–20,23,29 for the electrostatic force acting on the tip
of a cantilever, considering three cases of tips with rotational
symmetry: hemispherical apex, cone with spherical apex,
and hyperboloid:

gsphere = −
R

z
, �3�

gcone = − � 1

ln2�tan �/2��ln� H

z + R�1 − sin ��	 − 1

+
R cos2 �/sin �

z + R�1 − sin ��
 +
R2�1 − sin ��

z�z + R�1 − sin ���� , �4�

ghyperboloid = −
1

ln2�tan �/2�
�ln�1 +

L

z
	 −

� z − R

tan2 �
	H

z�L + z�
 .

�5�

The total resulting electrostatic force is assumed to be the
sum of the cantilever, the tip, and the apex contribution, each
one being predominant at a different surface-cantilever sepa-
ration �for details see Belaidi et al.18�.

C. Taking the calibration of cantilever deflection into account

In commercial AFMs the inclination, and not the deflec-
tion, is measured at the end of the cantilever by the optical
lever technique. Inclination is usually converted to a deflec-
tion by pushing the end of the cantilever upwards by a de-
fined distance using the piezoscanner of the AFM. This is
justified by the fact that this is similar to what happens to the
cantilever when it is used for imaging and/or force spectros-
copy experiments: a concentrated load pushes, or pulls, on
the tip. As a result, if we apply a force FTIP at its end, the
shape of a rectangular cantilever is described by a third order
polynomial:

Zconc�X� =
FTIP

2EI
�LX2 −

X3

3
	 , �6�

where E is the elastic modulus of the material, I=wtc
3 /12 is

the geometric moment of inertia, and tc is the thickness of
the cantilever. Deflection Zconc�L� and inclination
dZconc /dX�X=L� are related by30

dZconc

dX
�L� =

3

2L
Zconc�L� . �7�

The subscript “conc” indicates that a concentrated force acts
at the end of the cantilever.

This is not a problem in “standard” AFM setups where a
concentrated force acts on the cantilever tip, since the cali-
bration procedure for obtaining the deflection is as well done
by pushing the tip.31 The situation is different in the case of
electrostatic forces, which affect the tip as a concentrated
load, but at the same time affect the cantilever as a uniformly
distributed load. The shape of the bent cantilever has to be
recalculated, the usual calibration procedure has to be modi-
fied, and a correction factor has to be determined.

To calculate the correction, we first consider for simplicity
a rectangular cantilever, clamped on one end and oriented
horizontally to a planar surface ��=0� at a distance Z0. Then
we extend the analysis to the general case of an inclined
cantilever ���0�, as shown in Fig. 1.

When a voltage is applied, the cantilever bends towards
the surface. We assume that this bending is small ��Z=Z0

−Z�Z0 ,L�. Since the electrostatic force is homogeneously
distributed over the whole length of the cantilever �except for
the end with the tip� and depends on the distance between the
cantilever and surface, the force affecting the cantilever per
unit length is f =FCL /L= f* /Z0

2. Then its shape is described
by a fourth order polynomial,32,33

FIG. 1. Scheme of the tip-cantilever-surface setup. The surface
is flat and grounded, the cantilever is inclined with respect to the
surface by an angle � and is set at a potential V0. The tip is modeled
as a truncated conus of height H and half-angle �, with a spherical
apex of radius R at the end.
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Zunif�X� = f
X2�6L2 − 4XL + X2�

24EI
. �8�

The subscript “unif” indicates that Zunif�X� describes the
bending of a cantilever with a uniformly distributed force per
unit length acting on it.

We calibrate each force curve according to the concen-
trated load model by measuring the inclination at the end of
the cantilever, but the electrostatic force bends the cantilever
according to the uniform load model. So we need to equate
the two inclinations at the end of the cantilevers,
dZconc /dX�X=L�=dZunif /dX�X=L�, in order to be able to re-
late the effects of the two forces to the bending of the canti-
lever.

With

dZconc

dX
�X = L� =

FTIPL2

2EI
�9�

and

dZunif

dX
�X = L� =

FCLL2

6EI
�10�

we obtain

FTIP =
1

3
FCL �11�

which means that a uniform force three times larger than the
one affecting the tip is needed in order to cause the same
inclination at the end of the cantilever. This is demonstrated
for one example in Fig. 2. For correctly fitting the experi-
mental data with the analytic models, we thus need to place
a correction factor h= 1

3 in front of the contribution of the
cantilever in Eq. �2�:

FCL = − h
�0V0

2

2
�

X1

X2 B�X�dX

Z�X�2 �12�

while the contributions due to the tip and the apex are un-
changed, and the sum of all three provides the total electro-
static force. The case of a triangular cantilever should not
present a substantial variation in the absolute value of the
correction factor. In fact, according to Sader,34 the bending of
a triangular cantilever is equivalent to the bending of canti-
lever which has its skewed rectangular arms replaced by a
single unskewed rectangular plate.

For the general case with ��0, the distribution of forces
along the lever changes with tip-sample distance, so, unlike
in the �=0 case, we will not find a constant conversion fac-
tor h, but rather a conversion function h�Z0 ,L ,��.

The force per unit length can be written as f
=FCL / �L cos ��= f* / �Z0−Z�2. The torque due to the electro-
static force is

M = �
X

L�
�X � − X�f dX� = f*�

X

L� X� − X

�Z0 − Z�2dX� �13�

with L�=L cos �. The torque due to elastic response of the
cantilever is35

M = EI cos3 �
d2Z

dX2 , �14�

where the cosine term is due to the transformation from the
coordinate system aligned with the cantilever to the rotated
coordinate system �X ,Z� shown in Fig. 1. Equations �13� and
�14� lead to the integrodifferential equation

d2Z

dX2 = f* 1

EI cos3 �
�

x

L� X� − X

�Z0 − Z�X���2dX� �15�

with the boundary conditions Z�X=0�=0 and dZ /dX�X=0�
=tan �. Equation �15� can be casted into a fourth order dif-
ferential equation, which has to be solved by an iterative
quadrature procedure due to the involved boundary condition
for Z�3��X=0�. Yet, in order to derive an analytical solution
we assume the electrostatic force to be sufficiently below the
pull-in value and Z�X�� in the kernel of Eq. �15� is replaced
by the linear term. Using a dimensionless length coordinate
and deflection �x=X /L�, z=Z /L�� we get

d2z

dx2 = f* L�

EI cos3 �
�

x

1 x� − x

�z0 − x� tan ��2dx�. �16�

Integrating Eq. �16� twice the inclination at the end of the
cantilever �x=1� is found to be

dz

dx
�x = 1� = f* L�

EI

1

2 sin3 �
� tan ��tan � − 2z0�

tan � − z0

+ 2z0 log�1 −
tan �

z0
	� + tan � . �17�

The electrostatic force experienced by the cantilever is, cf.
Eq. �13�

FIG. 2. Calculated deflection and inclination of a rectangular
silicon cantilever �L=480, w=50 	m, tc=2 	m, E=180 GPa� with
an end load at the tip, and with two uniform loads on the whole
cantilever.
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FCL = f*�
0

L� 1

�Z0 − X� tan ��2dX� = f* L�

Z0
2 − Z0L� tan �

.

�18�

Rewriting the inclination in Eq. �17� in terms of the electro-
static force in dimensional coordinates yields

dZdistr

dX
�X = L�� =

FCLL�2

2EI
h�Z0,L�,�� + tan � �19�

with

h�Z0,L�,�� =
Z0

L�3 sin3 �
��2Z0 − L� tan ��L� tan � + 2Z0�Z0

− L� tan ��log�1 −
L� tan �

Z0
	� . �20�

The subscript distr denotes the case of having a distributed,
but not uniform, load along the cantilever. Again, we need to
equate the two inclinations at the end of the cantilevers,
dZconc /dX�X=L��=dZdistr /dX�X=L��, in order to be able to
relate the effects of the two forces on the bending of the
cantilever, and we obtain

FTIP = h�Z0,L�,��FCL. �21�

In the limit of vanishing inclination we find

lim
�→0

h�Z0,L�,�� =
1

3
. �22�

Thus Eq. �10�, the case of a uniform load distribution, is
recovered.

Four plots of the conversion function h�Z0� are presented
in Fig. 3, each plot was calculated using a different tilting
angle � of the cantilever with respect to the surface. A rect-
angular cantilever with a length of 480 	m, a width of
50 	m, and having a 4 	m long tip at its end was assumed.

III. EXPERIMENTS

A particle interaction apparatus,36 equipped with a piezo-
scanner �P753.11C, Physik Instrumente GmbH, Germany�

with a 12 	m scan range, was used to measure cantilever
deflection versus piezodisplacement curves at various
cantilever-surface voltages, ranging from 0 to about 100 V.
Force curves were calculated by multiplying the cantilever
deflection with the spring constant of the cantilever to obtain
the force, and by adding piezodisplacement and cantilever
deflection to obtain the separation. The applied voltage was
generated by a function generator �TCE-7704, Toellner
GmbH, Germany� and amplified by a homemade HV genera-
tor. It was a rectangular half-wave, ranging from 0 to ±V0, in
order to have an internal reference at 0 V, i.e., cantilever and
surface at the same voltage, in each force curve �Fig. 4�. The
frequency of the applied voltage was at least four times
higher than the repetition rate of the force curves. Therefore,
it was possible to acquire a complete force curve �with ap-
proach and retract part�, and the baseline at zero potential
during a single force scan. On the other hand, the frequency
was always much lower than the resonance frequency of the
cantilever.

Two types of cantilevers were mainly used: Rectangular
silicon cantilevers with a quasiconical tip �PointProbe, Nano-
World GmbH, Germany�, and triangular silicon nitride can-
tilevers, with or without a pyramidal tip �DNP, Veeco Instru-
ments, USA� �Fig. 5�. The Young’s moduli are ESi
=180 GPa and ESi3N4=146 GPa, respectively. The first are
uncoated and are manufactured from highly doped, single
crystalline, highly conductive silicon �resistivity about
0.01–0.025 
 cm for avoiding electrostatic charging. The
second are coated with a 15 nm Cr plus 60 nm Au layer, on
both sides for avoiding mechanical stresses. Cantilevers and
tips were all imaged in a low-voltage mode with a scanning
electron microscope �SEM� �LEO 1530 Gemini, Zeiss-LEO
GmbH, Germany� for a precise characterization of the tip
radii. Dimensions and spring constant of the cantilevers are
specified for each measurement in the figure captions. Can-
tilever spring constants were calibrated with the MFP-1D
�Asylum Research, USA� applying the thermal noise
method.37,38 Two substrates were mainly used: A polished
silicon wafer with the silicon cantilevers, and a Cr/Au
coated glass microscope slide with the coated silicon nitride
cantilevers.

FIG. 3. Calculated conversion functions h�Z0 ,L ,�� plotted ver-
sus the separation from the surface Z0. A rectangular cantilever �L
=480, w=50 	m, tc=2 	m, E=180 GPa� having a 4 	m long tip
at its end was assumed. Four values of the tilting angle � were
assumed: 0°, 1°, 5°, and 10° �curves from top to bottom�.

FIG. 4. Deflection versus piezo extension curve �triangular dots�
acquired by applying a rectangular half-wave voltage �dashed lines�
to a triangular cantilever with pyramidal tip. The piezo was scanned
at 1 Hz, the applied voltage had a frequency of 4 Hz.
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Experimental conditions were changed during some force
measurements, in particular the influence of relative humid-
ity �RH� was investigated. To do so, the whole setup was
placed under a flexible glove box �GloveBag, I2R, USA�,
which was then flooded with dry and humid air to achieve
RHs between about 5% and 65%.

IV. RESULTS AND ANALYSIS

A. Dependence on applied voltage and cantilever
correction function h

The voltage dependence is presented in a set of six force
curves in Fig. 6. On the left side is shown that a higher
voltage causes a larger attractive force between cantilever
and surface. On the right side the absolute data were normal-
ized by the square of the voltage, and plotted on a log/log
scale, though the forces remain attractive. From this repre-
sentation the V0

2 dependence becomes evident, since all
curves collapse onto one master curve. The log/log represen-
tation was chosen because it better represents the contribu-
tions of the apex, tip, and cantilever to the total force as
changes in the slope of the curve. Law and Rieutord24 men-

tion that the way of applying the voltage during a measure-
ment, for example, by an increasing or a decreasing series,
affects the V0

2 dependence, because after an increasing series
a residual charge or potential remains on the cantilever. We
could not observe such a behavior. Law and Rieutord24 also
observe a repulsive force between the cantilever and surface
at separations smaller than 300 nm, and ascribe it to residual
charges of equal sign residing on cantilever and surface. We
could not observe such repulsive forces between tips and
surfaces at any separation, when both were at the same po-
tential. At small separations we only observed attractive
forces of the van der Waals type. We could also observe no
deviations from the V0

2 dependence by either changing RH
or the temperature, or by applying voltages of positive or
negative sign.

The relevance of the correction factor h, or better of the
correction function h�Z0 ,L� ,��, which considers the cantile-
ver contribution, is demonstrated in Fig. 7. In the upper
graph we show experiments where we used a tipless triangu-
lar cantilever. The force curves were acquired at three differ-
ent voltages, and they illustrate the V0

2 dependence. The
solid line shows the calculation of the force according to Eq.
�21�, all parameters being determined from optical micros-

FIG. 5. SEM images of cantilever tips. Left side: pyramidal, gold coated tip on a triangular cantilever. Tip height is 3 	m, half-cone
angle is 36.5°. Middle: Side view of a quasiconical tip on a rectangular cantilever. Tip height is 15 	m, upper half-cone angle is 19.5°, lower
half-cone angle is 31°. Right side: Front view of a similar tip, the half-cone angle from the front is 17.5°.

FIG. 6. Left side: set of six force versus separation curves acquired by applying six different voltages between a Cr/Au coated triangular
cantilever �L=116 	m, w=32 	m, tc=0.6 	m, K=0.33 N/m� with pyramidal tip �R=160 nm, H=2.2 	m� and a Cr/Au coated surface. We
started at −48.43 V, and decreased the voltages stepwise. The data points missing are due to the measurement technique and the not so
perfect synchronization between piezo scan and applied voltrage frequencies. Right side: Each of the six force curves was divided by the
square of the applied voltage. The representation is in the log/log scale, therefore the sign of the force was changed from negative to positive.
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copy and SEM images: Experiment and calculation are in
good agreement. If instead h=1 was used, i.e., the correction
function was ignored, we obtained a much larger force, cor-
responding to the dotted line. In the calculation we had to
utilize a tip height of 0.3 	m, despite the fact that the canti-
lever was tipless. This was clarified by the SEM images of
the cantilever after the experiments, which showed some
nanoscopic �debris� sticking to the cantilever. This might be
due to some dirt picked up during the force measurements, or
most probably to delamination of the Cr/Au coating of the
cantilever as the result of the high applied voltages �inset of
upper graph�. In the lower graph we show experiments where
we used a rectangular cantilever with a quasiconical tip, like
the one shown in Fig. 5. The force curves were acquired at
different voltages and by using different piezoscan ranges
�here only the 12 	m scans are shown�. They again confirm
the V0

2 dependence. The curve represented with open tri-
angles was the first in the experimental series, acquired with
an unused cantilever. Thus its tip was very sharp tip �R
�10 nm�. Each further acquired force curve causes blunting
of the tip, which becomes clear from the curve represented
with open circles. In that case the tip radius was larger �R
�70 nm�. The solid and dashed thick lines show calcula-
tions of the force according to Eqs. �21� and �5�. When we
used Eqs. �3� and �4� instead of Eq. �5� for the tips, we
obtained less accurate results �solid and dashed thin lines,
respectively�. The parameters for h�Z0 ,L� ,�� were again

obtained from optical microscopy and SEM images. Also in
this case, if we put h=1, we obtained a much larger force,
corresponding to the dotted line.

Summarizing, we were able to describe force curves of
triangular and rectangular, with tip and tipless, cantilevers
using the correction function h�Z0 ,L� ,��. The force calcu-
lated using Eq. �3�, the spherical apex, is deficient over the
whole range of separations. This is expected, since we as-
sume the apex directly on the cantilever, while it should sit
on an ideal rod having the same length as the tip. The force
calculated using Eq. �4�, the conical tip with spherical apex,
describes the force accurately for separations smaller than
1000 nm, but fails at larger separations. The most accurate
force calculation is given by Eq. �5�, the hyperboloid tip with
spherical apex, by which we are able to describe the experi-
mental curves over the entire separation range.

To determine the range in which the electrostatic force is
proportional to V0

2, force curves were acquired by keeping
the piezo extension constant, and by applying triangular volt-
ages of different magnitudes between the cantilever and sur-
face. In one experiment, represented in Fig. 8, we varied the
voltage between 33 and 99 Vpeak-peak, the initial separation
between the cantilever and surface being about 12 	m. All
forces overlap, higher voltages generating larger forces.
Forces are represented only up to about 120 nN, because this
is the maximal range of the detector. This corresponds to
V0

2�5000 V2, corresponding to a voltage of about
70 Vpeak-peak. One can observe a slight deviation from the
linear behavior �dashed gray line� with increasing voltages,
starting from about 1600 V2. This might be a hint of a non-
linear behavior of either the detector, or it might be due to
the fact that we are not anymore in the “small deflections”
approximation where the cantilever can be treated as an ideal
spring.

FIG. 7. Plot of F /V2 versus separation in log/log scale for a
triangular Cr/Au coated cantilever �Top: L=114 	m, w=42 	m�,
and for a rectangular silicon cantilever �Bottom: L=470 	m, w
=50 	m, tc=2.1 	m, K=0.238 N/m�. Different voltages were ap-
plied and different piezo scan lengths were tested. Black lines rep-
resent the calculations employing the cantilever and tip parameters
determined from optical microscopy and SEM images, and the cor-
rection function h�Z0 ,L� , tan ��. Top: Hdebris�0.3 	m, �=15°;
Bottom: H=12.5 	m, �=4.5°, �=35°�. The dotted curves in both
graphs are calculations considering h�Z0 ,L� , tan ��=1.

FIG. 8. V0
2 dependence of the electrostatic force acting on a

triangular cantilever �L=190 	m, w=20 	m, tc=0.69 	m, K
=0.072 N/m�. The distance between cantilever and surface was
about 12.0 	m, the inclination of the cantilever with respect to the
surface was about �=10°, and triangular ac voltages were applied.
The dashed gray line represents a linear fit to the force data until up
to about 1600 V2.
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B. Change of the relative humidity

Using a cantilever coated with a Cr/Au layer, the force
increased with increasing RH, irrespective of the changed
direction of RH �Fig. 9, upper graph�. Using an uncoated
silicon cantilever, the force did not change with RH �lower
graph�. There is, in fact, no physical reason for the electro-
static force to be influenced by the RH, though it is known
that the RH affects the breakdown field strength in the gap
between two electrodes.39 We have at this point no explana-
tion for the RH dependence. A tentative explanation could be
that the exposed parts of the Cr/Au layers along the edges of
the cantilever form a battery. In fact, both metals are equally
exposed to the humid air, because the Au layer does not
encapsulate the Cr layer completely, but leaves the edges
free. Since Cr and Au have redox potentials, respectively, of
about −0.9 and +1.5 V, the equivalent voltage is about
2.4 V, but it might be tuned by the thickness of the adsorbed
water layer, which is, in turn, influenced by RH. This addi-
tional voltage could change the surface tension on one side
of the cantilever. In the upper graph, the two solid lines
enclose the region of forces calculated by changing the ap-
plied voltage V0=−12 V by ±1.2 V. The measured forces
only partially lie within this region, which signifies that also
other factors might affect the RH-dependent bending. In the
lower graph and for the silicon cantilever, the forces are cal-
culated for a cantilever with a hyperboloid tip. The measured
forces are best described by curves calculated using R
=10 nm, close to the value determined by SEM.

C. Spring constant calibration

It is possible to benefit from the well-defined and tunable
electric force for the purpose of calibrating the spring con-
stant of AFM cantilevers �Fig. 10�. Suppose the spring con-
stant K is unknown: Upon acquiring an experimental curve,
we would not be able to convert the cantilever deflection into
a force. We could calculate, however, the electrostatic force
acting on the cantilever using Eqs. �3�–�5� and �21�, like we
showed above, since we know all the parameters from opti-
cal microscopy and SEM images. K is then simply obtained
by dividing the calculated force F by the measured deflec-
tion, point by point, for the whole separation range. The
values for four voltages �see figure legend� are presented in
the graph. The higher voltage provides a smoother curve
while the lower voltage provides a more noisy curve. The
mean values of the curves for the applied voltages of +17.5,
+25.1, 32.8, and 38.1 V are, respectively, K=0.171 �±0.017�,
0.172 �±0.020�, 0.172 �±0.019�, and 0.166 �±0.023� N/m.
The value determined by the thermal noise method is K
=0.165 �±0.004� N/m. Depending on the applied voltage,
we thus commit an error between 1% and 5% for this par-
ticular cantilever. One advantage is intrinsic to this method:
by definition, K must be a constant over the whole separation
range, therefore the curves should be close to horizontal
lines. If they are not, then one or more of the cantilever
parameters in Eqs. �3�–�5� and �12� must be wrong. To show
this, we used, for example, a different value for R, 500 in-
stead of 50 nm. As is evident from the graph, the curve is not
even nearly horizontal, K appearing to increase at small
separations, which cannot be. We estimated spring constants
for five more cantilevers, triangular and rectangular, tipless
and with tip, and the agreement between values calculated
with the present method and calibrated with the thermal
noise method was within 20% for all �results are not shown
here�.

V. CONCLUSION

We have quantitatively compared existing models for the
electrostatic force acting between a cantilever and a flat sur-

FIG. 9. RH dependence of a cantilever bending: F /V2 versus
separation plots in the log/log scale. Top: triangular, tipless cantile-
ver, Cr/Au coated on both sides �L=192 	m, w=36 	m, tc

=0.75 	m, K=0.135 N/m�. Bottom: rectangular, uncoated silicon
cantilever with tip �L=475 	m, w=50 	m, tc=2.1 	m, K
=0.243 N/m�. The dashed lines in both graphs represent the calcu-
lated force curves according to Eqs. �21� and �5�, utilizing the speci-
fied parameters.

FIG. 10. Graph of the spring constant K plotted versus
cantilever-surface separation. Cantilever properties are L=470 	m,
w=50 	m, R=50 nm, H=12.4 	m, �=4°, �=30°. The experimen-
tal deflection curves were acquired at the voltages indicated in the
legend. The dashed black line represents the spring constant deter-
mined with the thermal noise method. The continuous black line
represents a calculation made by assuming a wrong R.
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face in AFM with a large number of experiments using tri-
angular and rectangular cantilevers, with and without tip,
with and without metal coating, and at different experimental
conditions of temperature and RH. We introduced a correc-
tion function h�Z0 ,L� ,�� for the cantilever contribution to
the overall electrostatic force, which is due to �i� geometrical
considerations, �ii� the calibration procedure common in
AFM force spectroscopy, and �iii� the different action of the
electrostatic force on the cantilever �uniformly distributed
load� and on the tip �concentrated load�. We used a method
for applying a voltage �rectangular half-wave� in order to get
rid of voltage-independent contributions to the electrostatic
force. The dependence of the electrostatic force on the square
of the applied voltage for all considered cases was con-
firmed. For metal coated cantilevers the electrostatic force

increases with increasing RH, while this is not the case for
uncoated cantilevers. Finally, we showed that the electro-
static force acting on a cantilever can be employed for cali-
brating cantilever spring constants with an accuracy compa-
rable to other established calibration procedures.
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