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Motivated by recent experiments on small radius nanotubes, we study the superconducting instabilities of
cylindrical �5,0� nanotubes. According to band-structure calculations, these nanotubes possess three bands at
the Fermi energy. Using a Fermionic renormalization-group approach and a careful Bosonization treatment, we
consider the effect of different attractive interactions, mediated by phonons, within the Luttinger liquid frame-
work. We particularly focus on a superconducting instability specific to the three-band model we consider for
the description of these �5,0� cylindrical nanotubes.
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I. INTRODUCTION

Superconducting behavior of carbon nanotubes have been
observed both in ropes of single walled nanotubes,1 and in
single walled2 and multiwalled3 small radius nanotubes
grown in a zeolite matrix. The high value of the critical
temperature Tc in these last two cases raised the question of
its possible relation with the small radius of the nanotubes.
Indeed, for these 4-Å nanotubes, the large curvature induces
a hybridization of the � and � orbitals of the carbon atoms,4

leading to electron and phonon properties different from the
larger nanotubes. The relation between the high Tc and these
peculiarities have motivated several works, in particular
on the metallic �5,0� nanotube which constitute the best can-
didate for the origin of the superconductivity.5 These previ-
ous approaches include both numerical calculations of the
band structure and phonon dispersion relation,6–8 and
renormalization-group approaches are either restricted to a
subspace of the couplings,9 or use specific initial conditions
in the full space of couplings.10

In this paper, we identify the different instabilities of the
�5,0� metallic nanotubes in the presence of effective elec-
tronic attractive couplings mediated by phonons. We follow
previous approaches on larger nanotubes5,11–20 in using the
Luttinger liquid framework to describe the low-energy be-
havior of nanotubes. Our approach is based on the band
structure for cylindrical �5,0� nanotubes provided by various
methods such as the local-density approximation �LDA�, the
GW method, and tight-binding calculations, consisting in
three bands at the Fermi energy.4,21–26 Then, we study the
perturbations of this band structure induced by the residual
interactions between the low-energy fermions. The nature of
these interactions is constrained by the specific symmetries
of the initial band structure, different from the usual the-leg
Fermionic ladders previously studied in Refs. 27–36. Using a
Fermionic renormalization group we identify the dominant
instability corresponding to each effective attractive poten-
tial. The instabilities we find involve either electronic de-
grees of freedom on a single band, or on a two-band sub-
system, or on the whole three-band system. We focus on this
last case, which corresponds to different instabilities specific
to the symmetries of the �5,0� nanotubes. This allows us to
determine the momentum of the phonons responsible for the
main instability, analogously to the proposal for a supercon-

ductivity induced by radial breather modes in regular two-
band metallic nanotubes.37 For the specific instabilities, seen
as strong-coupling directions of the renormalization-group
flow, we use the Abelian Bosonization formalism to identify
its nature and specify the corresponding dominant correlation
function. This Bosonization description requires a careful
treatment of the so-called Klein factors, a crucial technical
point in this three-band model. We pedagogically present this
problem and its solution in Sec. IV. Finally, the remaining
gapless spin modes are identified using a non-Abelian
Bosonization approach.38–43

The paper is organized as follows: in Sec. II we define the
Fermionic model we consider and the notations used
throughout the paper. The renormalization approach is
sketched in Sec. III, the details being postponed to Appendix
A for readability of the manuscript. The strong-coupling
phases are analyzed in Sec. IV as well as the conventions
used for the Bosonization formalism. The complete
Bosonized expressions of all operators and necessary corre-
lations functions are given in Appendix B. Finally we discuss
the validity of our results and our main conclusions in Sec.
V. Appendix C is devoted to some peculiar technical diffi-
culties of our model associated with the Klein factor of Abe-
lian Bosonization.

II. MODEL

A. Band structure of (5,0) nanotube

The band structure predicted by LDA-DFT �density func-
tional theory in the local density approximation� calculations
for �5,0� metallic nanotubes is depicted schematically around
the Fermi energy EF in Fig. 1. It consists of three
bands.4,21–23,25 For a cylindrical nanotube, rotational invari-
ance results in the conservation of the angular momentum m,
and translational invariance in the conservation of momen-
tum along the tube kx. The quantum numbers of the three
bands are thus determined accordingly. In our specific case
the two bands with angular momentum m= ±1 are degener-
ate and possess the same Fermi momentum kF1

, smaller that
the Fermi momentum kF0

of the band m=0. Linearizing these
bands near EF, we decompose the fermion annihilation op-
erator into

�0,��x,�� = eikF0
x�R,0,��x� + e−ikF0

x�L,0,��x� �1�

and
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�m=±1,��x,�� = e−ikF1
x+im��R,m,��x� + e+ikF1

x−im��L,m,��x� ,

�2�

where �R/L,m,� represent the annihilation operator for a right-
�respectively left-� moving fermion of angular momentum m
and spin �. From now on x denotes the coordinate in the
direction of the nanotube, and � the angle along the circum-
ference �see Fig. 1�. Note that as the Fermi velocity vF1

in
the m= ±1 bands in negative, the right-moving fermions of
these bands have a longitudinal momentum −kF1

as opposed
to the usual situation of the band m=0 where they have
momentum +kF0

�see Fig. 1�. We then describe the low-
energy properties of this model by the simple Hamiltonian

H0
�0� = − �

�=↑,↓
�

m=0,±1
vFm� dx�R,m,�

† �x�R,m,�. �3�

Note that as the nature of the superconducting instabilities
we discuss in this paper will not depend on the differences of
Fermi velocities between the bands, we will assume from
now that they are all equal: vF1

=vF0
=vF.

B. Residual interactions

Then we consider the perturbations around this band
structure, which can originate either from electronic interac-
tions not taken into account by the band-structure calcula-
tions, especially in a quasi-one-dimensional �1D� geometry,
or from the effective attractive interaction originating from
the coupling to phonons. An expression for these phonon-
mediated couplings is given in Eq. �2� of Ref. 5. Note that a
good screening of the electron-electron interaction is already
assumed by the band-structure calculations via the use of a
density functional for a three-dimensional electron gas. Thus
to remain consistent with the calculated band structure we
assume that the remaining part of the Coulomb interaction is
screened and can be replaced by a perturbative short-range
interaction. Such a good screening can be expected from the
presence of nearby metallic gates or the screening by the

surrounding nanotubes array, similar to the case considered
in Ref. 44.

Within our effective low-energy approach, we consider a
minimal model possessing all the conservation laws. This
results in a perturbative interaction action which can be writ-
ten formally as

Sint = gabcd
�1� �

�,��
� dx�R,a,�

† �L,b,��
† �R,c,���L,d,�

+ gabcd
�2� �

�,��
� dx�R,a,�

† �L,b,��
† �L,c,���R,d,�, �4�

where a ,b ,c ,d=0, ±1 stands for the band indices �angular
momentum�. In this expression, as is usual in 1D systems,
the first part corresponds to the backscattering operators, and
the second to forward-scattering operators. The forward-
scattering part can be decomposed into g4 processes and g2
processes.45,46 The g4 processes only renormalize the veloci-
ties of the particles.45,46 Since we have neglected the velocity
differences, consistency requires us to also neglect the g4
processes. We use the convention for the action that the par-
tition function of the system is written as Z=�d�d�† exp�
−S�� ,�†��, and that repulsive �respectively, attractive� inter-
actions between the fermions correspond to g�1� ,g�2��0 �re-
spectively, �0�.

To proceed, we must use the symmetry of the problem at
stake to select out of all the couplings in Eq. �4� only those
fulfilling the required conservation laws. As the results of
band-structure calculation suggest, the Fermi wave vector kF1
of the two bands ±1 is different �and incommensurate� from
the Fermi wave vector kF,0�kF,1 of the band with angular
momentum m=0. Interactions must preserve both rotational
invariance and translational invariance, i.e., conserve the to-
tal angular momentum m and the total momentum kx. To
classify these interactions, we follow the notations of Refs.
47 and 10. Note that whereas this model has some superficial
similarity with the three-leg ladder model,27,28,30,35,36 it dif-
fers from it by the symmetries as all three Fermi momenta
are different, as opposed to the present case.

1. Interactions in the band m=0 subsystem

The first two allowed interactions are the usual back-
scattering and forward-scattering interactions in the single
band m=0. The associated fields are denoted by g�1� and g�2�

and they correspond to the action

Sint
�0� = − g�1� �

�,��
� dx�R,0,�

† �L,0,��
† �L,0,��R,0,��

+ g�2� �
�,��

� dx�R,0,�
† �L,0,��

† �L,0,���R,0,�. �5�

2. Interactions in the two-band m= ±1 subsystem

The next group of interactions we consider are the
forward- and backscattering couplings in the subsystem con-
sisting in the two degenerate bands m= ±1. This corresponds

FIG. 1. Schematic representation of the band structure near EF

for the three-band nanotubes considered in this paper.
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exactly to a two-leg ladder with degenerate bands.29,48–60

Note that even this two-band subsystem differs from the
usual description of larger nanotubes, which possess right-
�or left-� moving fermions at both +kF and −kF.61 The inter-
actions are depicted schematically in Fig. 2. The explicit part
of the interacting action is

Sint
�±1� = �

�,��
� dx − g1

�1���R,+1,�
† �L,−1,��

† �L,−1,��R,+1,��

+ �+ 1 ↔ − 1�� + g1
�2���R,+1,�

† �L,−1,��
† �L,+1,���R,−1,�

+ �+ 1 ↔ − 1�� − g2
�1���R,+1,�

† �L,−1,��
† �L,+1,��R,−1,��

+ �− 1 ↔ − 1�� + g2
�2���R,+1,�

† �L,−1,��
† �L,−1,���R,+1,�

+ �+ 1 ↔ − 1�� − g4
�1���R,+1,�

† �L,+1,��
† �L,+1,��R,+1,��

+ �+ 1 ↔ − 1�� + g4
�2���R,+1,�

† �L,+1,��
† �L,+1,���R,+1,�

+ �+ 1 ↔ − 1�� . �6�

3. Interactions between the m=0 band, and the two-band
m= ±1

The last group of interactions, specific to the model we
consider, corresponds to the interactions between the band
m=0 and the two-band subsystem m= ±1. With our conven-
tions for the signs of the coupling, they read

Sint
�0/±1� = �

�,��
� dx − f �1���R,0,�

† �L,+1,��
† �L,+1,��R,0,��

+ �+ 1 ↔ − 1� + H.c.� + f �2�

���R,0,�
† �L,+1,��

† �L,+1,���R,0,�

+ �+ 1 ↔ − 1� + H.c.� + u��R,0,�
† �L,0,��

† �L,+1,���R,−1,�

+ �+ 1 ↔ − 1� + H.c.� − v��R,+1,�
† �L,−1,��

† �L,0,��R,0,��

+ �+ 1 ↔ − 1� + H.c.� �7�

All these couplings are depicted schematically in Fig. 3.

III. RENORMALIZATION-GROUP STUDY

A. Derivations of the scaling equations

Having defined explicitly the action describing our model,
we will now study its low-energy behavior using the

renormalization-group formalism. The standard procedure
for one-dimensional Fermionic model is implemented by us-
ing the operator product expansion formalism �see, e.g., Ref.
62, Chap. 5�. The product expansion of the four-fermion op-
erators appearing in the perturbative expansion of the parti-
tion function reads formally

��R,a
† �L,b

† �L,c�R,d�R,e
† �L,f

† �L,g�R,h	

=
	ah	bg

4�2zaz̄b

��R,e
† �L,f

† �L,c�R,d	 −
	ah	cf

4�2zaz̄c

��R,e
† �L,b

† �L,g�R,d	

−
	bg	de

4�2zdz̄b

��R,a
† �L,f

† �L,c�R,h	

+
	cf	de

4�2zdz̄c

��R,a
† �L,b

† �L,g�R,h	 , �8�

where we have used mixed labels a, b, c, d, e, f , g, h for the
band m and spin �. In this expression, za stands for x− iva
.
Within the approximation vFa

=vF, all the prefactors will pro-
duce the constant

1

4�2vF
�

a�
z
�aedl

dzdz̄

zz̄
=

dl

2�vF
, �9�

where a is a real-space ultraviolet cutoff. Thus specifying the
operator product expansion �8� to the interactions of our
model, we obtain the renormalization-group equations to
second order in the couplings gi

�j�, f i, u, v. They are given
explicitly in formula �A3� in Appendix A. They only differ
from those of Ref. 10 by an extra term 2�u2+v2� in the
equation for �lg2

�2�.

B. Renormalization flow integration

The scaling equations �A3� admit asymptotic solutions of
the form

FIG. 2. Formal representation in the kx ,m plane of the consid-
ered interactions in the two-band m= ±1 subsystem.

FIG. 3. Formal representation in the kx ,m plane of the consid-
ered interactions between the m=0 band and the two-band m= ±1
subsystem.
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gi
�j��l� =

cij

�l* − l��ij
+ O��l − l*�−�ij� . �10�

However, a direct analytical solution in the full parameter
space is not tractable. Hence we have numerically integrated
these equations for different initial values of the couplings.
Our strategy was to choose some reasonable perturbative ini-
tial point in the parameter space, and to study the instability
from this starting point occurring upon increasing the
strength of a given attractive interaction. We have done this
for all the possible attractive interactions, i.e. the different
phonons coupling the different electronic branches of the
model: g�1�, f �1�, g1

�1�, g1
�2�, g2

�1�, g4
�1�, u, v. We have also

checked that the results were independent of the initial per-
turbative point chosen.

Each of these instabilities corresponds to a strong-
coupling direction where at least some of the couplings gi

�j�,
f �i�, u, v diverge at a finite scaling length l*. Thus we char-
acterize each strong-coupling direction by the subset of the
most diverging couplings, namely those with the largest
power �ij in Eq. �10�. Indeed, we have found that for the
considered directions, while the dominant couplings always
diverge with an exponent �ij =1, there exist other couplings
diverging with smaller exponents �ij �1. These couplings
with weaker divergences are expected to give rise to anoma-
lous scaling63,64 but not to modify the strong-coupling
phases.

The nature of the instability corresponding to a given
strong-coupling fixed point will be identified in Sec. IV, by
Bosonizing the model in the subspace consisting of the
dominant diverging couplings. We will focus particularly on
the instabilities specific to the three-band model.

1. Single-band or two-band model instabilities

We first list the instabilities of the band m=0, and two-
band m= ±1 subsystem. These instabilities are not specific to
the present model, and have been previously studied �see,
e.g., Refs. 65 and 66, and references therein�. The first insta-
bility is obtained for a negative g1, i.e., an attractive interac-
tion in the m=0 band. The corresponding asymptotic fixed
point, at which g1 and g2 both diverge to −�, is the well-
known instability of the Luther-Emery model.45,67,68

Three different instabilities affect only the bands m= ±1.
Upon decreasing g1

�1� to negative values, we find that the
dominant diverging couplings are g1

�1�, g1
�2�, g2

�1�, g2
�2�, and g4

�2�.
While g1

�1� and g2
�2� flow towards −�, g1

�2�, g2
�1�, and g4

�2� flow
towards +�. The phase associated with a negative coupling
g1

�2��0 is described by dominant divergence of g2
�1�→ +�

and g2
�2�, g4

�1�, g4
�2�→−�. Finally a negative g4

�1��0 induces
the phase g2

�1�, g2
�2�, g4

�1�, g4
�2�→−�. All these strong-coupling

fixed points correspond to the superconducting phase of a
Fermionic two-leg ladder, associated with different
symmetries.29,48–50,52–54,56,58

2. Three-bands instabilities

We now focus on the phases induced by attractive inter-
actions specific to the three-band nanotube model, namely
f �1�, u, and v. In all three cases, the dominant divergent cou-

plings are g�2�, f �1�, f �2�, g1
�2�, g2

�2�, g4
�2�, v. We have identified

two pairs of asymptotic directions, one induced by negative
f �1� or u, and the second by v. These two pairs of strong-
coupling directions differ only by the sign of the asymptotic
v�l*�. In both cases, g�2�, f �1�, f �2�, g2

�2� flow towards −�, g4
�2�

towards +� and g1
�2�→ ±�. The first direction corresponds to

v→�, and the second to v→−�. Two numerical flows ob-
tained by slowly decreasing either u or v to negative values
are shown in Figs. 4 and 5.

It is instructive to analyze further the renormalization flow
by focusing in the subspace of the dominant couplings g�2�,
f �1�, f �2�, g1

�2�, g2
�2�, g4

�2�, v. Indeed this subspace is stable under
the renormalization-group �RG� equations �A3�. When re-
stricted to this subspace, these equations read

�lg̃
�2� = − 2ṽ2, �11a�

�lg̃1
�2� = − 2g̃1

�2�g̃2
�2� + 2g̃1

�2�g̃4
�2� − ṽ2, �11b�

�lg̃2
�2� = − �g̃1

�2��2 − ṽ2, �11c�

�lg̃4
�2� = �g̃1

�2��2, �11d�

�l f̃
�1� = − 2� f̃ �1��2 − 2ṽ2, �11e�

�l f̃
�2� = − � f̃ �1��2, �11f�

�lṽ = − �4 f̃ �1� − 2 f̃ �2� + g̃1
�2� + g̃�2� + g̃2

�2��ṽ . �11g�

These equations possess two scaling invariants: C=2g̃4
�2�

+2g̃2
�2�− g̃�2� and D=2 f̃ �2�− f̃ �1�+ g̃�2�. Let us start by consider-

ing the RG flow in the subspace ṽ=0. Introducing the vari-
able Y = g̃4

�2�− g̃2
�2�, the RG equations reduce to those of Ko-

sterlitz and Thouless:

�lY = 2�g̃1
�2��2; �lg̃1

�2� = 2g̃1
�2�Y , �12a�

�l f̃
�1� = − 2� f̃ �1��2 �12b�

and g̃�2� is a flow constant. The asymptotic solutions are thus
the two directions �A and B in Fig. 6� Y�l��1/ �2�l*− l�� and
g̃1

�2�= ±1/ �2�l*− l�� and the line �C� g̃1
�2�=0, coupled to the

solutions f̃ �1�=0 or f̃ �1�=−1/ �2�l*− l��. The solutions corre-

sponding to g̃1
�2�=0 or f̃ �1�=0 are easily found to be unstable

when introducing a small v.
The scaling behavior of ṽ can be deduced from inspection

of Eqs. �11�. Except for extremely large initial values of g̃4
�2�,

ṽ will always end up diverging to ±�, in the direction given
by its initial sign. The scaling equation �11b� shows that an
increasing v�l� leads to an instability of the asymptotic direc-
tion A. The only remaining scaling direction driven by v
corresponds to point B in Fig. 6. The other possibility corre-
sponds to strong initial intraband repulsion g4

�2�, leading to a
large and positive g1

�2�. These strong interactions naturally
forbid superconducting interactions, and we will not consider
them in the following.
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To complement the above analysis perturbative in v, we
have analytically solved Eqs. �11� with the ansatz g�l�
�Ag / �l− l*� for all couplings. We have found that besides the
ṽ=0 fixed points, there exist three strong-coupling directions
corresponding to g̃�2�, f̃ �1�, f̃ �2�, g2

�2�→−�, g4
�2�→ +�, and

g̃1
�2�→ ±� �together with ṽ→ ±��. The first direction corre-

sponds to the direction g̃1
�2�=1/ �2�l*− l�� �point A in Fig. 6�

which is the point induced by a very strong initial g4
�2� dis-

cussed above. Both the last two directions correspond to the
same limiting sign of the coupling constants. They differ
only by the numerical value of the ansatz parameters, and
correspond to the main instability discussed in the following.
We have thus identified a different instability, specific to the
three band model we consider. We now turn to the bosoniza-
tion formalism to identify the nature of the phase corre-

FIG. 4. Numerical renormalization-group flow showing the in-
stability induced by a negative u in the Y = g̃4

�2�− g̃2
�2� , g̃1

�2� plane
�left�, g̃1

�2� , ṽ plane �middle�, and the ratio u�l� /v�l� as a function of
l �right�. These flows corresponds to the following initial values

g̃�1�=0.17, g̃�2�=0.3, f̃ �1�=0.1, f̃ �1�=0.09, g̃1
�1�=0.13, g̃1

�2�=0.15, g̃2
�1�

=0.05, g̃2
�2�=0.2, g̃4

�1�=0.08, g̃4
�2�=0.1, and ṽ=0.1. ũ was taken to

negative values in steps of 0.03: ũ=−0.03i for i=1,5.

FIG. 5. Numerical renormalization-group flow showing the in-
stability induced by a negative v in the Y = g̃4

�2�− g̃2
�2� , g̃1

�2� plane
�left�, g̃1

�2� , ṽ plane �middle�, and the ratio u�l� /v�l� as a function of
l �right�. These flows correspond to the same initial values as in Fig.
4, except that ũ was held to ũ=0.1 and ṽ=−0.03i for i=1,5.
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sponding to this renormalization flow direction.

IV. BOSONIZATION AND NATURE OF THE
INSTABILITIES

The purpose of this section is to identify the nature of the
instability for the previously identified strong-coupling direc-
tion listed in Table I. This will be achieved using the
Bosonization formalism within the subspace corresponding
to the dominant couplings. We will pay special attention to
the proper definition of the so-called Klein factor. We first
start by defining our conventions on the noninteracting three-
band model defined in Sec. II.

A. “Condensed matter” Bosonization dictionary

In the standard “condensed-matter” Bosonization proce-
dure, we represent the annihilation operators of right- and
left-moving fermions, defined in Eq. �1�, as69–71

�R,m,��x� = R,m,�
1

�2�a
e−i�R,m,��x�, �13a�

�L,m,��x� = L,m,�
1

�2�a
ei�L,m,��x�, �13b�

where we introduced Majorana fermion operators �the so-
called Klein factors� R/L,m,� that satisfy

R,m,�,R,m�,���+ = 2	m,m�	�,��, �14a�

L,m,�,L,m�,���+ = 2	m,m�	�,��, �14b�

R,m,�,L,m�,���+ = 0. �14c�

Note that in this convention, we introduce one Klein factor
per set of quantum numbers �±kF ,m ,��. With these anticom-
mutation relations, the proper anticommutation relations for
the fermion operators defined in Eq. �13� are satisfied with
the following commutation relation of the fields �R/L:

��R,m,��x�,�R,m�,���x��� = i�	m,m�	�,�� sgn�x − x�� ,

��L,m,��x�,�L,m�,���x��� = − i�	m,m�	�,�� sgn�x − x�� ,

��L,m,��x�,�R,m�,���x��� = 0. �15�

With these conventions, the Bosonized noninteracting
Hamiltonian reads:45,68–71

H = �
m=0,±1

�=↑,↓

� dx

4�
vF����R,m,��2 + ���L,m,��2� . �16�

Finally, the densities of right-moving and left-moving fermi-
ons read, respectively,69–71

�R,m,� = −
��R,m,�

2�
, �17a�

�R,m,� = −
��L,m,�

2�
. �17b�

Keeping only the g2 processes defined in Sec. II B, we ex-
press the forward-scattering part of the interactions in terms
of the above densities �17�:

Hforward = g4
�2� �

�,��

��R,1,��L,1,�� + �R,−1,��L,−1,���

+ f �2� �
�,��

���R,1,� + �R,−1,���L,0,�� + ��L,1,�

+ �L,−1,���R,0,��� + g2
�2� �

�,��

��R,1,��L,−1,��

+ �R,−1,��L,1,��� + g�2� �
�,��

�R,0,��L,0,��. �18�

Using Eq. �17�, these expressions can be reduced to qua-
dratic expressions in the fields �R/L,m,�. Note that we will
treat the g1

�2� term below with the backscattering part of the
Hamiltonian: although it appears as a forward-scattering
term, it cannot be reduced to a density-density coupling and
its treatment closely follows the one for the backscattering
couplings.

B. Backscattering interactions

1. Klein factors problem

Whereas the Bosonized forward-scattering part of the
Hamiltonian is function solely of the densities, and thus does
not depend on the convention chosen for the Klein factor
�14� and fields �15�, the situation is different for the back-

TABLE I. Table of the dominant couplings and their asymptotic
directions corresponding to the three-band instability on which we
focus.

Backscattering Forward scatt.

g�2� f �2� g1
�2� g2

�2� g4
�2� f �1� v

−� −� −� −� −� +� ±�

FIG. 6. Schematic renormalization-group flow in the g̃1
�2�, Y

= g̃4
�2�− g̃2

�2� plane, for ṽ=0.
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scattering part of the action �4�. Quite generally, these back-
scattering operators can be written as

�R,m1,�
† �L,m2,��

† �L,m3,���R,m4,� =
1

�2�a�2Nm�,�,��Om�,�,��,

�19�

where we assumed the transverse momentum conservation
m1+m2=m3+m4 and we defined the product of Majorana
fermions

Nm�,�,�� = R,m1,�L,m2,��L,m3,��R,m4,� �20�

and the product of vertex operators

Om�,�,�� = ei�R,m1,�e−i�L,m2,��ei�L,m3,��e−i�R,m4,�. �21�

The usual strategy is to find a representation such that the
operators Om�,�,�� commute with each other, and similarly
for the products of four Majorana fermions Nm�,�,��. It is
important to note that the only case discussed in Ref. 29 is
the one in which all the vertex operators Om�,�,�� are already
commuting so that no redefinition of the fields is necessary.
When determining the ground state, it is then possible to
consider the Sine-Gordon form of the Hamiltonian, obtained
by replacing the operators Nm�,�,�� by their eigenvalues.

Obviously, while the four fermion operators �19� always
commute with each other, the above condition of indepen-
dent commutation of the Nm�,�,�� and Om�,�,�� becomes
more and more difficult to fulfill with an increasing number
of fermion species. This is particularly true for our three-
band model, corresponding to 12 Fermionic species �two
spins and six Fermi points�, and we can check that this con-
dition cannot be satisfied for the operators we consider
within the convention defined by Eqs. �13�–�15�. Indeed, the
products of four Majorana fermion operators are commuting
when they have an even number of Majorana fermions in
common and anticommuting otherwise. In the second case,
which occurs for our model �see, e.g., the operator v�, the
corresponding operators Om�,�,�� also contain an odd num-
ber of vertex operators in common. Since the vertex opera-
tors associated with fermions are anticommuting when they
correspond to the same fermion species, we recover in the
Bosonization formalism the commutation of the four Fermi
operators, but the independent commutations of the Om�,�,��
and Nm�,�,�� is not possible. We thus need to change our
Bosonization convention for this particular model.

2. “Field theory” convention

The problem we have to deal with is thus whether it is
possible to redefine the Majorana fermion operators �14� and
the commutation relations of the fields �15� that appear in the
vertex operators in such a way that all the new products of
four Majorana fermion operators are commuting with each
other and simultaneously all the new products of vertex op-
erators are also commuting with each other. Another possible
convention, different from the above “condensed-matter”
convention �left- or right-moving chiral field of the same
band commuting with each other, and one Majorana fermion

per Fermi point71�, consists in what we will call the “quan-
tum field theory” convention. We now introduce a single
Majorana fermion for a pair of right and left fermions which
need not to belong to the same band. Correspondingly, the
chiral fields for this pair have a nonzero commutator. In this
representation, the fermion operators are now expressed as99

�R,m,��x� =
1

�2�a
e−i�̃R,m,��x�m,�, �22a�

�L,P�m�,��x� =
1

�2�a
ei�̃L,m,��x�m,�, �22b�

where P is a permutation of the band indices �fermion spe-
cies�. Now the field commutations relations are modified into

��̃R,m,��x�,�̃R,m�,���x��� = i�	m,m�	�,�� sgn�x − x�� ,

��̃L,m,��x�,�̃L,m�,���x��� = − i�	m,m�	�,�� sgn�x − x�� ,

��̃R,m,��x�,�̃L,m�,���x��� = i�	m,m�	�,�� �23�

and the Majorana fermion operators m,� satisfy

m,�,m�,��� = 2	m,m�	�,��. �24�

We discuss the equivalence of these two representations in
Appendix C. Let us now apply this convention to the present
model. We have found that the suitable �necessary� permuta-
tion P of band indices in Eq. �22� is simply a permutation of
the bands +1 and −1 and leaves the band 0 untouched.

The remaining interactions g1
�2�, f �1�, v are conveniently

expressed in terms of the following non chiral fields:46

�m,� =
1

2
��̃L,m,� − �̃R,m,�� ,

�m,� =
1

2
��̃L,m,� + �̃R,m,�� . �25�

These fields satisfy ��m,��x� ,�m�,���x���
= ��m,��x� ,�m�,���x���=0 and ��m,��x� ,�m�,���x���
= i �

2 	m,m�	�,�� sgn�x�−x�. Taking the derivative with respect
to x� and introducing �m,��x�= 1

��x�m,� one finds
��m,��x� ,�m,��x���= i	�x−x��, showing that the fields �m,�

and �m,� are canonically conjugate. It is convenient to intro-
duce the total and relative “charge” and “spin” fields:46

�c,m =
1
�2

��m,↑ + �m,↓� , �26a�

�s,m =
1
�2

��m,↑ − �m,↓� , �26b�

�c,m =
1
�2

��m,↑ + �m,↓� , �26c�
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�s,m =
1
�2

��m,↑ − �m,↓� . �26d�

Finally, the following rotation for the charge modes will sim-
plify the expressions of the interactions:

��c,+

�c,A

�c,B
� =�

1
�3

1
�3

1
�3

1
�2

−
1
�2

0

1
�6

1
�6

−
2
�6

�� �c,1

�c,−1

�c,0
� . �27�

The same rotation is performed for �c,i so that canonical
commutation relations are preserved. A different rotation
must be performed for the spin modes:

��s,+

�s,−
� =�

1
�2

1
�2

1
�2

−
1
�2
�� �s,1

�s,−1
� . �28�

With these notations and within the above field-theoretic rep-
resentation, the Bosonized expression of the g1

�2� term be-
comes

g1
�2�

��a�2 � dx cos 2�c,A�cos 2�s− + cos 2�s−1,↑1,↓−1,↓−1,↑� .

�29�

After some simple algebra, we find for the f �1� part of the
Hamiltonian the simplified expression

−
f �1�

�2�a�2�
�

�e−i��2��s,0−�s,0�0,�0,−�ei���s,++�s,+�

��ei���s,−+�s,−�−1,−�−1,� + e−i���s,−+�s,−�1,−�1,��

+ e−i��2��s,0+�s,0�0,�0,−�ei���s,+−�s,+��ei���s,−−�s,−�1,−�1,�

+ e−i���s,−−�s,−�−1,−�−1,��� , �30�

and for the only remaining v coupling, the Bosonization ex-
pressions reads

2v
��a�2 1↑1↓0↓0↑�cos��3�cB�cos �cA cos �s− cos��2�s0

+ �s+� + sin��3�cB�sin �cA sin �s− sin��2�s0 + �s+��

− �cos��3�cB�cos �cA cos �s− cos��2�s0 − �s+�

− sin��3�cB�sin �cA sin �s− sin��2�s0 − �s+��� . �31�

We immediately observe that the change of Bosonization
convention results in an important simplification. In this
field-theoretic representation, the Majorana fermion product
in the g1

�2� term is commuting with the Majorana fermion
products that appear in the f �1� and v terms. In the usual
representation, where the same Majorana fermion is associ-
ated with the right-moving and left- moving fermions be-
longing to the same band, the products of Majorana fermion

operators would be anticommuting, and this anticommuta-
tion would be compensated by the anticommutation of the
vertex operators. By our choice of right- and left-moving
pairs, we have eliminated this double anticommutation, and
we are in position to apply the scheme of Ref. 29. The com-
mutation of the products of Majorana fermion operators al-
lows for their simultaneous diagonalization. Representing the
two Majorana fermion products as pseudospins, 1,↑1,↓
= i�̃1

z , −1,↑−1,↓= i�̃−1
z , 0,↑0,↓= i�̃0

z , and choosing the +1
eigenvalues of the �̃m

z , we obtain the final Bosonized action,
which takes the generalized sine-Gordon form. The first g1

�2�

term reads

g1
�2�

��a�2 � dx cos 2�c,A�cos 2�s− + cos 2�s−� , �32�

the f �1� term simplifies into

−
f �1�

��a�2 cos���s,+ + �s,+� − �2��s,0 − �s,0��cos��s,− + �s,−�

+ cos���s,+ − �s,+� − �2��s,0 + �s,0��cos��s,− − �s,−�� ,

�33�

and finally the v term can be written as

2v
��a�2 �cos��3�cB�cos �cA cos �s− cos��2�s0 + �s+�

+ sin��3�cB�sin �cA sin �s− sin��2�s0

+ �s+�cos��3�cB�cos �cA cos �s− cos��2�s0 − �s+�

− sin��3�cB�sin �cA sin �s− sin��2�s0 − �s+�� . �34�

C. Analysis of the strong-coupling fixed points:
superconducting instability

Having obtained the above expressions �32�–�34�, we are
now ready to characterize the phases corresponding to the
strong-coupling directions identified in the renormalization
study of Sec. III B 2. We will only focus on the new insta-
bility specific to a three-band model. This instability corre-
sponds to a divergence of g1

�2�→−�, f �1�→ +�, and v
→ ±� �see Table I�. The two signs of v are possible, depend-
ing on the driving attractive perturbations �e.g., u or v�. From
Eq. �32�, we find that large negative values of g1

�2� induce a
locking of the field �c,A=0. �s− and �s− being dual to each
other, no further information on the spin part can be gained
at this point. The f �1� interaction being a current-current in-
teraction part, we will postpone its analysis to the next sec-
tion. And finally, plugging the result �c,A=0 into Eq. �34�, we
find that large values of v will induce a locking of the charge
field �c,B to

�c,B = � �

�3
if v � 0

0 if v � 0
� . �35�

Thus we find that in the ground state corresponding to this
instability, the fields �c,A and �c,B are locked so as to mini-
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mize the condensation energy. This implies that the corre-
sponding charge degrees of freedom develop a gap. The total
charge remains gapless as a result of the global U�1� sym-
metry. Thus only a single charge degree of freedom remains.
The analysis of the spin degrees of freedom is more difficult,
and is done in the next section. However, knowing which
charge modes are gapped already enables us to determine
some of the order parameters, and find the corresponding
nature of the instability.

In any case, the long-range ordering of the charge fields
�c,B and �c,A has important consequences. Indeed, it is seen
from the Bosonized expressions �B12�–�B18� of the charge-
density wave operators that none of them can develop quasi-
long-range order. On the other hand, superconducting fluc-
tuations are strongly reinforced by the ordering of the charge
fields, as can be seen on the corresponding expressions �B4�
derived in Appendix B. Hence we have analyzed this insta-
bility as being driven by superconducting fluctuations.

It is worthwhile to contrast our results with those previ-
ously obtained in three-leg ladders.27 In our notations, it was
found that in the three-leg ladder system, the only charge
field developing long-range order was �c,A. Here, by contrast,
we find that two charge fields are developing a long-range
order, �c,A and �c,B. The difference of behavior of the three-
band nanotube and the three-leg ladder is a consequence of
the equality of the Fermi wave vectors of the band of angular
momentum ±1 which is itself a consequence of the rotational
symmetry of the tube. This equality of wave vector allows
extra interactions between the bands ±1 such as g1

�2� and
between the two bands ±1 and the band 0 �such as u or v�.
The existence of these interactions is driving the system to a
different fixed point. As one more charge mode is gapped in
the nanotube compared with the three-leg ladder, the rein-
forcement of superconducting fluctuations is expected to be a
stronger effect in the nanotube.

D. Effective low-energy spin theory for the instabilities

The charge modes of the nanotubes being gapped, apart
from the global decoupled charge mode, the corresponding
low-energy description of the instability we consider consists
only of the spin modes. Further progress in the understand-
ing of this theory can be made by introducing the pseudo-
fermion creation and annihilation operators:

�R,+ =
+

�2�a
ei��s,+−�s,+�,

�L,+ =
+

�2�a
ei��s,++�s,+�,

�R,− =
−

�2�a
ei��s,−−�s,−�,

�L,− =
−

�2�a
ei��s,−+�s,−�, �36�

and the associated Majorana fermion operators ��=R ,L�:

��,+ =
1
�2

�− ��,1 − i��,2� ,

��,− =
1
�2

���,3 + i��,0� . �37�

The interaction term proportional to g1
�2� is then rewritten as

2i
g1

�2�

�a
� dx cos 2�c,A�R,0�L,0, �38�

we see that the interaction term proportional to g1
�2� gives a

nonzero mass to the �R/L,0 Majorana fermions, while leaving
the �R/L,3 fermions massless. This Ising criticality is a conse-
quence of the self-dual72,73 character of the interaction �32�.
In the context of two-leg ladders, these self-dual interactions
have been discussed in Refs. 54 and 74.

Moreover, the interaction term proportional to f �1� can
also be reexpressed in terms of the fermion fields �R/L,1,2,3.
Indeed, we have the relations

e−i��s++�s+�

�a
cos��s− + �s−� = − i��L,2�L,3 + i�L,3�L,1� ,

e−i��s+−�s+�

�a
cos��s− − �s−� = − i��R,2�R,3 + i�R,3�R,1� .

�39�

In fact, this representation is well known75 and has been used
to study the two-leg spin ladder76,77 and the two-channel
Kondo effect.71,78 Using the equivalence between Majorana
fermions and the two-dimensional Ising model, it is also pos-
sible to re-express the interaction v using order and disorder
parameters of the quantum Ising model.79–83 Indeed, one has
the relations84

cos �s+ = �1�2,

cos �s+ = i�1�1�2,

sin �s+ = − i�2�1�2,

sin �s+ = − i�1�2�1�2, �40�

and similar relations for �s− and �s− with ��1 ,�1�
→ ��3 ,�3� and ��2 ,�2�→ ��0 ,�0�. In Eq. �40�, �1,2 are
Klein factors that result from a careful treatment of the com-
mutation relation of the Ising order and disorder fields.84

With these relations, we easily find that

cos �s−ei�s+ = �3�0��1�2 + �1�2�1�2� ,

cos �s−ei�s+ = i�3�3�0�i�1�1�2 + �1�2�2� . �41�

Noting that g1
�2�→−� in Eq. �38� implies that �0 develops

long-range order for ��c,A	=0, we find that in the low-energy
limit the expressions in Eq. �41� reduce to

cos �s−ei�s+ � �3��1�2 + �1�2�1�2� ,

cos �s−ei�s+ � i�3�3�i�1�1�2 + �1�2�2� . �42�
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Introducing the Pauli spin matrices 
c=− i
2�abc�b�c these

expressions are easily seen to reduce to the expression of the
spin-1 /2 primary fields of the SU�2�2 Wess-Zumino-
Novikov-Witten �WZNW� model38–40,75,77 in terms of Ising
fields. Moreover, the expression of the spin currents �39� also
reduces to the SU�2�2 form.

Thus the theory describing the spin excitations at low en-
ergy reduces to a SU�2�1 WZNW model �that describes the
spin excitations of the band 0� coupled with a SU�2�2

WZNW model �that describes the spin excitations of the
bands ±1� by a term

�� dxtr�g1���x� · tr�g2���x� , �43�

and a marginal current-current interaction term. Power
counting shows that the term �43� is relevant with RG di-
mension 5/4. Therefore it is reasonable to treat first this
relevant term, as was done in the case of two-leg spin
ladders.76 For analyzing the effect of the interaction �43� on
the spin spectrum, is convenient to introduce a coset
representation:85 SU�2�1�SU�2�2�SU�2�3�TIM where
TIM stands for the tricritical Ising model.100 With the coset
decomposition, we can rewrite the WZNW fields as

g1 = �TIMg3,

g2 = �TIMg3, �44�

where gk is the spin-1 /2 SU�2�k field, �TIM is the energy
operator of the tricritical Ising model of dimension 1

10, �TIM
is the spin operator of the tricritical Ising model of dimen-
sion 3

80. Using the operator product expansion of the TIM
�TIM�TIM ���+���TIM from Ref. 86 �p. 224� we can rewrite
the interaction �43� as

��� dx�TIMtr�g3���x� · tr�g3���x� , �45�

where only the most relevant term has been kept. The inter-
action is now brought to the form of a self-coupling for the
SU�2�3 WZNW model. Now, we simplify this self-coupling
by using a second coset87 representation, SU�2�3�U�1�
�Z3 where Z3 represents the critical three-state Potts model
�or equivalently the three-state clock model�72 and U�1� rep-
resents a free Bosonic field described by the Hamiltonian

H =� dx

2�
�vFK����2 +

vF

K
��x��2� , �46�

where K=1. This coset representation was used in Ref. 88 in
a study of the Haldane gap in spin-S chains, and from now
on our treatment follows this work closely. We write the

components of the fundamental field as g3
�m,m�� with m ,m�

= ±1/2. We have from Refs. 75 and 87 the relations

g3
�1/2,1/2� = e−i�2/3��1, �47�

g3
�−1/2,1/2� = e−i�2/3��1, �48�

where �1 , �1 are the order and disorder parameters of the
three-state clock model. With this, we can rewrite the inter-
action as

��� dx�TIM��1��1�† + �1�1
†/2 + e−2i�2/3��1

2

+ e−2i�2/3���1
†�2� . �49�

Then we use the properties of the three-state clock model:87

�1
†=�2 �1

2=�2 and similarly with �↔�, together with the
operator product expansion �1�2��. This allows us to re-
duce the above interaction term to

��� dx�TIM��Z3
+ e−2i�2/3��2 + e−2i�2/3��1� . �50�

Now let us make the assumption that the TIM develops a
long-range order and so does the three-state clock model. Let
us assume further that the three-state clock model is in the
low-temperature phase, with �1,2 disordered. Only the
Bosonic field � can a priori remain gapless. In order to
determine whether � indeed remains gapless, we have to
consider the perturbations generated by the disordered opera-
tors �1,2. It is straightforward to see that these terms yield a
perturbation

�0 cos 2�6� �51�

for the U�1� theory. The operators of the SU�2�3 theory then
reduce to:88

n+ = tr�g�+� � e−i�2/3�, �52�

nz = tr�g�z� � �e−i�2/3��1 + ei�2/3��2� � �e−2i�2/3��2

+ e−2i�2/3��1� � e−i�6� + ei�6�. �53�

The SU�2� symmetry of the system imposes that n+ and nz

have the same scaling dimension. Therefore at this new fixed
point, one must have K=1/3. Hence after a rescaling �

= �̃ /�3 and �=�3�̃, K̃=3 K, the expressions �46� and �52�
reduce to the ones of the SU�2�1 case,65 with a perturbation
�51� which is marginal. Two regimes are possible depending
on whether �0 is marginally relevant or marginally irrelevant.
In the first case, a spin gap is obtained. In the second case, no
spin gap is obtained and the system has the same spin corre-
lation as a free SU�2�1 model up to logarithmic
corrections.45,89,90 In order to predict which phase is realized,
we have to consider the flow of the Luttinger exponent of �.
If the fixed point is approached from the side where the
perturbation �51� is irrelevant, then we can expect the fixed
point to be stable. Since at the origin the Luttinger exponent
is K=1, and at the fixed point it is K=1/3, the flow is indeed
on the side where eq. �51� is marginally irrelevant. Thus we
find gapless spin modes at the fixed point.

If we assume that �1 is ordered, then we find that � is
also long-range ordered. As a result, n+ is short-range or-
dered while nz or �=tr�g3� is long-range ordered. Since the
system has to be rotationally symmetric, the only solution is
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to have � long-range ordered and nz short-range ordered. In
that case, the system has a spin gap, and only the singlet
superconducting order parameters exhibits quasi-long-range
order.

E. Superconducting fluctuations

In the preceding section, we have seen that the spin exci-
tations at the fixed point are described by a single SU�2�1

WZNW model or a spin gapped state. As a result, the opera-
tors describing superconducting fluctuations �B4� become
equivalent to each other in the limit of low energy. Physi-
cally, this means that the interaction v is an internal Joseph-
son coupling between the three bands, resulting in a single
superconducting order parameter for low energy. Note that
this effective attractive interaction v can be mediated by an
optical phonon of momentum ±
kF0−kF1
 and angular mo-
mentum m= ±1.

The resulting state is a one-dimensional analog of the su-
perconducting BCS state with overlapping bands.91 The ab-
sence of such state in the three-leg ladders results from the
difference between the Fermi wave vectors of the three
bands touching the Fermi energy which prevents the pres-
ence of an interaction of the v type at low energy. When the
low-energy spin excitations are gapless, both the triplet and
the singlet superconducting order parameters exhibit power-
law correlations. However, the logarithmic corrections in-
duced by the marginally irrelevant perturbation at the SU�2�1

fixed point are known45,89,90 to lead to dominant triplet su-
perconductivity fluctuations. Triplet superconductivity is
thus naturally expected in the present case. In this respect,
we note that a similar situation arises in single chain systems
where the renormalization group predicts dominant triplet
superconducting fluctuations in the vicinity of a spin-density
wave phase.45 Since in Refs. 2 and 3 the superconductivity
appears to be sensitive to the application of a magnetic field,
it is likely that either the intertube coupling tends to better
stabilize the singlet superconductivity with respect to the
triplet one or the system is in the spin gapped phase.

V. CONCLUSION

In conclusion, by means of Fermionic renormalization,
Abelian and non-Abelian Bosonization, we have analyzed
the low-energy properties of a three-band one-dimensional
model deduced from the band structure of cylindrical small
radius �5,0� nanotubes. We have found that this system pos-
sesses a specific instability, besides the usual single-band and
two-band model instabilities. This instability corresponds to
the development of superconducting fluctuations in the nano-
tube. Within our approach, in the absence of a spin gap,
triplet superconductivity fluctuations are expected to be
dominant due to logarithmic corrections, with subdominant
singlet superconductivity fluctuations.

This interesting instability is tightly related to the symme-
try of our three-band model, and more precisely to the cou-
plings u and v. In our model, in the presence of these cou-
plings, the spin excitations are either fully gapped leaving
only a C1S0 phase as in the two-leg ladder29,48–50,52–56,58 or

they are described by a SU�2�1 WZNW model leading to a
C1S1 phase as in a single chain Hubbard model. This is in
contrast to previous studies of a three-leg model with differ-
ent symmetries, which included only two-band couplings as
opposed to the three-band couplings u or v: in these models,
a C2S1 phase was found.27,28,30 Technically, this difference
lies in the ordering of the field �c,B, directly related to the
presence of the v coupling. Note that the three-band nature
of the v coupling also induced the technical problem of the
Klein factor discussed in this paper.

Let us finally relate our results to previous studies on the
�5,0� nanotubes. In Ref. 9, only a subset of the couplings of
the present model was considered, which did not include the
u and v term. Hence this superconducting instability was not
discussed. In Ref. 10, Gonzalez and Perfetto studied the
same model as ours, by means of a renormalization-group
procedure. The nature of the phase was determined via the
scaling behavior of correlations functions, as opposed to the
Bosonization procedure used in this paper. In Ref. 10, it was
found that the dominant instability would be a charge-density
wave coupling the bands ±1, with subdominant spin-density
wave fluctuations, whereas we find that charge-density wave
fluctuations are suppressed. The origin of this discrepancy is
that in Ref. 10, only specific initial conditions were consid-
ered, with initial values of some couplings so large that they
render a one-loop renormalization-group approach question-
able. It appears likely that the initial conditions chosen in
Ref. 10 strongly favor a two-band instability between the
band ±1. Indeed, a divergent g1

�1� as we found in Sec. III B 1
indeed leads to a reinforcement of charge-density wave fluc-
tuations between the bands ±1.

Along these lines, let us mention that it is difficult to
determine which of the possible mechanisms, including the
one proposed in this paper, actually takes place in a �5,0�
nanotube. Indeed, as opposed to theoretical approaches of
conventional larger nanotubes, our one-dimensional elec-
tronic model is using the band structure provided by ab initio
calculations as an input. Since these methods already include
a renormalization of the band structure by a fraction of the
electronic interactions, an estimate of the bare coupling in
our one-dimensional model based on an unrenormalized
Coulomb interaction as in Ref. 11 is likely to lead to mis-
leading results by overestimating the effect of some interac-
tions. As a result, we can only propose a classification of the
various fixed points at weak coupling and characterize the
possible scenarios, with the usual hypothesis in one-
dimensional systems that the weak-coupling behavior and
the strong-coupling behavior are continuously connected.46

A related remark is that the gaps calculated in any weak-
coupling approximation are generally very small. However,
in the real system, where interaction strength can be expected
to be comparable to the bandwidth, since Luttinger expo-
nents are found in the range92 0.2–0.5, the real gaps can be
much higher than those estimated in a weak-coupling treat-
ment. Thus the present treatment cannot lead to a realistic
estimate of critical temperatures.

Another aspect of the physics to consider is the possibility
of a pseudo-Peierls transitions in this small radius
nanotubes.6 Indeed, the approach of this paper is based on
the band structure of numerical approach which did not con-
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sider the possibility of a cylindrical geometry breaking. If
such a phenomenon was to happen, an indication of strong
electron-phonon coupling in the system, other mechanisms
for superconductivity could occur, but their description is
beyond the scope of the present paper. Finally, let us mention
that the experimental results on the superconducting transi-
tion in these small nanotubes2,3 suggest that a real three-
dimensional superconducting phase transition takes place. A
complete understanding of these results must also include a
coupling between the nanotubes to stabilize the supercon-
ducting fluctuations at nonzero temperature.93,94 However,
since the gap in the zeolite matrix is of order 4 eV, an inter-
tube Josephson coupling term would be a priori strongly
suppressed by the presence of the insulator between the
tubes.
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APPENDIX A: DERIVATION OF THE RG EQUATIONS

To express the RG equations in a simpler form, we first
define rescaled couplings as

g̃i
�j� =

1

2�vF
gi

�j�; f̃ �i� =
1

2�vF
f �i�, �A1�

ũ =
1

2�vF
u; ṽ =

1

2�vF
v . �A2�

The scaling equations read in terms of these couplings

�lg̃
�1� = − 2�g̃�1��2 − 4ũṽ , �A3a�

�lg̃
�2� = − �g̃�1��2 − 2ũ2 − 2ṽ2, �A3b�

�lg̃1
�1� = − 2�g̃1

�1��2 − 2g̃1
�2�g̃2

�1� − 2ũṽ , �A3c�

�lg̃1
�2� = − 2g̃1

�1�g̃2
�1� − 2g̃1

�2�g̃2
�2� + 2g̃1

�2�g̃4
�2� − ũ2 − ṽ2,

�A3d�

�lg̃2
�1� = − 2g̃1

�1�g̃1
�2� − 2g̃2

�1�g̃2
�2� + 2g̃1

�2�g̃4
�1� − 4g̃2

�1�g̃4
�1� + 2g̃2

�1�g̃4
�2�

− 2ũṽ , �A3e�

�lg̃2
�2� = − �g̃1

�1��2 − �g̃1
�2��2 − �g̃2

�1��2 − ũ2 − ṽ2, �A3f�

�lg̃4
�1� = + 2g̃1

�2�g̃2
�1� − 2�g̃2

�1��2 − 2�g̃4
�1��2, �A3g�

�lg̃4
�2� = �g̃1

�2��2 − �g̃4
�1��2, �A3h�

�l f̃
�1� = − 2� f̃ �1��2 + 2ũṽ − 2ṽ2, �A3i�

�l f̃
�2� = − � f̃ �1��2 + ũ2, �A3j�

�lũ = �2 f̃ �2� − g̃1
�2� − g̃�2� − g̃2

�2��ũ − �g̃�1� + g̃1
�1� + g̃2

�1��ṽ ,

�A3k�

�lṽ = − �− 2 f̃ �1� + g̃�1� + g̃1
�1� + g̃2

�1��ũ − �4 f̃ �1� − 2 f̃ �2� + g̃1
�2�

+ g̃�2� + g̃2
�2��ṽ . �A3l�

APPENDIX B: BOSONIZATION EXPRESSION OF ORDER
PARAMETERS

In this Appendix, we provide the detailed expressions of
the various order parameters of our three-band model within
the field-theoretical convention used and defined in the text.
We use the field-theoretical convention for Bosonization, de-
fined in Sec. IV B 2.

1. Superconductivity

We consider the following order parameters for the for-
mation of singlet superconductivity in the nanotube:

O0�x� = �
�

�R,0,��L,0,−�, �B1�

O1�x� = �
�

�R,1,��L,−1,−�, �B2�

O−1�x� = �
�

�R,−1,��L,1,−�. �B3�

Using the Bosonization decomposition introduced in the
text, we can express these order parameters for superconduc-
tivity into Bosonized variables:

O0�x� =
i

�a
e−i�2��c+/�3−�2/3�c,B� sin �2�s,0, �B4a�

O1�x� =
i

�a
ei�2��c+/�3+�c,A/�2+�c,B/�6� sin��s,+ + �s,−� ,

�B4b�

O−1�x� =
i

�a
ei�2��c+/�3−�c,A/�2+�c,B/�6� sin��s,+ − �s,−� .

�B4c�

Note that we have not considered the triplet superconduc-
tivity order parameters. Indeed, they naturally possess the
same charge part as the singlet superconductivity operators,
and only differ by their spin part. Since the spin part is more
conveniently treated within the non-Abelian Bosonization
formalism �see Sec. IV D�, it is not necessary to give an
explicit expression of the triplet operators here, since they
can be obtained from the expression of the operators �B4� in
non-Abelian Bosonization by the substitution tr�g�→ tr�g��.
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2. Charge-density waves

Besides superconductivity, one can also expect to observe
charge-density wave order to develop at low temperature in a
quasi-1D system. The various charge-density wave order op-
erators, labeled by their ordering momentum vector, are de-
fined as

O�2kF0
,0��x� = �

�

�R,0,�
† �L,0,�, �B5�

O�2kF1
,0��x� = �

�

�R,1,�
† �L,1,�, �B6�

O�2kF−1
,0��x� = �

�

�R,−1,�
† �L,−1,�, �B7�

O�kF0
−kF1

,Ky��x� = �
�

�R,0,�
† �L,−1,�, �B8�

O�kF0
−kF1

,−Ky��x� = �
�

�R,0,�
† �L,1,�, �B9�

O�2kF1
,2Ky��x� = �

�

�R,1,�
† �L,+1,�, �B10�

O�2kF1
,−2Ky��x� = �

�

�R,1,�
† �L,−1,�. �B11�

We have considered only the charge-density wave operators
of the form �R,m,�

† �L,m�,�, as those of the form �R,m,�
† �R,m�,�

are currents that cannot develop quasi-long-range order.
The corresponding Bosonized expressions of these

charge-density wave order parameters are easily obtained
and read

O�2kF0
,0��x� =

− i

�a
ei�2��c+/�3−2�c,A/�6� cos �2�s,0, �B12�

O�2kF1
,0��x� =

1

2�a
ei�2�c+/�3−�c,A+�2/3�c,B��

�

ei���s,+−�s,−�1,�−1,�, �B13�

O�2kF−1
,0��x� =

1

2�a
ei�2�c+/�3+�c,A+�2/3�c,B��

�

ei���s,++�s,−�−1,�1,�, �B14�

O�−kF0
−kF1

,Ky��x� =
1

2�a
ei�2�c+/�6−�1/�2���cA+�cA�+�3/�6���cB−�cB���

�

ei��−�1/2���s,++�s,−−�s,+−�s,−�−��s,0−�s,0/�2��0,�−1,�, �B15�

O�−kF0
−kF1

,−Ky��x� =
1

2�a
ei�2�c+/�6+�1/�2���cA+�cA�+�3/�6���cB−�cB���

�

ei��−�1/2���s,+−�s,−−�s,++�s,−�−��s,0−�s,0/�2��0,�1,�, �B16�

O�2kF1
,2Ky� =

i

2�a
ei�2��c+/�3+�cA/�2+�cB/�6��

�

ei���s,++�s,−�,

�B17�

O�2kF1
,−2Ky� =

i

2�a
ei�2��c+/�3−�cA/�2+�cB/�6��

�

ei���s,+−�s,−�.

�B18�

APPENDIX C: EQUIVALENCE OF BOSONIZATION
CONVENTIONS

In this Appendix, we discuss a general case of 1D fermi-
ons with N “flavors” since the results are of more general
applicability than the nanotube with three bands at the Fermi
level that we have considered in this paper. The Bosonized
representation of fermion operators used in condensed-
matter literature amounts to writing:29,69,71,95

�R,n =
1

�2�a
e−i�R,n�x�R,n, �C1�

�L,n =
1

�2�a
ei�L,n�x�L,n, �C2�

where

��R,n�x�,�R,n��x��� = i�	n,n� sgn�x − x�� , �C3�

��R,n�x�,�R,n��x��� = − i�	n,n� sgn�x − x�� , �C4�

��R,n�x�,�L,n��x��� = 0, �C5�

and the Majorana fermion operators �,n satisfy

�,n,��,n�� = 2	�,nu�	n,n�. �C6�

In the field-theoretical literature, an apparently different
Bosonized representation is used:80,96,97
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�R,n =
1

�2�a
e−i�̃R,n�x�n, �C7�

�L,n =
1

�2�a
ei�̃L,n�x�n, �C8�

where this time

��̃R,n�x�,�̃R,n��x��� = i�	n,n� sgn�x − x�� , �C9�

��̃L,n�x�,�̃L,n��x��� = − i�	n,n� sgn�x − x�� , �C10�

��̃R,n�x�,�̃L,n��x��� = i�	n,n� �C11�

and the Majorana fermion operators n satisfy

n,n�� = 2	n,n�. �C12�

While in the condensed-matter Bosonization for a given fla-
vor the right and left Bosonic fields are made commuting and
there is one Majorana fermion associated with the left mover
and another Majorana fermion associated with the right
mover, in the field-theoretical representation, there is only
one Majorana fermion for each flavor. The price to pay for
this is to make the commutator of the chiral fields nonzero.
An application of this representation in condensed-matter
physics is the derivation of the Bosonized form of the
doubled Ising model.80,81,83

To show that these two representations are in fact equiva-
lent, let us introduce the conjugate variables Qn and Pn such
that

�Qn,�̃�,n��x�� = 0, �C13�

�Pn,�̃�,n��x�� = 0, �C14�

�Qn,Pm� = i�	n,m, �C15�

and let us write

�̄R,n = �̃R,n −��

2
�Qn − Pn� , �C16�

�̄L,n = �̃L,n +��

2
�Qn + Pn� . �C17�

We have ��̄R,n ,�̄L,n�= i�−���Qn , Pn�− �Pn ,Qn�� /2=0. Then
the fermion operators are rewritten as

�R,n =
1

�2�a
e−i�̄R,n�x�ei��/2�Qn−Pn�n, �C18�

�L,n =
1

�2�a
ei�̄L,n�x�ei��/2�Qn+Pn�n, �C19�

and one has

ei��/2�Qn−Pn�nei��/2�Qn+Pn�n = ei��/2�Qn+Pn�nei��/2�Qn−Pn�ne−��/2��Qn+Pn,Qn−Pn�,

=− ei��/2�Qn+Pn�nei��/2�Qn−Pn�n. �C20�

Therefore we can define a set of Majorana fermion operators

R,n = ei��/2�Qn−Pn�n, �C21�

L,n = ei��/2�Qn+Pn�n �C22�

which satisfy the commutation relations �C6�. As a result, the
representation �C18� and the representation �C7� are equiva-
lent to the representation �C1�.

It is well known that one can also define Bosonization
using nonchiral fields65 �n ,�n given by

�n =
1

2
��L,n + �R,n� , �C23�

�n =
1

2
��L,n − �R,n� . �C24�

In the case of the Bosonization procedure �C1�, the nonchiral
fields have the commutation relation

��n�x�,�m�x��� = 0, �C25�

���x�n,�m�x��� = 0, �C26�

���x�n,�m�x��� = − i
�

2
	n,m sgn�x − x�� . �C27�

In the case of the bosonization procedure �C7�, the non-
chiral fields can be defined similarly but they have the com-

mutation relation ��̃�x�n , �̃m�x���=−i�	n,m��x−x��, where �
is the Heaviside function. The relation between the two sets
of chiral fields is
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�̃n�x� = �n�x� +��

2
Qn, �C28�

�̃n�x� = �n�x� +��

2
Pn. �C29�

An interpretation of Qn is that it is proportional to an
operator counting the number of fermions �both right and left
moving� of type n. Pn is the proportional to the phase con-
jugate to this fermion number, and thus must be compacti-
fied.

Note that if we perform a rotation on the fields �n and �n,
this rotation preserves the commutation relations �C25�. This
is a crucial property. It also preserves the commutation rela-
tions in the case of field-theoretic Bosonization, and obvi-
ously it preserves the relation of commutation of the zero
modes P and Q. Therefore one always goes from the
condensed-matter convention to the field-theoretical conven-
tion by using the same shift of the nonchiral fields �C28� by
zero modes.

When converting products of two fermion operators from
the condensed-matter convention to the field-theoretical con-
vention, the following rules apply: R/L,nR/L,n�→nn� for
different species n�n� and for a given species n:

e−i�R,nR,nei�L,nL,n → iei��̃L,n−�̃R,n� = iei2�̃n,

ei�R,nR,nei�L,nL,n → − iei��L,n−�R,n� = − iei2�̃n. �C30�

We close this section with two remarks. First, the field-
theoretical representation can be understood naturally on a
semi-infinite system extending to +�, with an open boundary
condition at the origin:98 the origin is then sent to −� to
recover an infinite system. The nonzero value of the commu-
tator of the right- and left-moving field possesses then the
physical interpretation of left movers being reflected into
right movers at −�. As a second remark let us note that when
applying the condensed-matter Bosonization to the double
Ising model, one finds that the operator cos � does not have
the same commutation with the fermion field as the products
of Ising disorder fields,81 whereas this relation is satisfied in
the field-theoretical Bosonization. The reason for this differ-
ence can be inferred from our first remark: the construction
of the product of disorder fields as a string is made for a
system with an open boundary condition at the origin. This
boundary condition is included from the start in field-
theoretical Bosonization but not in the condensed-matter
Bosonization. Thus when using condensed-matter Bosoniza-
tion, Klein factors must appear in the expression of the prod-
ucts of the Ising disorder fields as a function of cos �.
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