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We present a diagrammatic real-time approach to adiabatic pumping of electrons through interacting quan-
tum dots. Performing a systematic perturbation expansion in the tunnel-coupling strength, we compute the
charge pumped through a single-level quantum dot per pumping cycle. The combination of coulomb interac-
tion and quantum fluctuations, accounted for in contributions of higher order in the tunnel coupling, modifies
the pumping characteristics via an interaction-dependent renormalization of the quantum-dot level. The latter is
even responsible for the dominant contribution to the pumped charge when pumping via time-dependent
tunnel-coupling strengths.
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I. INTRODUCTION

In the absence of an applied bias voltage, a mesoscopic
conductor can sustain a dc current component if two or more
parameters of the device �for example, gate voltages� are
periodically modulated in time. Electron pumping is said to
be adiabatic if the parameter variation is slow on the scale
defined by the dwell time of the electrons. In this case the
pumped charge depends on the size and the shape of the
pumping cycle but not on its detailed time evolution, i.e., it is
of geometric nature.1 The idea of electron pumping dates
back to a work of Thouless.2 The first experiment on electron
pumping in single electron devices was performed by Pothier
et al.3 Since then much theoretical and experimental work
has been devoted to electron pumping.1,4–31 For noninteract-
ing systems the theory of adiabatic pumping, formulated by
Brouwer,4 is based on the generalization32 of the scattering
approach for quantum transport to time-dependent phenom-
ena. This formulation has been applied to study several as-
pects of pumping in noninteracting systems, such as the
study of noise and decoherence,7,10,11 the role of discrete
symmetries,9 the possibility of spin pumping,12–14 and the
effect of superconducting elements and Andreev
reflection.15–17 A diagrammatic approach was used in Refs.
18–20 to calculate the pumped charge through a noninteract-
ing system using random matrix theory in the limit of a large
number of channels in the leads. Furthermore, several works
investigate pumping by surface acoustic waves both
theoretically6 and experimentally.24 Pumping in interacting
systems has been studied much less so far. Quantum pump-
ing through a Luttinger liquid has been discussed.29 In quan-
tum dots pumping has been studied in the limit of weak
interaction,25,26 in the Kondo regime,27 as well as in the
coulomb-blockade regime.28 In Refs. 25 and 26 the pumped

charge through an open quantum dot is computed by means
of the Bosonization technique. Aono, in Ref. 27, uses the
Keldysh Green’s function formalism complemented by the
assumption that the dot retarded Green’s function takes the
noninteracting form �this holds true in the noninteracting
limit as well as in the Kondo regime�. The authors of Ref. 28
integrate numerically the master equation �in the Born-
Markov approximation� for the reduced density matrix of a
double-dot pump. Recently a general approach to pumping
through interacting quantum dots has been put forward by
relating the pumped charge to the instantaneous retarded
Green’s functions of the quantum dot.30,31

In this paper we study adiabatic pumping through inter-
acting quantum dots for temperatures much above the Kondo
temperature but much below the level spacing in the dot. In
this case a perturbative expansion in the tunnel coupling be-
tween the dot and the leads is justified. Moreover, we can
restrict ourselves to consider only one level in the dot with a
strong local repulsion in the case of double occupancy. We
aim at the understanding of the influence of coulomb inter-
action on the pumping characteristics. In order to achieve
this, we extend a diagrammatic real-time technique33 that has
been developed to describe nonequilibrium dc transport
through an interacting quantum dot. As compared to the for-
malism in our recent work,30 the perturbative approach pre-
sented here, although limited to weak tunnel-coupling
strengths, is more transparent in identifying the physical ori-
gin of the various contributions to the pumped charge. In
particular it is straightforward to relate the pumped current to
the dynamics of the average charge of the dot.

In this work we calculate the leading- and next-to-
leading-order contribution of the perturbation expansion in
the tunnel coupling to the pumped charge per pumping cycle.
We distinguish two cases: pumping by changing periodically
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either the gate voltage and one tunnel barrier or varying both
left and right tunnel barrier. Considering the first case, and
furthermore taking into account only lowest-order tunneling
processes associated with sequential tunneling, the adiabatic
pump works analogously to a peristaltic pump. The next-
order correction turns out to be only due to a time-dependent
renormalization of the dot-level position that is induced by
the combination of coulomb interaction and tunnel coupling
to the leads. Remarkably this effect is not masked by other
higher-order transport processes such as cotunneling. The
situation is even more dramatic for pumping with the tunnel
barriers. In this case, the lowest-order tunneling processes do
not give rise to any pumping. The dominant pumping mecha-
nism is, then, of higher order, namely pumping by making
use of the time-dependent level renormalization. As a conse-
quence, the gate-voltage dependence of the pumped charge
provides a transparent experimental access to probe
quantum-fluctuation effects.

The paper is organized as follows: Section II A introduces
the model of the quantum dot. The time evolution of the
system is described by a generalized Master equation in Sec.
II B and an adiabatic expansion is performed and applied to
the current pumped through the dot in Sec. II C. The expan-
sion in the tunnel coupling is further discussed in Sec. II D.
The explicit evaluation of the formulas obtained up to here is
done in Sec. II E using a diagrammatic technique. In Sec. III
results for the pumped current and the pumped charge are
presented and discussed.

II. MODEL AND FORMALISM

A. Model

We consider a single-level quantum dot with on-site cou-
lomb interaction coupled to two noninteracting leads. The
system is described by the Hamiltonian

H = Hleads + Hdot + Htun,

where Hleads, Hdot, and Htun describe, respectively, the left �L�
and right �R� leads, the dot, and tunneling between dot and
leads, and are given by

Hleads = �
k,�,�

�k�c�k�
† c�k�, �1a�

Hdot = ��t��
�

n� + Un↑n↓, �1b�

Htun = �
k,�,�

�V��t�c�k�
† d� + H.c.� . �1c�

In Eqs. �1�, c�k� �c�k�
† � is the Fermionic annihilation �cre-

ation� operator for an electron with spin �= ↑ ,↓, momentum
k, energy �k in lead �=L ,R; d� �d�

†� is the Fermionic anni-
hilation �creation� operator for an electron with spin � in the
dot; and n�=d�

†d� is the number operator for the dot elec-
trons with spin �. The coulomb interaction on the dot is
described by the on-site energy U associated with double
occupation. The leads are assumed to be in thermal equilib-

rium with the same chemical potential and to have flat bands
with constant density of states ��.

By periodically changing at least two of the system pa-
rameters, a dc current can be pumped through the dot. We
choose the level position of the dot ��t� and the tunnel matrix
elements V��t� to be time-dependent. We only allow for the
modulus, but not the phase, of V��t� to vary in time, since a
time-dependent phase would correspond to a bias voltage.
We define the time-dependent intrinsic linewidth ���t , t��
=2���V��t�V�

*�t��, the total intrinsic linewidth ��t , t��
=�L�t , t��+�R�t , t��, as well as ���t�=���t , t� and ��t�
=��t , t�. To keep all formulas transparent, we set ��1
throughout the paper.

B. Generalized master equation and adiabatic approximation

As described above we consider an interacting quantum
dot coupled to noninteracting leads. Since the leads act as
baths, it is convenient to trace out the degrees of freedom of
the noninteracting lead states to arrive at an effective de-
scription of the reduced system. In the limit of temperature
much lower than the level spacing of the dot, only one level
will contribute to transport. Therefore the Hilbert space for
the dot is four dimensional: the quantum dot can be empty,
singly occupied with a spin-up or a spin-down electron, or
doubly occupied. These states, labeled by 	= �0, ↑ , ↓ ,d�,
have energy E0=0, E↑=E↓=�, and Ed=2�+U, respectively.
In the following we use a matrix notation in the four-
dimensional Hilbert space of the dot, with boldface symbols
for vectors and matrices. The probabilities to find the dot in
the respective state are p= �p0 , p↑ , p↓ , pd�T.

The starting point of our analysis is the generalized Mas-
ter equation for the time evolution of the system,

d

dt
p�t� = 	

−


t

dt�W�t,t��p�t�� , �2�

where the matrix elements W	,	��t , t�� of the kernel W�t , t��
describe the transition from a state 	� at time t� to a state 	
at time t. For the system considered here, Eq. �2� defines the
most general kinetic equation for the dot probabilities with-
out any approximation. Off-diagonal matrix elements of the
reduced density matrix for the quantum dot, that correspond
to real superposition of different states 	�	�, do not couple
to the diagonal ones since 	 and 	� differ by a conserved
quantum number, particle number, or spin. Therefore off-
diagonal elements of the reduced density matrix do not enter
any transport quantity. Nevertheless, quantum fluctuation ef-
fects involving virtual intermediate states of the quantum dot
in higher-order processes such as cotunneling, are fully taken
into account by Eq. �2� by properly evaluating the kernel
W.34

Our goal is to describe the response of the system to slow
periodic variations of the system parameters X�t� with fre-
quency �. After waiting long enough, such that any memory
of the initial dot-state distribution p�−
� has died out, the
dynamics of the system is fully determined by the explicit
time dependence of the system parameters. The latter enters
Eq. �2� in two ways, namely by the kernel W�t , t�� being a
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functional of the system parameters X��� with �� �t� , t�, and
by the non-Markovian structure, i.e., the time derivative of
p�t� at time t depends on p�t�� at an earlier time t� at which
the system parameters had different values. In the adiabatic
regime it is possible to simplify considerably the form of the
master equation by performing an adiabatic expansion, i.e.,
an expansion in the pumping frequency �, assuming that �
is small as compared to both the energy scales that determine
the decay time of the kernel and the time integral of the
kernel �which sets the time scale of the system’s response to
the parameter’s change�. The zeroth-order, instantaneous,
term of the adiabatic expansion corresponds to freezing the
value of all system parameters, X�t�, at time t, which corre-
sponds to solving a time-independent problem. To obtain the
first-order correction we need to systematically collect all
contributions linear in the pumping frequency or, equiva-
lently, linear in the time derivative of X at time t. For this, we
perform a Taylor expansion of p�t�� around t up to linear
order,

d

dt
p�t� = 	

−


t

dt�W�t,t��
p�t� + �t� − t�
d

dt
p�t�� . �3�

Furthermore, we perform an adiabatic expansion of the
kernel W�t , t�� itself. The zeroth-order term, Wt

�i��t− t��, is
indicated with the superscript �i� for instantaneous and the
subscript t to emphasize that the system parameters X���
→X�t� are frozen at time t. It depends only on the time
difference t− t�, and only parametrically on t through X�t�.
The first-order term is obtained by linearizing the time de-
pendence of all parameters X��� with respect to the final time
t, i.e., �X���→X�t�+ ��− t� d

d�X�����=t, and retaining only lin-
ear terms in time derivatives. This linear correction to the
kernel is indicated by the superscript �a� for adiabatic,

W�t,t�� → Wt
�i��t − t�� + Wt

�a��t − t�� . �4�

Finally, we need to perform an adiabatic expansion for the
occupation probabilities in the dot,

p�t� → pt
�i� + pt

�a�. �5�

The instantaneous probabilities pt
�i� are the solution of the

time-independent problem with all parameter values fixed at
time t. They are obtained from the master equation �3� in the
stationary limit,

0 = Wt
�i�pt

�i�, �6�

together with the normalization condition eTpt
�i�=1, where

e= �1,1 ,1 ,1�T, and we have introduced the Laplace trans-
form

F�z� = 	
−


t

dt�e−z�t−t��F�t − t��

to define Wt
�i�=Wt

�i��z=0+�. The first adiabatic correction can
be obtained from Eq. �3�, using Eqs. �4� and �5�. We find

Wt
�i�pt

�a� =
d

dt
pt

�i� − Wt
�a�pt

�i� − �Wt
�i�dpt

�i�

dt
, �7�

where again Wt
�i/a� is the Laplace transform at zero frequency

and ��Wt
�i�= �� /�z�Wt

�i��z��z=0+
. Once Wt

�i/a� are evaluated and
the instantaneous probabilities pt

�i� are known from Eq. �6�,
the adiabatic corrections pt

�a� are obtained from Eq. �7� to-
gether with the normalization condition eTpt

�a�=0.

C. Pumped charge

The charge Q pumped in one cycle T=1/� is related to
the time-dependent current IL�t� flowing through the left bar-
rier by

Q = 	
0

T

IL�t�dt .

By accounting for the time evolution of the system before
time t in a similar way as done for the dot-state probabilities
above, we can express the current into the left lead as

IL�t� = e	
−


t

dt�eTWL�t,t��p�t�� , �8�

where WL�t , t��=�ppWLp�t , t��, and W�p�t , t�� includes all
processes associated with transitions where the number of
electrons �with charge e� entering reservoir � minus the ones
leaving it equals p.

It is straightforward to perform an adiabatic expansion for
Eq. �8� in the same way as for the master equation. The
instantaneous or zeroth-order level of the adiabatic expan-
sion is sufficient to describe the dc current that is driven
through the quantum dot by an applied transport voltage.33 It
is, furthermore, sufficient for modeling rectification, i.e., the
generation of a dc current component by applying an ac
transport voltage and appropriately changing some system
parameter in time. In the absence of any dc or ac transport
voltage, as considered in the present paper, the instantaneous
part of the current vanishes. In order to describe pumping,
one needs to compute the first-order adiabatic correction of
the current. Using for Eq. �8� the same procedure as for the
master equation, we find the adiabatic part of the current to
be

IL�t� = eeT
Wt
L�a�pt

�i� + Wt
L�i�pt

�a� + �Wt
L�i�dpt

�i�

dt
� . �9�

D. Perturbation expansion in tunneling

Alongside the adiabatic expansion we perform a perturba-
tion expansion in powers of the tunnel coupling strength �
for both the instantaneous and the adiabatic correction of the
kernel W, the probabilities p, and the current IL�t�. We indi-
cate the order of the perturbation expansion in � by adding a
superscript, i.e., Wt

�i�=Wt
�i,1�+Wt

�i,2�+O��3� for the instanta-
neous contribution to the kernel, and similarly for Wt

�a�. The
expansion of the instantaneous probabilities begins in zeroth
order in �, pt

�i�=pt
�i,0�+pt

�i,1�+O��2�, in order to be able to
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fulfill the normalization condition eTpt
�i�=1. By expanding

Eq. �6� in powers of �, we find that the instantaneous prob-
abilities should fulfill the two equations

0 = Wt
�i,1�pt

�i,0�, �10a�

0 = Wt
�i,2�pt

�i,0� + Wt
�i,1�pt

�i,1�, �10b�

together with the normalization conditions eTpt
�i,0�=1 and

eTpt
�i,1�=0. As discussed above, the instantaneous part of the

current vanishes in all order in � due to the absence of an
applied transport voltage.

In order to determine the adiabatic corrections to the
probabilities, we expand also Eq. �7� in powers of �,

dpt
�i,0�

dt
= Wt

�i,1�pt
�a,−1�, �11a�

dpt
�i,1�

dt
= Wt

�i,1�pt
�a,0� + Wt

�i,2�pt
�a,−1� + Wt

�a,1�pt
�i,0�

+ �Wt
�i,1�dpt

�i,0�

dt
, �11b�

with the normalization conditions eTpt
�a,−1�=0 and eTpt

�a,0�

=0. We emphasize that, in order to properly match the pow-
ers of � on the left- and right-hand side of Eq. �11�, one has
to start the expansion of the adiabatic correction of the prob-
abilities in minus first order in �, pt

�a�=pt
�a,−1�+pt

�a,0�+O���.
At first glance, such an expansion might look divergent for
the weak-coupling limit, �→0. However, in the validity
range of the adiabatic expansion everything remains well de-
fined: the adiabaticity condition requires that the energy scale
defined by the pumping frequency � is much smaller than
the tunnel-coupling strength �. Since the time derivative on
the left-hand side of Eq. �11� introduces a factor �, we see
that pt

�a,−1� scales with � /�, which is always much smaller
than 1 in the adiabatic limit.

The perturbation expansion of the adiabatically pumped
current is derived from Eq. �9� and reads

IL
�0��t� = eeTWt

L�i,1�pt
�a,−1�, �12a�

IL
�1��t� = eeT
Wt

L�i,1�pt
�a,0� + Wt

L�i,2�pt
�a,−1� + Wt

L�a,1�pt
�i,0�

+ �Wt
L�i,1�dpt

�i,0�

dt
� . �12b�

We see that the lowest-order contribution to the pumped cur-
rent starts in zeroth order in the tunnel coupling strength �,
as it consists in a product of a first- and a minus-first-order
term in the tunneling coupling, but scales linearly with the
pumping frequency �. This contrasts with the dc current
driven by a finite bias voltage, for which the lowest-order
contribution is linear in �.

Certain properties of pumping can be derived by a closer
inspection of the perturbative expansion of the master equa-
tion. To zeroth order in � the pumped current is nonzero only
if p�a,−1� is nonvanishing, which, according to Eq. �11a�, re-

quires that the zeroth-order instantaneous probabilities p�i,0�

depends on time. However, the latter are simply determined
by the Boltzmann factors of the corresponding state energies:

p	
�i,0� =

e−
E	

Z
,

where E	 is the energy related to the dot state 	, 
=1/kBT is
the inverse temperature, and Z is the partition function. In
particular, the probabilities p	

�i,0� are independent of the tun-
nel couplings. As a consequence, in order to have a nonvan-
ishing zeroth-order pumped current IL

�0�, one of the pumping
parameters has to be the level position. When pumping with
the two barrier heights, IL

�0� vanishes.

E. Diagrammatic rules

In order to evaluate the kernel W of master equation �2�
we use the diagrammatic perturbation approach to transport
through interacting quantum dots developed in Ref. 33.
While in Ref. 33 the diagrammatic language was derived for
dc transport with time-independent system parameters, we
generalize the approach in this section to account for the
adiabatic time dependence of the external parameters.

We start with deriving the master equation from a very
general point of view in order to relate its kernel to a set of
diagrams to be evaluated. In general, the �time-dependent�
transport properties are governed by the time evolution of the
reduced density matrix of the dot obtained after tracing out
the degrees of freedom of the noninteracting lead electrons.
Since the leads are noninteracting and in thermal equilib-
rium, the lead electrons can be integrated out making use of
Wick’s theorem, i.e., contracting pairs of creation and anni-
hilation operators c�k�

† �c�k��. Furthermore, since in the case
of pumping there is no voltage applied between left and right
lead, the occupation of electronic states in both leads is de-
scribed by the same Fermi distribution function f���. The
time evolution of the reduced density matrix is related to the
propagator ��t , t�� by

p�t� = ��t,t��p�t�� . �13�

Contributions to this propagator can be depicted as dia-
grams on the Keldysh contour, where contractions of fermion
operators of the leads are indicated as tunneling lines. An
example is shown in Fig. 1. The propagator ��t , t�� can be
expressed in terms of its irreducible part W�t� , t�� by means
of a Dyson equation:

FIG. 1. Example for the time evolution of the reduced density
matrix. The upper and lower lines represent the forward and back-
ward time propagation along the Keldysh contour. Tunneling lines
connecting vertices represent tunneling events with the left �right�
reservoir. Next to the propagators the respective dot states are
indicated.
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��t,t�� = 1 + 	
t�

t

dt�	
t�

t�
dt�W�t�,t����t�,t�� . �14�

The irreducible diagram part W�t� , t�� is defined as the sum
over all diagrams in which any vertical cut crosses at least
one tunneling line �see Fig. 2 as an example�.

Performing the time derivative of Eq. �13�, plugging in
Eq. �14�, and shifting the lower bound of the remaining time
integral to minus infinity, we obtain the generalized master
equation �2�.

In a similar way we proceed for the current I��t�
=e d

dt �N��t�� of particles flowing into reservoir �, which is
given by

I��t� = − ie�
k,�

�V��c�k�
† d���t� − V�

*�d�
†c�k���t�� . �15�

It can also be expressed in terms of diagrams. They contain a
vertex at time t that has the same structure as the tunneling
vertices in Fig. 1, and can be attached to the upper or the
lower propagator line. We find Eq. �8� where W��t , t��
=�ppW�p�t , t�� has the following properties. The terms
W�p�t , t�� are given by all diagrams for which the number of
tunneling lines with reservoir index � running from the up-
per to the lower propagator minus the number of those with
reservoir index � running in the opposite direction equals p.

In the following we summarize the diagrammatic rules for
the kernel Wt

�i� �as described in Ref. 33� and discuss addi-
tional rules for the evaluation of its adiabatic expansion. Ex-
amples for the application of the rules given below are
shown in Appendix A. We start with rules for the Laplace
transform of Wt

�i,n��z�=�−

t dt� exp�−z�t− t���Wt

�i,n��t , t�� in
nth order in the tunnel coupling. This will directly lead us to
the desired objects Wt

�i,n�= �Wt
�i,n��z��z=0+

and �Wt
�i,n�

= ��� /�z�Wt
�i,n��z��z=0+

.
�1� Draw all topologically different diagrams with n di-

rected tunneling lines connecting pairs of vertices containing
lead electron operators. Assign a reservoir index �, an energy
�, and a spin index � to each of these lines. Assign states 	
and the corresponding energies E	�t� to each element of the
Keldysh contour connecting two vertices. Furthermore, draw
an external line from the upper leftmost beginning of a dot
propagator to the upper rightmost end of a dot propagator
that carries the �imaginary� energy −iz.

�2� For each time segment between two adjacent vertices
�independent on whether they are on the same or on opposite
branches of the Keldysh contour� write a resolvent 1 /�E�t�
where �E�t� is the difference of left going minus right going
energies �including energies of tunneling lines and the exter-
nal line—the positive imaginary part of iz will keep all re-
solvents regularized�.

�3� Each vertex containing a dot operator d�
�†� gives rise to

a matrix element �	��d�
�†��	� where 	 �	�� is the dot state

entering �leaving� the vertex with respect to the Keldysh con-
tour.

�4� The contribution of a tunneling line of reservoir � is
1

2����t�f��� if the line is going backward with respect to the
closed time path and 1

2����t��1− f���� if it is going forward.
�5� The overall prefactor is given by �−i��−1�b+c where b

is the total number of vertices on the backward propagator
and c the number of crossings of tunneling lines.

�6� Integrate over the energies of tunneling lines and sum
over reservoir and spin indices.

To derive the rules for the adiabatic corrections Wt
�a,n� we

first analyze how the time-dependent parameters enter the
expression of the kernel W�t , t��. The time-dependent vari-
ables for which the adiabatic expansion has to be performed
are V��t� and ��t�, where the first one only appears in the
product ���ti , tj�=2��V��ti�V��tj� associated with a tunnel-
ing line, and the latter only in the isolated-dot propagator
exp�−i�ti

tjdt�E	�t��� for each segment between adjacent verti-
ces. While for the instantaneous kernels all parameters were
taken at time t, now we perform a series expansion around
the same time t and keep all contributions linear in a time
derivative of the pumping parameters,

��ti,tj� � ��t� +
ti − t

2

d�

dt
�t� +

tj − t

2

d�

dt
�t� , �16�

e−i�ti

tjdt�E	�t�� � e−iE	�t�·�tj−ti� � 
1 − i
�tj − t�2 − �ti − t�2

2

dE	

dt
�t�� .

�17�

The factors �ti− t� or �ti− t�2 can be included in the diagram-
matic rules in the following way: introduce an additional
external frequency line with the imaginary energy −izi from
the vertex at ti to the rightmost vertex at t �or the imaginary
energy −izj from the beginning of a dot propagator line at tj
to the rightmost upper end of a dot propagator line at t�,
performing the first derivative with respect to zi �or second
derivative with respect to zj� then set zi=0+ and zj =0+. The
external frequency lines are drawn as dotted lines in Fig. 3.

The rules to compute the contribution to the adiabatic
corrections Wt

�a,n� due to the time dependence of ��t� read:
�7a� Add to all diagrams needed for Wt

�i,n��z� additional
external frequency lines between any vertex ti and the right
corner of the diagram and assign to them an �imaginary�
energy −izi. Note that an eventual external frequency line
between two right corners of a diagram does not contribute
and can always be omitted.

FIG. 2. Examples of diagrams contributing to the irreducible
diagram part W00.
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�7b� Follow the rules �1�–�6� taking into account the extra
lines.

�7c� Perform a first derivative with respect to zi and mul-
tiply it by the factor 1

2
d�
dt �t� 1

��t� . Sum all the contributions
obtained in this way.

�7d� Set all the external frequencies zi and z to 0+.
The contribution to the adiabatic correction Wt

�a,n� due to
the time dependence of the level position can be computed in
a similar way:

�8a� In addition to the external frequency lines added ac-
cording to rule �7a�, put one more external frequency line
from the left corner of the diagram with no vertex to the right
corner.

�8b� Follow the rules �1�–�6� taking into account the extra
lines.

�8c� Perform a second derivative with respect to zi and

multiply by − i
2

d�E	−E	��

dt �t�, where 	 �	�� is the dot state en-
tering �leaving� the vertex of the external frequency line at ti

with respect to the Keldysh contour. The term
dE	

dt
� dE	�

dt
� is

omitted if the segment associated with E	 �E	�� does not
belong to the diagram. Sum all the contributions obtained in
this way.

�8d� Set the external frequencies zi and z to 0+.

III. RESULTS

In this section we show the results for the pumped current
and the pumped charge through a single-level quantum dot.
As no bias voltage is applied, the only contribution to the
pumped current arises from the adiabatic correction, and
hence we drop the superscript �a� for the current. As we
discuss below, the properties of the pumped charge, in the
regime discussed in this paper, can be understood to a large
extent in terms of the time dependence of the occupation of
the quantum dot, �n�= p↑+ p↓+2pd. For this reason, we first
want to discuss the perturbation expansion of the instanta-
neous average charge occupation. The contribution to zeroth
order in � turns out to be determined by the Boltzmann
factors of the energies associated with the states of the iso-
lated quantum dot. This yields

�n��i,0� =
2f���

1 + f��� − f�� + U�
. �18�

The first-order correction accounts for quantum fluctuations
due to tunneling from and to the leads. There are two quali-

tatively different effects which are due to tunneling and cor-
respondingly we present the results for the first-order correc-
tions as a sum of two contributions �n��i,1�= �n��i,broad�

+ �n��i,ren�, where the contribution to broadening is the sum of
the contributions of the two leads �n��i,broad�= �n��i,broad,R�

+ �n��i,broad,L�.
First, the dot levels acquire a finite lifetime broadening

due to the coupling to lead �, which is accounted for by

�n��i,broad� = �2 − �n��i,0������� + �n��i,0����� + U� , �19�

where ����� is the derivative of ����= �

2�Re�� 1
2 + i
�

2�
�, and

� is the digamma function. The first term accounts for the
broadening of the resonance at � between empty and singly
occupied dot; it has a prefactor 2, when the dot is empty, and
is zero when the dot is doubly occupied. The second term
accounts for the broadening of the resonance at �+U be-
tween singly and doubly occupied dot �this contribution is
zero if the dot is empty�. In the case that the dot is singly
occupied both terms contribute with a prefactor 1.

Second, the combination of tunneling and charging en-
ergy gives rise to a renormalization of the level position, �
→�+��� ,� ,U� with

���,�,U� = ��� + U� − ���� , �20�

as it is expected from the poor man’s scaling analysis.35 The
level renormalization is positive when the level is in the
vicinity of the Fermi energy of the leads and negative for �
+U being close to the Fermi energy. This means that the
distance between the two resonances from empty to singly
occupied dot and from singly to doubly occupied dot is ef-
fectively decreased. The changes to the instantaneous aver-
age occupation due to the level renormalization reads

�n��i,ren� =
d

d�
��n��i,0�����,�,U� . �21�

The sum of Eqs. �19� and �21� is directly found from the
correction in first order � to the occupation probability,
which is shown explicitly in Appendix B. We remark that the
above interpretation of the two terms is in full agreement
with known exact results for the noninteracting case. For U
=0 �and flat density of states in the leads�, the level renor-
malization vanishes. The spectral density is then equal to the
Breit-Wigner function and its expansion in zeroth and first
order in � leads to the noninteracting result of �n��i,0� and
�n��i,broad�.

A. Adiabatically pumped current

We now proceed with solving Eqs. �10a�, �11a�, and �12a�
for arbitrary interaction U to get the zeroth-order adiabati-
cally pumped current. The result of the diagrammatic ap-
proach explained above can be written in the form

IL
�0��t� = − e

�L

�

d

dt
�n��i,0�. �22�

This suggests the following interpretation. As the dot occu-
pation is changed in time by varying the pumping parameters

FIG. 3. Example on how to add the external frequency lines.
The line −iz is needed for the evaluation of �W; −iz1, −iz2, and −iz4

are needed for the contributions to W�a� due to both d�
dt and d�

dt ; −iz3

does not contribute and can be omitted; and −iz5 is additionally
needed for the evaluation of the contribution to W�a� due to d�

dt .
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�one of them must be the level position since �n��i,0� is inde-
pendent of the tunnel-coupling strengths�, the charge moves
in and out of the quantum dot generating a current from or
into the leads. The contributions flowing through barrier �
split weighted by the time-dependent relative tunnel cou-
plings �� /�.

By means of Eqs. �10b�, �11b�, and �12b�, one finds the
first-order-� contribution to the current,

IL
�1��t� = − e� d

dt
��n��i,broad,L�� +

�L

�

d

dt
�n��i,ren�� . �23�

Again, we have written the result in such a form that an
identification of the pumping mechanism is straightforward.
The first term of Eq. �23� contains the contribution due to the
correction of the average dot occupation induced by the tun-
nel coupling to the left lead. Intuitively the finite-lifetime
broadening due to the coupling to the left lead is associated
with tunnel processes of electrons through the left barrier.
Any change in the lifetime broadening due to coupling to the
left lead will therefore result in a current through the left
barrier only. As a result, this first term contains a total time
derivative, and as parameters are periodically changing in
time, it will not lead to a net pumped charge after the full
pumping cycle. We conclude that changing the lifetime
broadening of the dot level does not contribute to adiabatic
pumping. The second term has the same structure as the
zeroth-order contribution, Eq. �23�. It can be understood as
the correction term introduced by renormalizing the position
of the dot level, which may be time dependent via time-
dependent tunnel couplings or a time-dependent gate volt-
age. Again, the charge transferred in/out of the quantum dot
splits into two currents to or from both leads with relative
weight �� /�. Now, even if the dot level is constant and only
both the tunnel couplings �� are varying in time, a finite
charge can be pumped by means of level renormalization.

It is useful to compare these findings with a perturbation
expansion of the dc current driven by a dc transport voltage.
In lowest �first� order, current is carried by sequential-
tunneling processes. A systematic calculation of the second-
order linear conductance36 shows that quantum fluctuation
due to tunneling give rise to three different types of correc-
tion terms. The first one, which dominates the linear conduc-
tance in the coulomb-blockade regime away from resonance,
is due to cotunneling. One way to depict cotunneling is to
understand it as transport through the finite-lifetime broad-
ened dot level. It would thus correspond to the first term of
Eq. �23�. Close to resonance, however, there are two more
corrections to the sequential-tunneling linear conductance.
They can be cast as sequential tunneling but with renormal-
ized level position, as discussed above, or with renormalized
tunnel coupling strength. For the dc current, all these three
contributions are present at the same time, which makes it
challenging to identify them separately in an experiment. For
the adiabatically pumped charge, where correction terms as-
sociated with a renormalization of the tunnel couplings and
level-broadening effects vanish, the situation is distinctively
different. Studying adiabatic pumping is therefore a conve-
nient tool to access the energy-level renormalization. This is

most dramatic in the case when the zeroth-order pumped
current is zero, i.e., when pumping is done by changing both
tunnel couplings. In this case, the dominant contribution to
the pumped charge is due to time-dependent level renormal-
ization.

B. Weak pumping

When writing the pumped charge, we report as indices, in
the following, the particular choice of pumping parameters it
refers to. For example, if the pumping fields are �L and �, we
indicate the charge as Q�L,�. We now concentrate on weak
pumping. We write the time-dependent parameters in the

form ��t�= �̄+���t� and ���t�= �̄�+����t� �with ���t� and
����t� having zero time average� and expand the current up
to bilinear response in the time-dependent part of the param-
eters. Choosing � and �L as pumping parameters we obtain
up to first order in �

Q�L,� = − e
�̄R

�̄2
�1

d

d�̄

�n̄��i,0� + ���̄,�̄,U�

d

d�̄
�n̄��i,0�� ,

�24�

where the prefactor �1 characterizes the amplitudes of the
pumping parameters as well as their relative phase:

�1 = 	
0

T
���

�t
��Ldt .

It was already pointed out for a noninteracting system in Ref.
4 that in the limit of weak, adiabatic pumping the pumped
charge is proportional to the surface enclosed in parameter
space during one pumping cycle, which in this case is equal
to �1. Furthermore, �n̄��i,0� is the instantaneous occupation of
the dot computed with the time-dependent parameters taken

at their time-average value, and �̄= �̄L+ �̄R. The first term
inside the brackets is the zeroth-order-� contribution to the
charge and therefore it is the dominant one. It has two peaks
as a function of the average level position, which are located,
in the limit U�kBT, at �̄=−U−kBT ln�2� and �̄=kBT ln�2�.
The second term is first order in �, stems from level renor-
malization, and vanishes in the noninteracting case. The first-
order-� correction tends to decrease the distance between the
two resonances.

In Fig. 4 the pumped charge of Eq. �24� is shown in units

of e�1 / �̄2 as a function of the time-average value of the level
position, for different strengths of the interaction. The two
peaks are directly related to transitions between singly occu-
pied and empty dot and between doubly and singly occupied
dots. The shift by kBT ln�2� of the peak positions is of com-
binatoric origin and reflects the fact that the probability of
single occupation of the dot is increased due to the two spin
states which lead to the same occupation number. Both peaks
contribute with the same sign, as expected since the under-
lying pumping mechanism is the same for both resonances:
in both cases the dot filling increases �decreases� when the
level position is decreased �increased�.

We now focus our attention on pumping with the two
tunnel-coupling strengths �L and �R. In this case, there is no

ADIABATIC PUMPING THROUGH A QUANTUM DOT¼ PHYSICAL REVIEW B 74, 085305 �2006�

085305-7



zeroth-order-� contribution to the pumped charge, as dis-
cussed above. The contribution to first order in � reads

Q�L,�R
= e

�2

�̄2

d

d�̄
��n̄��i,0�����̄,�̄,U� , �25�

where �2=�0
T ���L

�t ��Rdt accounts for the pumping-parameter
amplitudes and their relative phase as discussed in detail be-
fore for the quantity �1. The result for the pumped charge as
a function of the level position is shown in Fig. 5. The solid
line shows the result for very small interaction. As expected,
it tends to zero, because the level renormalization vanishes.
In the presence of interaction two peaks appear, which sepa-
rate for increasing U. The two peaks are related to the two
resonances at the level positions. They contribute with oppo-
site sign. This reflects the opposite sign of the level renor-
malization for the two resonances. We remind that the first
nonvanishing contribution of the perturbation expansion to
the charge pumped through the dot by periodic change of the

tunnel barriers is uniquely due to the effect of level renor-
malization. The height of the peaks increases for increasing
U, growing logarithmically for large U. Eventually, this in-
crease will be cut off by the bandwidths D, which we here
chose to be infinite. The different sign of the pumped charge
for the two resonances could serve as a signature to distin-
guish level-renormalization-induced pumping from parasitic
peristaltic pumping due to cross capacitances of the gates
modulating the tunnel couplings to the quantum dot.

IV. CONCLUSIONS

We have presented a perturbative approach in tunneling to
adiabatic pumping through interacting quantum dots. In par-
ticular, a general diagrammatic technique to perform the
adiabatic expansion has been developed. This technique has
been applied to compute the pumped charge through a
single-level quantum dot at temperatures much higher than
the Kondo temperature. Two pumping schemes have been
considered: pumping with the level position and one tunnel
barrier, and pumping with the two barriers. When pumping
with the level position and one tunnel barrier, the dominant
mechanism of the adiabatic pump works analogously to a
peristaltic pump. The next-order correction is related to the
level renormalization induced by the interplay of coulomb
repulsion and electron tunneling. The situation is far more
interesting for the case of pumping with the two barriers.
With this pumping scheme there is no pumping in lowest
order in the tunnel coupling, and the first nonvanishing con-
tribution is due to the time-dependent level renormalization.
Hence we have demonstrated the importance of level-
renormalization effects in pumping through interacting quan-
tum dots. In particular, our results suggest that adiabatic
pumping can be used to gain experimental access to the level
renormalization in quantum dots.
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APPENDIX A: EXAMPLES OF DIAGRAMS

In this section we show how to apply the diagrammatic
rules for the matrix element �Wt�0,0. We start with the instan-
taneous term to lowest order in the tunnel coupling,

FIG. 6. Diagrams contributing to the first-order-� part of the
adiabatic correction to the matrix element �Wt�0,0. All appearing
reservoir and spin indices �, � are to be summed over and the
energy � is to be integrated over.

FIG. 4. Pumped charge up to first order � in units of e�1 / �̄2 as

a function of the time-average level position in units of �̄ for dif-
ferent values of U. Pumping parameters are � and �L. The tempera-

ture is kBT=2�̄.

FIG. 5. Pumped charge up to first order � in units of e�2 / �̄2 as

a function of the time-average level position in units of �̄ for dif-
ferent values of U. Pumping parameters are �L and �R. The tem-

perature is kBT=2�̄.
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�Wt
�i,1��z��0,0. The corresponding diagrams are shown in Fig.

6. Two topologically different diagrams contribute, and each
of them has to be summed over the spin index � and the lead
index �, and to be integrated over �. We obtain

�Wt
�i,1��z��0,0 = − i�

�,�
	 d�

2�

 ��f���

� − � + iz
+

��f���
� − � + iz

� .

By letting z=0+ and making use of 1 / �x+ i0+�= P /x
− i���x�, where P indicates Cauchy’s principal value, we get

�Wt
�i,1��0,0 = − 2�f��� ,

��Wt
�i,1��0,0 = −

2�

�

d

d�
	

P
d�

f���
� − �

.

For the adiabatic correction we need to introduce addi-
tional external frequency lines according to the rules 7a and
8a �see Fig. 6�. The additional line of rule 8a, going from the
left corner of the diagram with no vertex to the right corner,
does not contribute in this case and we have omitted drawing
it. The evaluation of these diagrams leads us to the result

�Wt
�a,1��0,0 = −

d�

dt

�

d

d�
	

P
d�

f���
� − �

−

�
d�

dt

�

d2

d�2	
P

d�
f���
� − �

.

We now calculate the second-order-� contribution to the
same matrix element of the instantaneous kernel. All dia-
grams contributing to the matrix element �Wt

�i,2��0,0 are de-
picted in Fig. 7. We sum over all appearing indices
� ,�� ,� ,��. The variables �̄ denotes the opposite spin of �.
As an example, we report the result for the sum of the first
diagram of the first and the second line �after setting z=0+�:

�2

�

2f���

d

d�
	

P
d�

f���
� − �

−
d

d�
	

P
d�

„f���…2

� − � � .

To obtain the full second-order contribution �Wt
�i,2��0,0 we

need to evaluate the remaining diagrams in Fig. 7 along the
same lines as discussed in this appendix.

APPENDIX B: OCCUPATION PROBABILITIES

Some intermediate results were not presented in the main
part of this paper as they were lengthy or not immediately
necessary for the interpretation of the pumped current. Here
we discuss in detail the first corrections to the occupation
probabilities. The corrections to the occupation probabilities
are used for the evaluation of Eq. �12� but do not appear
directly in the results for the pumped current. We find for
pt

�a,−1� the first-order adiabatic correction in minus first order
in �:

pt
�a,−1� = −

dpt
�i,0�

dt

1

2�

1

�1 + f��� − f�� + U��
.

The adiabatic correction of the occupation probability is pro-
portional to the time derivative of pt

�i,0�, and is therefore an
eigenvector of the matrix Wt

�i,1�. The sign of this correction
depends on the sign of the time derivative of ��t�.

The first-order-� correction to the instantaneous occupa-
tion probability is

pt
�i,1� =

dpt
�i,0�

d�
���,�,U� + �2 − �n��i,0�������
− 1,

1

2
,
1

2
,0�T

+ �n��i,0����� + U�
0,−
1

2
,−

1

2
,1�T

.

It consists of a part due to level renormalization �first row�
and a part due to level broadening �second and third row�.
The correction due to level renormalization affects all four
probabilities in the same functional way.

The correction due to broadening has two contributions.
The first one is related to the broadening due to fluctuations
between empty and singly occupied dot. It is zero in the case
that the dot is doubly occupied and largest when the dot is
empty. The second contribution is related to the broadening
due to fluctuations between singly and doubly occupied dot.
It is zero when the dot is empty and largest when the dot is
doubly occupied.

FIG. 7. Diagrams contributing to the second-order-� instantaneous part of the matrix element �Wt�0,0. All appearing reservoir and spin
indices �, ��, �, �� are to be summed over and the energy � is to be integrated over.
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