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The possibility for detecting energy entanglement in normal metal–superconductor junctions is examined.
We prove that two electrons in a NS structure originating from the same Cooper pair are entangled in the
energy subspace. This work follows previous works where spin entanglement was studied in similar circuits.
The device consists of a superconducting beam splitter connected to two electronic Mach-Zehnder interferom-
eters. In each arm of the interferometers, energies are filtered with coherent quantum dots. In contrast to
previous studies of zero-frequency cross-correlations of electrical currents for this system, attention is drawn to
finite-time measurements. This allows one to observe two-particle interference for particles with different
energies above and below Fermi level. Entanglement is first characterized via the concurrence for the two-
particle spatial density matrix. Next, we formulate the Bell inequality, which is written in terms of finite-time
noise correlators, and thereby we find a specific set of parameters for which entanglement can be detected.
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I. INTRODUCTION

Entanglement is the building block of quantum informa-
tion processing schemes.1 In recent years, it has generated
considerable excitement in the mesoscopic physics and nano-
physics community. Over the years, electronic analogs of
optical setups have been conceived in order to probe en-
tanglement between electrons. In the context of electron
transport, entanglement was first described theoretically2,3 in
forked normal metal–superconductor devices revealing posi-
tive noise cross-correlations.4 Then entanglement in such de-
vices was quantified via the Bell inequality test.5

In all these schemes a superconductor injects Cooper pairs
in two metallic arms, or in quantum dots connected to leads.
When two electrons are emitted from the superconductor,
they either get into the same lead or in opposite leads. The
resulting zero frequency noise correlations between the two
normal arms will have a tendency to be negative in the
former process due to the partition noise of Cooper pairs.
The latter process, also called crossed-Andreev process, is
the source of entanglement, and leads to positive noise cor-
relations. Indeed, the Cooper pair is transmitted as a singlet
state, and it is entangled both in spin and in energy.

The detection of spin entanglement has been addressed on
several occasions for ideal devices6,7 and with the assump-
tion that parasitic effects are present.8 In optics, a standard
test for studying the degree of entanglement of two photons
is to perform a Bell/Clauser Horne inequality test, in a coin-
cidence measurement. This test allows one to probe the non-
local nature of quantum mechanics: are the two particles in
an entangled state? In contrast, in condensed matter physics,
experiments are often performed in a stationary state, with
constant currents flowing at the output. Nevertheless, in Ref.

5 it was shown that a Bell inequality test9 can be expressed
in terms of zero frequency noise cross-correlations at the
output. Subsequently, similar Bell inequality tests were pro-
posed for orbital entanglement in a superconducting setup,10

in normal metal devices,11,12 and in quantum Hall
systems.13,14

Reference 2 proposed that some constraints should be im-
posed on a plain superconducting-normal metal fork4 in or-
der to probe entanglement. Energy filters where added on
each side �Fig. 1�a��, selecting positive/negative energies de-
pending on the side. An incoming hole thus could only be
reflected as an electron in the opposite branch, yet the spin
degree of freedom was untouched. Energy entanglement was
also proposed2 using spin filters instead of energy filters �Fig.
1�b��. Except for the characterization of positive noise corre-
lations which constitutes a symptom of entanglement, so far
no quantitative test of this entanglement has been reached.

FIG. 1. �a� Normal metal–superconducting fork with energy fil-
ters selecting electron �+E� on the left side and selecting holes
�−E� on the right side. �b� Same fork, but this time with spin filters,
leaving the possibility of energy entanglement as both electrons and
holes �with a definite spin for each side� can propagate in both
branches.
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Recent advances in quantum optic experiments on
momentum-phase entanglement15 led to experimental real-
ization of such techniques as two-particle teleportation,16 the
purification protocol for polarization entangled state,17 and
the full Bell-state analysis.18 All of the above provide addi-
tional motivation for us to reexamine the question of energy
entanglement.

The purpose of this work is to explain how energy en-
tanglement can be detected in normal metal–superconducting
forks. Although the setup which we propose is built from
elementary building blocks of mesoscopic physics, it is
rather elaborate. We thus emphasize that our main goal is to
show whether energy entanglement detection is plausible
from a theoretical standpoint.

The paper is organized as follows. Section II gives a basic
description of the setup, which is composed of a supercon-
ducting fork connected to two Mach-Zehnder �MZ� interfer-
ometers. Sections III and V describe the calculation of the
two-particle density matrix and electrical current cross-
correlations in the context of scattering theory for this nor-
mal metal–superconductor setup. Section IV describes the
entanglement characterization via the concurrence of the
density matrix. Section VI develops the Bell inequality
analysis in terms of electrical currents.

II. DESCRIPTION OF THE SETUP

We now present a setup �Fig. 2�, which is able to test
energy entanglement via the violation of Bell inequalities.
We use a normal metal fork connected to a superconductor.
The leads connected to the arms of this fork are assumed to
have a quasiparticle mean free path larger than the size of the
setup: in this ideal version of the setup, backscattering is
absent. A possibility would be to use electrostatically defined
quantum wires on semiconductor heterostructures, assuming
that the interface between the two-dimensional electron gas
and the superconductor can be controlled. The two leads con-
nected to the injection fork �center of Fig. 2� are each at-
tached to two other forks �left and right of Fig. 2�, which
filter the particles according to their positive/negative energy,
measured with respect to the chemical potential of the super-
conductor. This energy filtering can in principle be realized
via a double barrier structure forming an electronic Fabry-
Perot interferometer. An example of such a filter was dem-

onstrated in a “which path detection” experiment at the
Weizmann Institute19 where one arm of the devices con-
tained a coherent quantum dot.

Next, the two forks on the right and on the left are recon-
nected, forming MZ interferometers. The paths on each arm
of such interferometers have equal length, and the two beam
splitters are assumed to be symmetrical. Later on in this pa-
per, we shall consider the measurements of current cross-
correlations performed between different contacts A1, A2, B3,
and B4 of these two interferometers. Note that, in this sug-
gested geometry of the setup, there is no absolute need for
spin-filters, contrary to what was suggested in Ref. 2 and
illustrated in Fig. 1�b�. As we shall see below, if the interface
between the injecting fork and the superconductor is opaque,
the two constituent electrons of a Cooper pair are split be-
tween the right and left sides and the cross-correlation signal
is positive, as in a photon coincidence measurement.

The idea of this experiment is that two electrons, which
originate from a Cooper pair in the superconductor, once on
the normal metal side, have energies which are symmetric
with respect to the chemical potential of the superconductor.
In principle they can be filtered in a way that an electron
with energy above this Fermi level always gets into the upper
arms of the interferometers �energy +�0, leads uA and uB in
Fig. 2� or it gets into the lower arms of interferometers oth-
erwise �energy −�0, leads dA and dB in Fig. 2�. That is, two
electrons being split at the injection superconducting fork
�center of Fig. 2� always end up in the right upper and the
left lower arms of the interferometers or in the right lower
and the left upper ones.

This situation is very similar to the phase-momentum en-
tanglement in quantum optics. Indeed, an experimental non-
locality test for photons was achieved by Rarity and Tapster
using two MZ interferometers.15 Two photons with different
wavelengths were generated during a down-conversion pro-
cess, and subsequent recombination of the beams allowed us
to perform a correlation measurement. We find that this
quantum optics experiment can be translated for and applied
to electronic devices. As we shall see, in our condensed mat-
ter analog, which uses charged particles, the Bell inequality
violation can be tuned by varying the magnetic fluxes within
interferometers �electrons gain extra phases e±i�a/2 and e±i�b/2

in the lower �upper� arms of the interferometers�.
In the quantum optics experiment15 the momentum direc-

tion of the down-converted photons is allowed to separate
the photons and to let them recombine at the beam splitters,
provided that a single beam splitter can be reached only by
photons with equal frequencies. This property is essential for
the two-particle interference. In our proposal the particles,
which are reaching the last beam splitters �recombination of
the beams� along different paths, have different energies, so
it is in principle possible to achieve “which path” informa-
tion and therefore to destroy the interference. We propose to
use measurements on short enough time scales so that it is
not possible to resolve the energy of the particle �energy/time
Heisenberg principle�. We claim that the two-particle inter-
ference and the nonlocal properties of quantum mechanics
can be detected in this ideal setup.

FIG. 2. Setup for measuring energy entanglement from a normal
metal–superconducting fork. The superconductor emits Cooper
pairs in the ballistic region. The electrons from a pair are then spit
on the first fork. Then the particles are filtered according to their
energy. The amplitudes for particles with energies above and below
Fermi level are combined at the last beam splitter, in close analogy
with the optical setup �Ref. 15�.
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III. CALCULATION OF THE DENSITY MATRIX

In order to analyze the properties of the injected electrons,
we calculate the two-particle density matrix for quasiparti-
cles caught right after energy filters �in leads uA, dA and uB,
dB�:

g��� ,x�� = Tr��̂�̂
�1�
† �xi���̂�2�

† �xj���̂�2
�xj��̂�1

�xi��; �1�

here we have written the whole matrix with nondiagonal
elements, and the indexes � describe the spins part of the
density matrix, and orbital indexes i=uA ,dA and j=uB ,dB
describe the lead where the particle is caught. In practice,
only diagonal elements with xi=xi� and xj =xj� can be mea-
sured, but our task is to analyze the amount of entanglement
which is implicit in such a matrix, therefore nondiagonal
elements play a crucial role.

In our calculations we follow the scattering theory ap-
proach developed in Refs. 20 and 21, and later applied to NS
systems with Andreev scattering.22 For background purposes,
the reader is referred to Refs. 23 and 24. Here we follow
closely the notations of Ref. 25. For simplicity, we consider
ballistic quasi-one-dimensional quantum wires without back-
scattering. The transport in this system is governed by the
properties of Andreev reflection and normal reflection of
electrons and holes. So it is useful to perform Bogoliubov
transformation �see Ref. 26� for the annihilation operator of a
particle at a position x with up/down spin �= ±1:

�̂i,��xi,ti� =
1

�2�
�
j,�
�

0

+	

dE� uij��xi�
�
ve

j�E�
ĉj���E,ti�

− �
vij�

* �xi�
�
vh

j �E�
ĉj�−�

+ �E,ti�	 . �2�

The states uij� or vij� correspond to wave functions of an
electron or a hole scattered in lead i, due to a quasiparticle of
type �=e ,h incoming from lead j. Operators ĉj���E� and
ĉj��

+ �E� satisfy standard Fermi statistic relations. ve
j�E�

=
ke
j�E� and vh

j �E�=
kh
j �E� are velocities of electrons and

holes in lead j.

The evolution of particle states uij� and vij� is described
by Bogoliubov–de Gennes equations, which can be written
as

�−

2

2m

�2

�x2 − �S + V�x�	uij��x� + ��x�vij��x� = Euij��x� ,

�3a�

�+

2

2m

�2

�x2 + �S − V�x�	vij��x� + �*�x�uij��x� = Evij��x� .

�3b�

The pair potential ��x� should be calculated self-
consistently, but, for simplicity, in our calculation it corre-
sponds to the superconducting gap � in the bulk of the
superconductor �x0�, and it is zero in the normal leads
�x�0�.

In a normal ideal lead ��x�=0 and V�x�=0, Bogoliubov
–de Gennes equations �3a� and �3b� reduce to a Schrodinger
equation for free electrons and holes. Solutions of the form
eike

Nx for electrons and eikh
Nx for holes are chosen, where ke

N

=�2m��S+E� /
 and kh
N=�2m��S−E� /
 are wave vectors

for electrons and holes.
Electrons and holes that originate from a particle of type

� in lead j and scattered into lead i are described by

uij��xi� = �ij�e�e+ike
Nxi + Sij

e��k�
j

ke
Ne−ike

Nxi, �4a�

vij��xi� = �ij�h�e−ikh
Nxi + Sij

h��k�
j

kh
Ne+ikh

Nxi. �4b�

Here we have the opposite sign for momenta of electrons and
holes, which is due to the symmetry of Bogoliubov–de
Gennes equations. For simplicity, we introduced a notation
Sij

�� for a scattering-matrix element expressing the amplitude
of an outgoing particle of type � in lead i due to an incident
particle of type � in lead j. In general, these amplitudes
depend on the quasiparticle energies.

We linearize the wave vectors in energy in the exponents,
and then take them equal to kF in preexponential factors. We
substitute all the equations into Eq. �1� and obtain

g��� ,x�� =
1

�hvF�2 �
k,l,m,n

�
0

+	

. . . �
0

+	

dE1 ¯ dE4 �5�

��
ĉk�1�
† �E1,ti��cl�2�

† �E2,tj��ĉm�2
�E3,tj�ĉn�1

�E4,ti��ui�k
* �xi��uj�l

* �xj��ujm�xj�uin�xi�� �6�

+ 
ĉk�1�
† �E1,ti��ĉl−�2�

�E2,tj��ĉm−�2

† �E3,tj�ĉn�1
�E4,ti���2��2ui�k

* �xi��v j�l�xj��v jm
* �xj�uin�xi� �7�

+ 
ĉk�1�
† �E1,ti��ĉl−�2�

�E2,tj��ĉm�2
�E3,tj�ĉn−�1

† �E4,ti���2��1ui�k
* �xi��v j�l�xj��ujm�xj�vin

* �xi� �8�

+ 
ĉk−�1�
�E1,ti��ĉl�2�

† �E2,tj��ĉm−�2

† �E3,tj�ĉn�1
�E4,ti��a1��2vi�k�xi��uj�l

* �xj��v jm
* �xj�uin�xi� �9�
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+ 
ĉk−�1�
�E1,ti��ĉl�2�

† �E2,tj��ĉm�2
�E3,tj�ĉn−�1

† �E4,ti���1��1vi�k�xi��uj�l
* �xj��ujm�xj�vin

* �xi� �10�

+ �
ĉk−�1�
�E1,ti��ĉl−�2�

�E2,tj��ĉm−�2

† �E3,tj�ĉn−�1

† �E4,ti���1��2��2�1vi�k�xi��v j�l�xj��v jm
* �xj�vin

* �xi��; �11�

here the summation over indexes k, l, m, and n implies a
summation over lead indexes and types of particles—e or h.

We consider the case where all normal leads are biased
with the same voltage V. With these assumptions, the density
matrix takes the form �see Appendix�:

g��� ,x�� = ��1�1�
��2�2�

Gi�iGjj�
* − ��1�2�

��2�1�
Gi�jGij�

*

+ I�1�2
I�1��2�

Fi�j�Fij
* , �12�

where we have used a notation for a matrix: I�1�2
= i�̂y and �̂y

is a Pauli matrix. We compute this density matrix at locations
taken in the leads of the interferometers: uA, dA, uB, and dB
�see Fig. 2�. We thus define indices i and i� which can take
the values uA or dA and indexes j and j� equal to uB or dB. We
also use a notation for the two-point correlation functions:

Gij�xi,xj,tj − ti� =
1

hvF
�

k
�

−	

+	

dEfk�E��uik
* �xi�ujk�xj��e−iE�tj−ti�,

�13a�

Fij�xi,xj,tj − ti� =
1

hvF
�

k
�

−	

+	

dEfk�E��uik
* �xi�v jk�xj��e−iE�tj−ti�.

�13b�

Up to now, we have not specified the transmission prop-
erties of the combined normal metal fork/superconductor
plus energy filtering forks. For the parametrization of the
beam splitter connected to the superconductor we take a scat-
tering matrix with real amplitudes described in Ref. 27:

USL0R0
= �− �a + b� �� ��

�� a b

�� b a
 , �14�

with the free parameter 0���
1
2 describing the transmission

probability between the top lead and the right and left arms.
In general, there are two possible choices of
parametrization:2 a=

�1−2�−1
2 , b=

�1−2�+1
2 , or alternatively a

and b can be exchanged. Here we use the first parametriza-
tion: it corresponds to a good transmission for electrons
�holes� entering from the left lead of the fork and exiting
from the right one, and vice versa. We claim that the excess
parts of all the correlators are the same if one chooses the
opposite convention. This unitary matrix �14� is assumed to
be the same for electrons and holes, which implies a weak
dependence of the scattering matrix on energy. Due to mul-
tiple Andreev reflection on the NS boundary and a phase
shift in the superconducting lead �S�, the transmission ampli-
tudes change in an analogous manner to a Fabry-Perot inter-

ferometer. Assuming ideal Andreev reflection on the bound-
ary of the superconductor: rSS

eh =rSS
he =e−i arccos E/�, and e−i�

=rSS
ehe−iE2S/vF
 one can get

A = rLL
�� = rRR

�� = a −
��a + b�e−2i�

1 − �a + b�2e−2i� , �15a�

B = tLR
�� = tRL

�� = b −
��a + b�e−2i�

1 − �a + b�2e−2i� , �15b�

C = rLL
�� = rRR

�� =
�e−i�

1 − �a + b�2e−2i� , �15c�

D = tLR
�� = tRL

�� =
�e−i�

1 − �a + b�2e−2i� . �15d�

Here A and B are reflection and transmission amplitudes for
particles of the same type ���� with incident and final lead to
the left �L� and to the right �R� from the fork, and C and D
are reflection and transmission amplitudes for the case of
changed types of particles ����. Although notations A, B, C,
and D are not used here, they are introduced for later conve-
nience, in Eqs. �35a� and �35b�.

The energy filtering forks are chosen “ideal”: electrons
with energies above the superconducting chemical potential
pass without reflection through the upper arm, while elec-
trons whose energy is below this chemical potential go in the
lower arm of the fork �left side of Fig. 2�. The following
transmission amplitudes are thus chosen for the left energy
filtering fork:

rLL
ee �±E� = 0, �16a�

ruu
ee�+ E� = 0, ruu

ee�− E� = − 1, �16b�

rdd
ee�+ E� = + 1, rdd

ee�− E� = 0, �16c�

tuL
ee �+ E� = 1, tuL

ee �− E� = 0, �16d�

tdL
ee �+ E� = 0, tuL

ee �− E� = − i . �16e�

Here the amplitudes for hole type quasiparticles follow from
Eq. �A16� and the same is correct for the right fork exchang-
ing L on R. This is a very simple parametrization, and the
only constraint is the unitary conditions. In a real experiment
there may be a more complicated dependence on energy
leading to imperfections, but this question goes beyond the
scope of the paper.

Now the global scattering amplitudes are calculated in a
simple way because of our assumption of no backscattering
in the leads. For example,
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SuLdL

ee = ruu
ee + tuL

ee SLL
ee tLu

ee . �17�

These amplitudes allow one to calculate the pair correla-
tion functions from Eqs. �13a� and �13b�, and the results may
be divided into an equilibrium and an excess part:

Gij�xi,xj,�tij� = Gij
eq�xij

+,�tij� + Gij
ex��xij,�tij� , �18�

the former depends on the sum of coordinates and describes
the Fermi correlations within normal leads, the latter depends
on the difference of coordinates and describes the particles
injected from the superconductor. The most interesting con-
tributions for the discussion below are the excess contribu-
tions which dominate at low temperatures �T�eV�:

Gij
ex = − �ij

�2

2�1 − ��2e−ikF�xije±ieV/2vF
��xij+�tij�

�

sin
eV

2vF

��xij + �tij�

���xij + �tij�
, �19a�

Fij
ex = �i j̄

��1 − 2�

2�1 − ��2e+ikFxij
+
e±ieV/2vF
��xij+�tij�

�

sin
eV

2vF

��xij + �tij�

���xij + �tij�
, �19b�

where i=uA ,dA and i=uB ,dB; � is the scattering parameter of
Eq. �14� of the superconducting fork; �xij =xj −xi and �tij
= tj − tj; and �ij ��i j̄� is equal to unity �zero� only if i and j are
simultaneously u or d.

IV. CONCURRENCE FOR THE DENSITY MATRIX

We now turn to the calculation of the concurrence, as
defined in the work of Wootters,28 but adapted to our trans-
port geometry. With the additional assumption of simulta-
neous measurements �all the times ti in Eq. �19b� are the
same� and equal coordinates on the same sides of the setup
�xuA

=xdA
and xuB

=xdB
, up to the precision �x�vF�V� the

whole density matrix simplifies to

g��� ,x�� = g0
2���1�1�

��2�2�
�i�i� j j� − ��1�2�

��2�1�
�i�j�ij�e

±i�g2��x�

+ I�1�2
I�1��2�

ai�j��i j̄e
±i�f2��x�� , �20�

where

g0 =
�2

2�1 − ��2

eV

2�vF

, g��x� =

sin
�x

2vF�V

�x

2vF�V

, �21�

f��x� =
�1 − 2�

�
g��x� , �22�

where �V=
 /eV. For i= j�=u and i�= j=d, the parameter �
= eV

vF
�x which appears in Eq. �20� is taken with a plus sign,

for i= j�=d and i�= j=u with a minus sign, and in all other
cases it is zero.

The two-particle density matrix describing the spin en-
tangled state of two quasiparticles inside a superconductor
has been already studied in Ref. 29 for a bulk supercon-
ductor. In contrast, our analysis allows one to study energy
entanglement in a condensed matter setting with normal
metal leads, which are essential for the diagnosis of entangle-
ment. Since we are not interested in the spin entanglement
here, we trace Eq. �20� over spin degrees of freedom, and we
obtain a density matrix which depends only on orbital de-
grees of freedom:

gi,j;i�,j� = Tr� g��� ,x�� = 2g0
2N�̂AB, �23�

�̂AB =
1

N�
2 − g2 0 0 0

0 2 + f2 �f2 − g2�e+i� 0

0 �f2 − g2�e−i� 2 + f2 0

0 0 0 2 − g2
 ,

�24�

where the normalization factor N=8+2f2−2g2 is chosen so
that the trace for this matrix is unity. The parameter g2�1. It
turns out that the parameter �= eV

vF
�x does not appear in the
final result for the entanglement measure.

One of the possible expansions �on the basis of pure
states� for such a mixed state may be written in the space of
the pseudospin �↑ �= �u� and �↓ �= �d�:

�̂AB =
1

N
��f2 − g2����+��
��+�� + �2 − g2�Î

+ 2g2��↑A↓B�
↑A↓B� + �↓A↑B�
↓A↑B��� , �25�

where Î is the unity matrix, and the only entangled term in
the sum corresponds to the state:

���+�� =
1
�2

��↑A↓B� + e+i��↓A↑B�� . �26�

Note that the density matrix of Eq. �1� describes only a part
of the whole wave function for all electrons, and this is
why it corresponds to a mixed state; but for the case of an
opaque injection fork ��→0, f /g→	�, the state of the
orbital degrees of freedom is represented by the wave func-
tion �26�, which corresponds to one of the maximally en-
tangled states. Thus, according to the so-called “monogamy
of entanglement,”30 these degrees of freedom cannot be en-
tangled to any other ones, and one can say that these particu-
lar two electrons are maximally entangled.

We now calculate the concurrence for �̂AB—an entangle-
ment measure proposed by Wootters et al.:28

C � max�0,��1 − ��2 − ��3 − ��4� , �27�

where �1��2��3��4�0 are the eigenvalues of the matrix
�AB�̄AB, and the “spin-flipped” matrix is the following:

�̄AB = �̂y
�A�

� �̂y
�B��AB

* �̂y
�A�

� �̂y
�B�. �28�

So for our setup the concurrence takes the form
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C = max�0,
f2 − 2

4 + f2 − g2� , �29�

or using the ratio between f and g:

C = max�0,
�1 + ��g2 − 2�

g2 + 4�
� , �30�

where �= �2

1−2�−�2 is the transparency parameter of the super-
conducting fork.

The concurrence, which depends on the coordinate differ-
ence �x

vF�V
, is shown in Fig. 3 choosing �=0.001. It takes

values between 0 and 1, the former corresponds to absence
of entanglement, and the latter to maximal entanglement.
Actually, for � going to zero and �x�vF�V the concurrence
is maximal, which means that all the excess cross-correlation
noise is due to the pairs of electrons in ���+�� maximally
entangled orbital state.

A natural question to ask is whether entanglement can
occur between orbital and spin degrees of freedom. Starting
from the general density matrix of Eq. �20�, it is possible to
perform a partial trace with respect to a single spin and a
single pseudospin, in order to test this property. We do not
show this computation, but instead mention only the result:
the concurrence is strictly zero. In any case, if no trace of the
density matrix �20� is performed, we conjecture that the
joined state of spin and orbital degrees of freedom can be a
hyperentangled state.31 In quantum optics these states can be
used, for instance, to measure the concurrence directly.32

V. CALCULATION OF CURRENT
CROSS-CORRELATIONS

The theoretical calculation of the concurrence cannot eas-
ily be tested experimentally: it would require quantum state

tomography, which represents a considerable challenge in
experimental mesoscopic physics. A theoretical proposal for
tomography has been been presented recently33 which relies
on the measurement of zero frequency noise cross-
correlations. Because of the considerable experimental chal-
lenge of tomography and because we wish to compare dif-
ferent diagnoses for quantum mechanical nonlocality, here
we present a Bell violation test based on the analysis of short
time current cross-correlations. Here we are interested in the
same quantities for the specific setup of Fig. 2, evaluated at
points in the leads: A1, A2, B3, and B4.

We continue using scattering theory for NS systems. Our
starting point is the current operator in lead i:

Îi�x� =
ie


2m
�
�
� ��i,�

+ �x�
�x

�i,��x� − �i,�
+ �x�

��i,��x�
�x

� ,

�31�

this operator is expressed in terms of electron and hole wave
functions:

Îi�x� =
ie


2mvF

1

2�

�

0

+	

dE1�
0

+	

dE2

��
m,n

�
�

��uin�xuim
* − �xuinuim

* �ĉm�
† ĉn�

− ��vin
* �xuim

* − �xvin
* uim

* �ĉm�
† ĉn−�

†

− ��uin�xvim − �xuinvim�ĉm−�ĉn�

+ �vin
* �xvim − �xvin

* vim�ĉm−�ĉn−�
† � , �32�

where we have replaced the sums over j and � by a single
sum other index m. The terms with index m �n� corresponds
to energy E1 �E2�. The chemical potential �S of the super-
conductor is large compared to any other energy scale in the
system, thus the assumption ke=kh=kF is made here, which
explains the presence of the Fermi velocity vF in Eq. �32�.

The calculation of current correlations is rather standard,
but it is reproduced in the Appendix so that the notations of
the present work can be understood. Compared to the calcu-
lation of the density matrix of Sec. III, the characterization of
the scattering properties of the setup of Fig. 2 now requires
one to include the MZ interferometers. The magnetic fluxes
which are applied on the left ��A� and on the right ��B�
interferometers define the Bell angles:

�A = 2�
�A

�0
, �B = 2�

�B

�0
. �33�

In analogy with spin entanglement of electrons,5,9 where
electrons are detected via spin filters with arbitrary polariza-
tion, the phase angles �A and �B allow one to rotate the

pseudospins with respect to the Ẑ axis, which is defined in a
basis �↑ �= �u� and �↓ �= �d�. Indeed, electron wave functions
gain a factor e±i�A,B/2 in the upper/lower arms of the interfer-
ometers, which is equivalent to a rotation by the angle �A,B
in the pseudospin basis. Next, the use of a symmetric beam
splitter, which is described by a unitary matrix,

FIG. 3. �Color online� Plot of the maximal Bell inequality vio-
lation Bmax �middle green plot� as a function of the deviation from

the coincidence of the current measurements: �=
xB−xA

vF�V
, for the case

of small measurement times: ��
 /eV. Bmax is sandwiched between
the plot for concurrence C �lower red plot� for the orbital part of the
two-particle density matrix, �̂AB, and the plot for the function,
�1+C2

2 �upper blue plot�. The dotted line at 1 /�2 marks the critical
value above which the Bell inequality is violated. The transmission
probability is taken to be ���2=0.001.
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U =�
1
�2

i
�2

i
�2

1
�2
 , �34�

performs a rotation of such pseudospin around the Ŷ axis by
an angle � /2. In the end, the latter measurements at the
points A1 ,A2 �left side of Fig. 2� and B3 ,B4 �right side of Fig.
2� correspond to a Stern-Gerlach type of measurement along

the Ẑ axis for the initial pseudospins. These transformations
on both the right and the left orbital pseudospins allow one to
perform standard Bell type correlation measurements.

For constructing the scattering amplitudes, we use A, B,
C, and D from Eqs. �15a�–�15d� and the elements of the
beam splitter scattering matrix Eq. �34�. The following con-
vention is used for the angle signs: an electronlike quasipar-
ticle on the left �right� side gains a phase e+i�A/2 �e−i�B/2�,
when it propagates in the clockwise direction through the
upper arm of the interferometer. For anticlockwise move-
ment the sign in the exponent is opposite. For a holelike
quasiparticle moving clockwise in the lower arm the sign is
also opposite.

Note that this convention applies to the case where the
direction of the magnetic field is opposite in different inter-
ferometers. This situation may seem hard to realize experi-
mentally, however, it was chosen only for convenience: in
the contrary situation �with both fields in the same direction�
one simply needs to change the sign of an angle in Eq. �33�.

For a given type of particle �electron or hole�, the scatter-
ing matrices have dimensions of 4�4, which corresponds to
the number of leads attached to the superconductor: recall
that here we are working in the Andreev regime. In order to
write the matrices, we use the amplitudes in Eqs.
�15a�–�15d�, an angle ��=�A−�B, and unitary matrices for
scattering amplitudes of the beam splitters in Eq. �34�:

S���+ E� =�
A

2
+

1

2

iA

2
−

i

2

B

2
e−i��/2 iB

2
e−i��/2

iA

2
−

i

2
−

A

2
−

1

2

iB

2
e−i��/2 −

B

2
e−i��/2

B

2
e+i��/2 iB

2
e+i��/2 A

2
+

1

2

iA

2
−

i

2

iB

2
e+i��/2 −

B

2
e+i��/2 iA

2
−

i

2
−

A

2
−

1

2

 ,

�35a�

for ���:

S���+ E�

= −�
C

2

iC

2

D

2
e−i��/2 iD

2
e−i��/2

iC

2
−

C

2

iD

2
e−i��/2 −

D

2
e−i��/2

D

2
ei��/2 iD

2
ei��/2 C

2

iC

2

iD

2
ei��/2 −

D

2
ei��/2 −

iC

2

C

2

 .

�35b�

In these matrices, the terms ± 1
2 and + i

2 in the scattering am-
plitudes originate from the full reflection of a particle ap-
proaching an ideal energy filter, as specified by Eqs.
�16b�–�16e�, which is adjusted not to allow the transmission
of a particle with this particular energy. The amplitudes for
energies below Fermi level �−E� are calculated using the
property of Eq. �A16�.

Note that here we did not include explicitly factors such
as e±ke/hl, which correspond to phases accumulated by par-
ticles propagating through a lead of length l. These phases
can be included as an overall multiplication factor on
the scattering matrix in Eqs. �B5a�–�B5c�, depending on
the lead coordinate. Here the assumption that both arms
of any given MZ interferometer have the same length is im-
plicit. We also neglect the length S of the injecting lead
of the superconducting fork, and we assume an ideal NS
boundary in the pure Andreev reflection regime with ampli-
tudes: rSS

eh =rSS
he =e−i�=−i.

From the scattering amplitudes of Eqs. �35a� and �35b� we
obtain the noise cross-correlations, which may be separated
in an excess and an equilibrium part:

C�xi,ti;xj,tj� = Cex�xi,ti;xj,tj� + Ceq�xi,ti;xj,tj� ,

the excess part �first term� depends on voltage and originates
from the first term in Eqs. �B5a�–�B5c�, the equilibrium part
�second term� is voltage independent and it occurs from the
second term �delta functions� in Eqs. �B5a�–�B5c�.

It is then natural to introduce time scales which charac-
terize the time spacing between electron wave packets, as
well as the time of flight of particle through the wires: �V
=
 /eV, �ij

eq= ��xj�+ �xi�� /vF and �ij
ex= ��xj�− �xi�� /vF. In addi-

tion, �ij = tj − ti. So the cross-correlations at finite temperature
T reads

Cij
ex��ij,�ij

ex,T� =
2e2

h2

�2�1 − 2� − �2�
8�1 − ��4

��1 + �− 1�i+j cos��� − ��ij − �ij
ex�/�V��

�4 sin2 ��ij − �ij
ex�

2�V

��T�2

sinh2��T��ij − �ij
ex�/
�

,
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Cij
eq��ij,�ij

eq,T�

= −
2e2

h2

1 + �1 − 2� − �2 + �1 − 2���
8�1 − ��2

�� ��T�2

sinh2��T��ij + �ij
eq�/
�

+
��T�2

sinh2��T��ij − �ij
eq�/
�� . �36�

For zero temperature �kBT�eV�, the correlators reduce to

Cij
ex��ij,�ij

ex,0� =
2e4V2

h2

�2�1 − 2� − �2�
8�1 − ��4

sin2� �ij − �ij
ex

2�V
	

� �ij − �ij
ex

2�V
	2

��1 + �− 1�i+j cos��� − ��ij − �ij
ex�/�V�� ,

�37�

Cij
eq��ij,�ij

eq,0� = −
2e2

�2��2

1 + �1 − 2� − �2 + �1 − 2���
8�1 − ��2

� � 1

��ij + �ij
eq�2 +

1

��ij − �ij
eq�2� . �38�

Note that the equilibrium noise describes Fermi correla-
tions within the normal leads. At low temperatures it decays
as an inverse square with large distances from the supercon-
ducting fork to the detectors. So assuming large distances, xi,
xj �vF�V, only excess noise is relevant, and this corresponds
to the excess noise due to Cooper pairs injected from the
superconductor. The dependence on magnetic fluxes in the
excess noise occurs via ��=�A−�B. One should therefore
attempt to construct a Bell type inequality with these mea-
surable quantities.

VI. BELL TEST FOR CURRENT CORRELATIONS

In optics, the Bell inequality test is typically expressed in
terms of correlators of number operators. This reflects the
fact that a coincidence measurement on two photons is per-
formed. In Refs. 2 and 5, these number correlators were ex-
pressed in terms of current noise cross-correlators, which
contain an irreducible contribution and a reducible contribu-
tion. The reducible contribution is proportional to the prod-
uct of the average current in each lead. The irreducible
contribution dominates for short observation times. Subse-
quently, the Bell inequality can be written in terms of irre-
ducible zero frequency noise cross-correlators between the
different arms of the device. A slightly different point of
view was proposed in Ref. 10 and discussed in Ref. 12: As
long as the spacing in time between electron wave packets
e / 
I� is large compared to the size of these wave packets

 /eV, successive pairs do not mix so that all information
about entanglement is included in the zero frequency noise
correlators.

In this paper, we suggest a Bell type inequality for finite
time cross-correlations of electrical currents. It is similar in

spirit as in the work of Refs. 11 and 12, where Bell inequali-
ties are directly expressed in terms of current correlators, yet
we shall see that our analysis is not necessarily restricted to
short times. We thus follow the derivation of Ref. 5 for the
Bell inequality violation with particle numbers

�E��a,�b� + E��a,�b�� + E��a�,�b� − E��a�,�b��� � 2,

�39�

where

E��a,�b� =

�N1��� − N2�����N3��� − N4�����

�N1��� + N2�����N3��� + N4�����

, �40�

and with �a, �b angles corresponding to different magnetic
fluxes in the left and the right interferometers. � is the dura-
tion of the measurement in time. Particle number operators
in different leads A1–B4 are defined from current operators:
Ni�t ,��=�t

t+�dt�Ii�t��. We perform density matrix averaging
and time averaging:


Ni���Nj���� = lim
T→	

1

2T
�

−T

+T

dt
Ni�t,��Nj�t,����. �41�

We define the irreducible current cross-correlator at given
positions and times t1 and t2:

Cij�t2 − t1,xi,xj� = 
Îi�xi,t1�Î j�xj,t2�� − 
Îi�xi,t1��
Î j�xj,t2�� ,

�42�

and we write the Bell term in the following form:

E��a,�b� =

�
0

�

dt1�
0

�

dt2�C13 − C14 − C23 + C24� + �−

�
0

�

dt1�
0

�

dt2�C13 + C14 + C23 + C24� + �+

,

�43�

where �± originate from the reducible part, which is typi-
cally proportional to the average currents:

�± = �2�
I1� ± 
I2���
I3� ± 
I4�� . �44�

The coordinates xi and xj in Eq. �42� correspond to posi-
tions of the detectors counted from the superconducting fork,
and � corresponds to duration of measurements.

For the case of symmetrical beam splitters used in inter-
ferometers and a symmetrical superconducting fork the av-
erage electrical currents are identical: 
Ii�= e2V

h
�2

�1−��2 , so �−

=0 and

�+ = 4�2e2V

h

�2

�1 − ��2 . �45�

In this case the Bell term reads
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E��a,�b�

=

�
0

�

dt1�
0

�

dt2

sin2 t2 − t1 + �

2

�t2 − t1 + ��2 cos��� − �t2 − t1 + ���

�
0

�

dt1�
0

�

dt2

sin2 t2 − t1 + �

2

�t2 − t1 + ��2 + ��2

;

�46�

here �=
xB−xA

vF�V
. For simplicity, we consider the case where

x1=x2=xA and x3=x4=xB, assuming a precision �x�vF�V,
i.e., the detectors of each party A and B are equidistant from
the superconducting fork. Moreover, �=� /�V, �= �2

1−2�−�2 ,
��=�a−�b. So there are three dimensionless parameters: �,
which describes the fact that the measurements performed by
A and B parties are not in coincidence; �, the duration of
these measurements; �, the parameter describing the trans-
port properties of the superconducting fork �recall that it de-
pends only on �, which is the probability of a particle to go
from the injection lead into one of the two leads�; and �� is
the difference between the Bell angles introduced in Eq.
�33�.

In our analysis of the Bell inequality of Eq. �39� we con-
sider two simple cases, for both of them the Bell term in Eq.
�40� satisfies E��a ,�b��cos��a−�b�.

(i) The case of coincident measurements: �=0. In Fig. 4
we show the resulting dependence of the maximal Bell in-
equality violation Bmax �which is the maximum of the left
side of the Bell inequality over the Bell angles� over the
measurement time �. From Fig. 4 it is clear that for the case
of a superconducting fork with very bad transmission ��
→0, �→0�, the violation of Bell inequality is possible only
for ��2�V. We again stress that long measurement times

destroy the interference between trajectories with different
energies, so that the Bell inequality cannot be violated.

In our analysis, the maximal violation depends on the
transmission properties of the superconducting fork: the
closer � is to zero the better the violation. The Bell inequal-
ity in Eq. �39� may be violated maximally �with �→0� for
�→0, and it is not violated at all for ���max= �3−�2� /7
�0.22 �this corresponds to ���max= ��2−1� /4�. This fact
may by explained in the following way: the irreducible
cross-correlations vanish when �→ ±	 �see Ref. 25�. In-
deed, the term of Eq. �37� equals zero for �0=�2−1�0.42.

(ii) The case of short time measurements: �→0. Here we
vary two parameters: � is the transparency of the supercon-
ducting fork, which defines the parameter �= �2

1−2�−�2 , and �

=
xB−xA

vF�V
, which characterizes the lack of coincidence of the

measurements by the two parties A and B. Again, the best
violation occurs for �→0, and there is a dependence of
maximal violation on transmission properties of the fork,
which are described by �. The Bell inequality in this case is
the following:

Bmax = � sin2 �

2

sin2 �

2
+ ��2� �

1
�2

, �47�

where we have chosen the Bell angles: ��ab=��ab�=��a�b
=� /4−�, ��a�b�=3� /4−�, for which the violation is maxi-
mal. The dependence of these angles on � is due to the
presence of � under the cosine in Eq. �46�.

In Fig. 3 we plot the dependence of the left-hand side of
the Bell inequality on �, for a certain �=0.001. There is
again a threshold in the transparency �max=0.22, below
which the violation is possible. For a transmission probabil-
ity below the threshold �max the Bell inequality in Eq. �47�
can be violated for ���V���2−1� /��0.6�V /�, while it re-
mains inviolated in narrow regions separated by intervals:
h

eV .
To compare the entanglement measure and the maximal

Bell inequality violation, we plot in the same Fig. 3 the con-

currency C as well as the function �1+C2

2 . It is known34 that
for mixed states Bmax is confined between these two values

�for the case of pure states Bmax��1+C2

2 �, which is clearly
seen from the plots of Fig. 3. According to our results, there
may occur situations where the state on the detectors is en-
tangled �C�0�, but there is no Bell inequality violation
�Bmax�1/�2�.

From these two examples of �i� �=0 and �ii� �=0 we
conclude that the violation of Bell inequality occurs for small
measurement times: ��2�V and for measurements which are
close to being coincident: �xA−xB� /vF�0.6�V /�. We per-
formed numerical integrations of Eq. �46� for arbitrary val-
ues of �� ,� ,��. The results for �=0.001 and �=�max�0.1
are shown on two-dimensional plots in Figs. 5 and 6. Note
that the plot of Fig. 3 represents a slice at �=0 of Fig. 5,
while Fig. 4 represents a slice at �=0 of the same figure.
One notices that the oscillations of Bmax are damped as � is

FIG. 4. Plot for the maximal Bell inequality violation Bmax as a
function of the measurement time: �=� /�V. The analysis is per-
formed in terms of current cross-correlations, the deviation from the

coincidence of measurement times �=
xB−xA

vF�V
is taken to be zero. The

maximally possible violation is normalized to 1, thus the limit for
Bell inequality violation is 1 /�2. The transmission probability � is
the same as in Fig. 3.
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increased, and, as mentioned above, that violation is less
likely when � is increased because the time window is too
large. Such oscillations in the Bell parameter were detected
previously in the case of normal metal forks.12 It is obvious
from Fig. 6 that, when the transparency of the superconduct-
ing fork is larger than the critical threshold, there is no vio-
lation of the Bell inequalities, although oscillations are still
noticeable.

VII. CONCLUSION

We have proposed a setup measuring energy entangle-
ment for pairs of quasiparticles originating from single Coo-
per pairs in a superconductor. The use of energy filters allows

one to separate the particles according to their energy and to
obtain orbitally entangled pairs of electrons, which are then
analyzed. This electronic setup and its detection apparatus is
an analog of the momentum-phase entanglement performed
in quantum optics.15 �a� Two electrons from a Cooper pair
correspond to the two photons generated by down-
conversion, which have different wavelengths. Indeed, An-
dreev reflection, or the emission of a Cooper pair, also in-
volves two electrons with different energies. �b� In optics the
spatial separation of the photon beams follows automatically
from the down-conversion process. Here, we used energy
filters to perform such separation and considered short time
measurements to allow interference of particles with slightly
different energies. It is because the interference occurs be-
tween different energies that the “usual” zero-frequency
analysis is not applicable here. This is why we developed a
Bell inequality test for finite-time cross-correlations of elec-
trical currents.

First, we proposed a density matrix analysis for quasipar-
ticles emitted from a superconductor and separated in energy.
This allows one to calculate the concurrence, one of the most
widely used entanglement measures. Second, we showed
how energy entanglement can be transformed into orbital
entanglement and how it then can be tested via electrical
current cross-correlations. For such cross-correlations, we
constructed a Bell type inequality and showed what set of
parameters leads to its violation.

The noise cross-correlations between the left and the right
reservoirs were derived in the context of the scattering theory
for normal metal–superconductor hybrid circuits. Indeed, in
stationary quantum transport these correlations enter explic-
itly the Bell inequality test. Here the manifestation of en-
tanglement is found by adjusting the phases accumulated by
electrons and holes in the conductor leading to the beam
splitter �one can change magnetic fluxes within MZ interfer-
ometers by varying the magnetic field through them or by
varying their area, like it was done in experiments with a
single interferometer35�. For a device consisting of perfect
elements �filters, beam splitters,¼�, maximal Bell violation
is obtained for a short time of measurements: ��2�V and
small deviations from coincident measurements between the
left and the right reservoirs: �xA−xB� /vF�0.6�V /� for rela-
tively small transparency � of the superconducting fork. We
found that the violation of the Bell inequality depends on
transmission properties of the fork, and it occurs for �
��max�0.22.

A clear issue is to inquire whether such energy entangle-
ment can be detected in experiments. Our setup for generat-
ing entangled electron pairs has many components, each of
which in principle can be built, for instance, using gated
semiconductor heterostructures. The design of a controllable
normal metal–superconducting fork represents a challenge
but, recently, work in this direction has been promising.36 All
leads are assumed one-dimensional, and are assumed to have
little or no backscattering as, for instance, in the experiments
of Ref. 37. The energy filtering fork can be constructed from
an ordinary fork with coherent quantum dots at two ends of
it. The dots are adjusted to have transmission peaks sym-
metrically above and below the Fermi level. For better filter-
ing these dots must have levels with an energy spacing larger
than the bias voltage.

FIG. 5. �Color online� Plot for the maximal Bell inequality vio-
lation Bmax depending both on the deviation from coincidence of

current measurements: �=
xB−xA

vF�V
and the measurement time ��

�
 /eV. The maximal value is normalized to unity. The transmis-
sion probability is taken to be ���2=0.001. Violation above the
critical value of 1 /�2 occurs only at separate peak locations.

FIG. 6. �Color online� Same as Fig. 5, except that the transmis-
sion probability is taken to be critical: �=�max�0.1. The whole
surface lies below the critical value 1/�2, so there is no violation of
the Bell inequality.
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Because of the complexity of this device, there are other
complications which should be considered. The setup is
composed of two MZ interferometers, which are both subject
to dephasing.38 The fluctuations in the gate voltages could
trigger fluctuations in the path length, which consequently
would add an uncertainty to the phase of electrons and holes,
which enter the noise correlation expression of Eq. �37�. As
long as the phase fluctuations are controlled �small compared
to a phase angle �, meaning that the fluctuations in path
length are below the Fermi wavelength �F�, the Bell inequal-
ity will continue to be violated. Furthermore, a considerable
precision is required in the building of such an interferom-
eter: the two arms need to have equal length, up to a distance
vF�V�F.

In conclusion, we have proposed the first energy entangle-
ment setup for testing the nonlocality properties of electrons
in nanostructures. With the previous work on spin entangle-
ment using NS junctions, this latest work emphasizes the
analogy with quantum optics. Our main goal here has been to
show that energy entanglement can in principle be analyzed
�concurrence� or detected �noise cross-correlation analysis�
in this somewhat ideal device, using concepts and circuitry
borrowed from mesoscopic physics.
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APPENDIX A: DENSITY MATRIX

Starting from Eqs. �5�–�11� we average two annihilation
operator products as


ĉm�
† �E1�ĉn��E2�� = fm�mn��E1 − E2� , �A1�

where fm= fFD�E�eV� for electrons and holes, with fFD�E�
the Fermi-Dirac distribution. Averages of four operators are
calculated using Wick’s theorem:


ĉk�1�
† �E1,ti��ĉl�2�

† �E2,tj��ĉm�2
�E3,tj�ĉn�1

�E4,ti��

= fk�E1�f l�E2���1��1
��2��2

�kn�lm��E1 − E4���E2 − E3�

�e−iE1�ti−ti��/
e+iE2�tj−tj��/


− fk�E1�f l�E2���1��2
��2��1

�km�ln��E1 − E3���E2 − E4�

�e−iE1�tj−ti��/
e+iE2�tj�−ti�/
. �A2�

The resulting calculation leads to appearance of three terms
with different spin symmetry:

g��� ,x�� =
1

�hvF�2�
k,l
�

0

+	 �
0

+	

dE1dE4 �A3�

����1�1�
��2�2�

†�ui�k
* �xi��uik�xi���ujl�xj�uj�l

* �xj���

�e−iE1�ti−ti��e+iE2�tj�−tj�fk�E1�f l�E2�‡� �A4�

+ �ui�k
* �xi��uik�xi���v jl

* �xj�v j�l�xj���

�e−iE1�ti−ti��e−iE2�tj�−tj�fk�E1��1 − f l�E2�� �A5�

+ �vi�k�xi��vik
* �xi���ujl�xj�uj�l

* �xj���

�e+iE1�ti−ti��e+iE2�tj�−tj��1 − fk�E1��f l�E2� �A6�

† + �vi�k�xi��vik
* �xi���v jl

* �xj�v j�l�xj���

�e+iE1�ti−ti��e−iE2�tj�−tj��1 − fk�E1���1 − f l�E2��‡ �A7�

− ��1�2�
��2�1�

†�ui�k
* �xi��ujk�xj���uil�xi�uj�l

* �xj���

�e−iE1�tj−ti��e+iE2�tj�−ti�fk�E1�f l�E2�‡ �A8�

+ �ui�k
* �xi��ujk�xj���vil

*�xi�v j�l�xj���

�e−iE1�tj−ti��e−iE2�tj�−ti��1 − f l�E2�� �A9�

+ �vi�k�xi��v jk
* �xj���uil�xi�uj�l

* �xj���e
+iE1�tj−ti��

�e+iE2�tj�−ti��1 − fk�E1��f l�E2� �A10�

† + �vi�k�xi��v jk
* �xj���vil

*�xi�v j�l�xj���

�e+iE1�tj−ti��e−iE2�tj�−ti��1 − fk�E1���1 − f l�E2��‡ �A11�

+ I�1�2
I�1��2�

†�ui�k
* �xi��v j�k�xj����uil�xi�v jl

* �xj��

�e−iE1�tj�−ti��e+iE2�tj−ti�fk�E1�f l�E2�‡ �A12�

− �ui�k
* �xi��v j�k�xj����vil

*�xi�ujl�xj��

�e−iE1�tj�−ti��e−iE2�tj−ti�fk�E1��1 − f l�E2�� �A13�

− �vi�k�xi��uj�k
* �xj����uil�xi�v jl

* �xj��

�e+iE1�tj�−ti��e+iE2�tj−ti��1 − fk�E1��f l�E2� �A14�

�† + �vi�k�xi��uj�k
* �xj����vil

*�xi�ujl�xj��

� e+iE1�tj�−ti��e−iE2�tj−ti��1 − fk�E1���1 − f l�E2��‡� ,

�A15�

where we have used the matrix notation ��i= ±1�: I�1�2
= i�̂y and �̂y is a Pauli matrix.

We consider the Andreev reflection at the NS boundary to
be ideal �no normal reflection�, and the reflection amplitude
reads rA=e−i arccos E/�. According to the properties of Bogoli-
ubov’s equations the scattering amplitudes must satisfy the
equations:

Sij
hh�E� = Sij

ee*�− E�, Sij
he�E� = − Sij

eh*�− E� , �A16�
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from this, one can derive the property

vij��x,E� = �− 1��e�u
ij�̄

* �x,− E� ,

uij��x,E� = �− 1��h�v
ij�̄

* �x,− E� , �A17�

and using the identity fh�E�=1− fe�−E� one can simplify
Eqs. �A3�–�A15�:

g��� ,x�� = ��1�1�
��2�2�

Gi�iGjj�
* − ��1�2�

��2�1�
Gi�jGij�

*

+ I�1�2
I�1��2�

Fi�j�Fij
* , �A18�

where

Gij�xi,xj,tj − ti� =
1

hvF
�

k
�

−	

+	

dEfk�E��uik
* �xi�ujk�xj��e−iE�tj−ti�,

�A19a�

Fij�xi,xj,tj − ti� =
1

hvF
�

k
�

−	

+	

dEfk�E��uik
* �xi�v jk�xj��e−iE�tj−ti�.

�A19b�

APPENDIX B: CURRENT CROSS-CORRELATIONS

It is convenient to define the following matrix elements:

Aimin�E,E�,x� = uin�E�,x��xuim
* �E,x� − �xuin�E�,x�uim

* �E,x� ,

�B1a�

Bimin�E,E�,x� = vin
* �E�,x��xvim�E,x� − �xvin

* �E�,x�vim�E,t� ,

�B1b�

Cimin�E,E�,x� = uin�E�,x��xvim�E,x� − �xuin�E�,x�vim�E,x� .

�B1c�

These matrix elements have a useful symmetry:

Aimin�E,E�,x� = − Ainim
* �E�,E,x� , �B2a�

Bimin�E,E�,x� = − Binim
* �E�,E,x� . �B2b�

The answer for an average current is the following:


Îi�x,t�� =
ie

2�mvF
�

0

+	

dE

��
m

�Aimim�E,E,x�fm + Bimim�E,E,x��1 − fm�� .

�B3�

The calculation of irreducible cross-correlation gives


Îi�xi,ti�Î j�xj,tj�� − 
Îi�xi,ti��
Î j�xj,tj��

=
e2
2

2m2vF
2

1

�2�
�2�
0

+	

dE�
0

+	

dE��
m,n

†fm�E��1 − fn�E���e−i�E−E���tj−ti�/
�Aimin�E,E�,xi�

+ Bimin
* �E,E�,xi���Ajmjn

* �E,E�,xj� + Bjmjn�E,E�,xj�� + fm�E�fn�E��e−i�E+E���tj−ti�/
Cinim
* �E�,E,xi��Cjnjm�E�,E,xj�

+ Cjmjn�E,E�,xj�� + �1 − fm�E���1 − fn�E���e+i�E+E���tj−ti�/
Cimin�E,E�,xi��Cjmjn
* �E,E�,xj� + Cjnjm

* �E�,E,xj��‡ . �B4�

The averages of products for two and four annihilation op-
erators were calculated using Wick’s theorem in Eq. �A2�.

In Eq. �B4� all terms like in Eqs. �B1a�–�B1c� may be
written in terms of the scattering matrix elements sij

��:

Aik�,il��E,E�,x� = 2ikFsik
e�*�E�sil

e��E��e+i�E−E��x/vF


− 2ikF��e��e�ik�ile
−i�E−E��x/vF
,

�B5a�

Bik�,il��E,E�,x� = 2ikFsik
h��E�sil

h�*�E��e−i�E−E��x/vF


− 2ikF��h��h�ik�ile
+i�E−E��x/vF
,

�B5b�

Cik�,il��E,E�,x� = 2ikFsik
h��E�sil

e��E��e−i�E+E��x/vF


− 2ikF��h��e�ik�ile
+i�E+E��x/vF
,

�B5c�

Here we have linearized the k-vectors in energy, thus we are
not interested in the quadratic behavior of the spectrum near
Fermi level and hence we neglect the dispersion of electron
and hole wave packets.
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