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This work presents a theoretical study of the excitonic properties of Si1−xGex cylindrical quantum wires
surrounded by a Si matrix, considering two possibilities for the conduction band alignment, type I and type II.
The effect of nonabrupt interfaces between these materials on the exciton energies is investigated: an interfacial
region of 15 Å in a 50 Å wide Si0.85Ge0.15�Si0.7Ge0.3� type-I �type-II� quantum wire leads to an exciton energy
blueshift of the order of 10 meV. The excitonic behavior under an applied magnetic field parallel to the wire
axis is also studied: exciton energies in type-I wires are weakly affected, while for type-II wires, increasing the
field causes the electron angular momentum to change almost periodically, giving rise to Aharonov-Bohm
oscillations of the exciton ground state energy.
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I. INTRODUCTION

Over the past few years, many researchers have studied
one-dimensional nanoscale structures such as quantum wires
�QWR�, due to their potential applications in electronic de-
vices, e.g, transistors, diodes, lasers, and biological sensors,
and also because their chemistry is quite easily manipulated.
1–3 Many groups have used several growth techniques to syn-
thesize QWR composed of two single-crystalline semicon-
ductor materials, forming core-sheath, core-multishell, and
block-by-block heterostructures.4–6 In particular, recent pa-
pers have reported the growth of Si/SiGe QWR by using
chemical vapor deposition and vapor liquid solid deposition
methods, which exhibit enhanced electrical transport proper-
ties making possible high-mobility devices.4,7

Experimental studies on Si1−xGex quantum wells, wires,
and dots surrounded by a Si matrix have indicated that such
heterostructures exhibit a peculiar characteristic of their band
structure: the valence band always forms a well for holes,
whereas there are two possible kinds of band alignment for
electrons, depending on the Ge concentration x. It has been
shown that for low Ge concentrations, the conduction band
forms a well �type I� for electrons, while at higher concen-
trations it may form a barrier �type II�.8–12

There are many papers in the literature related to excitons
in type-II quantum dots and wells. Although the exciton con-
finement in type-II wires is also an interesting problem, there
have been few theoretical works on this subject. Rorison13

was one of the first ones to present theoretical studies of
excitonic properties of type-II QWR systems, in which exci-
ton binding energies and oscillator strengths were calculated
for GaAs/AlAs QWR, for both finite and infinite confining
barrier cases, using a variational approach and a self-
consistent method. However, his work did not study how the
excitonic properties of these systems may be affected by the
presence of external magnetic fields. Recently, the problem
of exciton confinement was addressed for type-II planar
quantum dots under an applied magnetic field, perpendicular
to the dot plane, by Janssens et al.,14 where interesting re-
sults were found about the angular momenta of carriers in
the ground state for high fields. The influence of magnetic
fields on the exciton states in QWR has also been widely
studied,15–19 but mainly in type-I systems.

Another important topic is the influence of an interfacial
layer between Si and SiGe on the calculation of exciton en-
ergies, since in almost all recent experimental publications,
the composition analysis of the wires indicates the presence
of nonabrupt interfaces between materials. The problem of
graded interfaces in low dimensional systems, such as quan-
tum dots and quantum wells, has been widely studied, and
significant alterations of the exciton energy spectrum have
been demonstrated.20–22

The aim of the present work is to study the excitonic
properties of Si1−xGex cylindrical quantum wires embedded
in a silicon matrix. We consider the two known possibilities
for band alignment in these systems, type I and type II, for
appropriate Ge compositions. Taking into account the exis-
tence of graded interfaces, the effective mass approximation
is used to calculate the exciton energies. The electron and
hole behaviors under an applied magnetic field parallel to the
wire axis are also investigated, showing Aharonov-Bohm
�AB� oscillations of the electron ground state energies of
type-II Si/Si1−xGex QWR.

II. THEORETICAL MODEL

Considering the symmetry of the problem, circular cylin-
drical coordinates are used, taking � as the confinement di-
rection and z as the free direction. Using the symmetric
gauge for the vector potential, A= 1

2B�ê�, the Hamiltonian
that describes the system is given by25
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where i=e, h, mi
� is the in plane �-dependent effective mass

of each charge carrier, �� is the electron-hole reduced mass
in the z direction, and �c=eB /mi

� is the cyclotron angular
frequency. We use the relative coordinates z= �ze−zh� and �
=�e−�h. The potential Vi��i� includes the heterostructure po-
tential Vi

het��i� and the Coulomb interaction between elec-
trons and holes.
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To take into account the existence of a graded interface
between materials, the Ge concentration � of the alloy is
assumed to be �-dependent, similar to the model of Freire et
al.23 For a ���i� increasing linearly in the interfacial region,
one has

���i� = 	 x , 0 � �i 	 �1;

x − ��i − �1�x/w , �1 � �i 	 �2;

0, �i 
 �2,



where �1 and �2 are the limits of the interfacial region and
w=�2−�1 is the interface thickness. Vi

het��i� and mi
���i� are

then expressed as functions of ���i�: Vi
het��i�=Qi��1���i�

+�2�2��i�� and mi
���i�= 
mi,Ge���i�+mi,Si�1−���i���, where �1

and �2 are interpolation parameters and Qi is the band offset.8

The eigenfunction which is the solution in the � coordi-
nate is chosen as �1/�2��eil�, where l=0, ±1, ±2, . . ., is the
angular momentum. Using a variational approach, we take a
Gaussian-type “orbital” wave function24 as the solution in z


�z� =
1

��
� 2

�
�1/4

exp�−
z2

�2� , �2�

with � as the variational parameter that minimizes the exci-
ton binding energy.

For type-I systems, it is used for the exciton wave func-
tion ���e ,�h ,� ,z�= �1/�2��eil��e��e��h��h�
�z�, where �e

and �h are normalized one particle wave functions, in the
Schrödinger equation with the Hamiltonian of Eq. �1�,
namely ���Hexc���=Ex�� ���. Thus,

Ex = ��e�He��e� + ��h�Hh��h� + ���He-h��� , �3�

where the one particle Hamiltonian Hi is given by
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with i=, e, h, and He−h is the electron-hole interaction Hamil-
tonian
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This procedure leads to a differential equation in � for each
carrier �Hi−Ei��i��i�=0, which is solved by a discretization
method25 with an uniform mesh, and the binding energy fol-
lows from Eb= ���He−h���, which yields
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where dV=�ed�e�hd�hd� dz and the integral of the Coulomb
term is carried out over a cylinder with an infinite interval
along the z direction. Since 
�z� is a variational function

such that in Eq. �2�, one can solve analytically the first term
integral

�
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and the second term assumes the form
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which is simplified, leading to the final expression for the
binding energy
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where a=−2��e
� −�h

� �2 /� and K0�x� is the modified zero-order
Bessel function of the second kind.26 These integrals are cal-
culated numerically, and the exciton energy is obtained by
Eexc=Egap+Ee+Eh−Eb.

In type-II systems, since the potential for the electron has
a step form, the electron is no more confined by the band
mismatch of the wire materials, but it is just bounded by the
Coulomb interaction. This implies that solving the
Schrödinger equation for the electron in the absence of a
Coulomb interaction leads to an electron energy Ee=0. To
solve the type-II problem, one takes the same form of
���e ,�h ,� ,z� used previously for the type-I case in
Hexc���=Ex��� and multiplies it by the complex conjugate
of the �h and z dependent parts of the wave function.27

Therefore, the Schrödinger equation with the one particle
Hamiltonian of Eq. �4� is solved first for the hole, so that

Ex��e� = �He + Eh + ��h
�He-h��h
����e� . �10�

Once the hole wave function �h is known, the electron
effective Coulomb potential due to the presence of the hole is
calculated, yielding the following differential equation for
�e��e�:

�He + Eh + I��e���e��e� = Ex�e��e� , �11�

where I��e�= ��h
�He−h��h
� is the effective Coulomb po-
tential, given by

I��e� = −
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which is simplified such as in the type-I case,26 yielding to
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The parameter � is adjusted to minimize the exciton en-
ergy Ex, as in the variational method developed for type-I
wires, and now the exciton binding energy is given by Eb
=Eh−Ex.

III. RESULTS AND DISCUSSIONS

The binding and total exciton energies in Si/Si1−xGex
QWRs are calculated for several wire radii and interface
thicknesses, with x=0.15 �type I� and x=0.30 �type II�. The
material parameters of the alloy were obtained by an inter-
polation of pure Si and Ge parameters, which are listed in
Table I.

A. Type-I Si/Si0.85Ge0.15 QWR

Figure 1 shows the binding energy �top� and the ground
state energy �bottom� of e-hh excitons as a function of the
Si/Si0.85Ge0.15 QWR radius �type-I band alignment� for sev-

eral interface thicknesses. It can be observed that Eb in-
creases when the wire radius increases up to a maximum at
R�50 Å, and after this it decreases. For wire radii below
this value, the inclusion of a graded interface shifts down the
binding energies, while the opposite occurs for a larger radii.
This can be explained by considering that reducing the wire
radius makes the system seem like bulk Si, where the bind-
ing energies are naturally lower.28 For a 30 Å wire radius
with interface thickness of w=15 Å, the binding energy is
reduced by �25%, while for wire radii greater than 50 Å
there is an average increase in the binding energies of about
5.5%, in relation to the abrupt case.

On the other hand, the ground state exciton energy always
decreases with the increase of the wire radius, and the inclu-
sion of a graded interface shifts up this energy, especially for
thin wires, where these shifts may reach about 30 meV. For
a 50 Å radius Si/Si0.85Ge0.15 QWR with interface thickness
of w=15 Å, the increase in the total exciton energy is about
10 meV in relation to the abrupt case.

The influence of applied magnetic fields on the binding
�top� and total �bottom� ground state exciton energies is pre-
sented in Fig. 2 for several values of the wire radius, for an
abrupt interface �lines� and for a w=15 Å �symbols� inter-
face thickness. As can be seen, the magnetic field does not
greatly affect these energies, giving them only small blue-
shifts of the order of 2 meV, for all values of wire radii
considered. Wires with larger radii are more affected by this
external field. These results are in good agreement with pre-
vious studies in such systems for other materials.15,29

B. Type-II Si/Si0.70Ge0.30 QWR

Figure 3�a� shows the effective potential Vef f��e�
=Ve

het��e�+ I��e� for electrons in type-II quantum wires. A

TABLE I. Selected properties of Si and Ge, which are used to
obtain values for Si1−xGex by linear interpolation �Ref. 8�.

a �Å� Eg �eV� ���0� me�m0� mhh
� �m0� mhh

�

Si 5.43 1.12 12.1 0.191 0.277 0.216

Ge 5.65 0.66 16.0 0.081 0.208 0.057

FIG. 1. Binding energy �top� and ground state energy �bottom�
of e-hh excitons in Si/Si0.85Ge0.15 type-I QWR as a function of the
wire radius, for interface thicknesses w of 0 Å �solid�, 5 Å
�dashed�, 10 Å �dotted�, and 15 Å �dashed-dotted�.

FIG. 2. Binding �top� and ground state exciton energies �bottom�
of e-hh pairs in Si/Si0.85Ge0.15 type-I quantum wires as functions of
magnetic field, with w=0 Å �lines� and w=15 Å �symbols�, for
several values of wire radius �2: 50 Å �dotted, ��, 100 Å �dashed,
��, 150 Å �solid, ��, and 200 Å �dashed-dotted, ��.
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plot of this potential as a function of � is shown in Fig. 3�b�,
where it can be clearly seen that a depression in the potential
appears due to the electron-hole Coulomb interaction, which
is responsible for the electron bound state at the silicon layer
near the Si0.70Ge0.30 wire, despite the fact that the hetero-
structure forms a barrier for this carrier.

In Fig. 4, the binding energy �top� and the ground state
energy �bottom� of e-hh excitons are plotted as a function of
the QWR radius for Si/Si0.70Ge0.30 �type-II band alignment�
wires with several interface thicknesses. The binding ener-
gies of type-II wires are lower than those of type I, which is
expected, since in type-II systems the electron and hole are
localized in different regions of space. Moreover, these en-
ergies are always reduced when the wire radius is enlarged.
This occurs because now, in the limit of very thin wires, the

system no more seems like bulk Si, but like a bulk system
with a localized impurity, since the hole is confined within
the thin wire, while the electron is bound to it on the Si layer.
For a Si/Si0.70Ge0.30 with 40 Å wire radius and w=15 Å in-
terface thickness, the increase of binding energies is about
12% in relation to the abrupt case, while the total exciton
energy is increased by about 20 meV.

Figure 5 depicts the influence of a magnetic field parallel
to the wire axis on the excitonic behavior of Si/Si0.70Ge0.30
quantum wires with abrupt interfaces for the ground and first
excited states. The split between these two states is large for
the thinner wire, but it is reduced as the wire radius in-
creases, becoming very small for a 150 Å wire radius, espe-
cially for the total exciton energy �bottom�. It is also shown
that the binding and total exciton energies in type-II wires
oscillate almost periodically as the magnetic field increases,
due to changes of the angular momentum of the electrons.
The periodicity of the electron angular momentum depends
on the wire radius. This can be explained by the fact that
only the electrons in this system are localized around the
wire, which causes the magnetic field to push the electron
towards the barrier, giving rise to a change in l in each elec-
tron state, because this is energetically more favorable. Since
the holes are localized inside the wire, they are just squeezed
towards the wire axis by the magnetic field, hence there is no
change in their angular momentum. These changes in l in-
duced by an increase of a magnetic field are analogous to the
Aharonov-Bohm effect, which has been widely studied lately
for several structures where carriers are localized around a
barrier potential, such as quantum-rings.30–32

Although type-II wires have a ringlike potential for the
electron, the periodicity of the Aharonov-Bohm oscillations
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FIG. 3. �a� Effective Coulomb potential for electrons in a type-II
Si/Si1−xGex QWR with 50 Å wire radius. �b� The plot of this po-
tential as a function of �, showing a depression near the interface
between materials.

FIG. 4. Binding energy �top� and ground state energy �bottom�
of e-hh excitons in Si/Si0.70Ge0.30 type-II QWR as a function of the
wire radius, for interfaces thicknesses w of 0 Å �solid�, 5 Å
�dashed�, 10 Å �dotted�, and 15 Å �dashed-dotted�.

FIG. 5. Binding energies �top� and total exciton energies �bot-
tom� of e-hh excitons in Si/Si0.70Ge0.30 type-II QWR as a function
of the magnetic field for 50, 100, and 150 Å wire radii, with abrupt
interfaces. Solid lines are related to ground state excitons, while
dotted lines are first excited states.
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exhibits small changes by increasing the magnetic field, in
contrast to the energy states of quantum-ring structures
where this periodicity is constant and well defined.30,31,33

There is a clear dependence of the periodicity on the sec-
tional area of the wire: the number of electron angular mo-
mentum transitions increases when the wire radius increases,
representing a lower period for a larger radius. Since the
periodicity depends on the area enclosed by the ringlike po-
tential, its variation even for a constant wire radius can also
be explained. In fact, increasing the magnetic field changes
the hole wave function, causing the effective Coulomb po-
tential to vary with the field, and consequently, the area en-
closed by the effective potential for electrons does not re-
main constant for all values of the field, implying in a change
of the periodicity of the AB oscillations.

The electron behavior in type-II wires under applied mag-
netic fields is further illustrated in Fig. 6, which shows the
average radii of the electron ground state ���e�� as a function
of the applied magnetic field, for three values of wire radius
with interface thicknesses of w=0 Å and w=15 Å. The inset
shows the exciton energies related to a 50 Å QWR radius,
for ground and first excited states, considering abrupt and
nonabrupt interfaces. Increases of the magnetic field also
give rise to oscillations in ��e�, which is expected since the
angular momentum of this carrier is changing almost peri-
odically, and wave functions for states with a larger modulus
of angular momentum are more extensive than those for l
=0. Thus, when the magnetic field pushes the electron to-
wards the Si1−xGex layer, its average radius decreases until a

change of angular momentum occurs, when l assumes a
higher modulus value, which implies a more spread electron
wave function. For magnetic fields varying from 0 up to
10 T, for a 50 Å wire radius there is just one transition,
whereas for a 150 Å wire radius there are five such transi-
tions. It also can be seen in Fig. 6 that a graded interface
affects the angular momentum transition points of AB oscil-
lations, which is expected since the inclusion of such an
interface reduces the effective radius of the quantum wire
potential. Indeed, its influence on the transition points of AB
oscillations can be observed even for larger radii. For a
150 Å wire radius with an abrupt interface, the fifth electron
angular momentum transition occurs in a magnetic field B
about 8.75 T, while for a w=15 Å interface it occurs at B
�9.4 T. For a smaller radius, 50 Å, for example, this effect
is stronger: the first transition occurs at B�5 T for an abrupt
interface, whereas for w=15 Å it occurs at B�6.4 T. An
exciton energy blueshift also appears due to the inclusion of
graded interfaces, as one can observe in the inset of Fig. 6,
which is consistent with earlier results of Fig. 4 �bottom�.

IV. CONCLUSIONS

We have investigated the excitonic properties of
Si/Si1−xGex cylindrical quantum wires with type-I and
type-II band alignments. Our results show that the existence
of a graded interface between materials gives a significant
blueshift of the exciton energies for thin wires. The presence
of a magnetic field parallel to the wire axis does not greatly
affect the ground state excitons in type-I QWR, especially
for smaller wire radii. However, such a field alters drastically
the excitonic behavior for type-II wires, since the ringlike
shape of electron states is responsible for the occurrence of
the Aharonov-Bohm effect, where the angular momentum l
of each electron state changes almost periodically by increas-
ing magnetic field, whereas the l of hole ground states re-
mains the same for all B. The periodicity of these energy
oscillations depends on the area enclosed by the electron
effective confinement potential. This explains the nonperiod-
icity of Aharonov-Bohm oscillations in such systems, since
the area of the effective Coulomb potential produced by the
hole is altered by changes of the magnitude of the external
field, which squeezes the hole wave function towards the
wire axis. For a type-II Si/Si0.70Ge0.30 QWR with 40 Å wire
radius, and w=15 Å interface thickness, the binding energies
increase about 12% in relation to the abrupt case, while the
total exciton energy is blueshifted by about 20 meV. Graded
interfaces alter the angular momentum AB periodicity even
for a larger wire radius.
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=15 Å �dashed�. Inset: Exciton energy dependence with the applied
magnetic field, for the ground and first excited states of a 50 Å
QWR radius with w=0 Å �solid� and w=15 Å �dashed�.
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