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Phase separation in the Hubbard model is investigated with the dynamical cluster approximation. We find
that it is present in the paramagnetic solution for values of filling smaller than 1 and at finite temperature when
a positive next-nearest-neighbor hopping is considered. The phase-separated region is characterized by a
mixture of a strongly correlated metallic and Mott insulating phases. Our results indicate that phase separation
is driven by the formation of doped regions with strong antiferromagnetic correlations and low kinetic energy.

DOI: 10.1103/PhysRevB.74.085104 PACS number�s�: 71.10.Hf, 71.10.Fd, 71.30.�h

INTRODUCTION

There is strong experimental evidence that high-Tc mate-
rials are susceptible to charge inhomogeneities, such as
stripes1 or checkerboard modulation.2 This discovery has
spurred great theoretical interest in phase separation �PS� in
models related to the cuprates, such as the Hubbard model,
which is believed to capture the low-energy physics of cu-
prate superconductors. It was argued by different authors that
the charge instability displayed as PS in such simple models
without long-range Coulomb interaction evolves into incom-
mensurate charge ordering when the long-range repulsion is
considered.3 In this paper we present results on PS in the
Hubbard model. We find that the paramagnetic asymmetric
Hubbard model near the half-filling phase separates into un-
doped Mott liquid and doped Mott gas phases. The resulting
Mott-liquid–Mott-gas phase diagram bears a strong resem-
blance to that of a classical liquid-gas mixture.

Phase separation in the Hubbard and in the closely related
t-J model has been intensively investigated. There is a gen-
eral consensus that a t-J model with a large J / t separates into
two phases: an undoped antiferromagnet �AF� and a hole-
rich region. However, the results for realistic J / t�1 are con-
troversial. Emery et al.,4 Hellberg and Manousakis,5 and
Gimm and SuckSalk6 report PS for all values of J / t. Other
authors such as Putikka and Luchini7 and Shih et al.8 find no
PS for small J / t. In the Hubbard model with only nearest-
neighbor hopping, exact diagonalization9 and Monte Carlo10

calculations show no evidence of PS. These numerical re-
sults are consistent with the analytical results of Su,11 who
shows that there is no phase separation in the particle-hole-
symmetric Hubbard model. However, a large-N investigation
of this model in the infinite-U limit shows PS when the next-
nearest neighbor hopping t� is considered.12 Phase separation
in the Hubbard model at small doping was also found in a
dynamical mean-field calculation in the antiferromagnetic
phase13 and with variational cluster perturbation theory14 in
the antiferromagnetic and superconducting phases.

Phase separation is believed to be closely related to the
antiferromagnetic order; a homogeneous doped system is un-
stable, preferring to separate into an undoped antiferromag-
netic region which lowers the exchange energy �maximizes
the number of antiferromagnetic bonds� and a rich doped
phase with low kinetic energy. The driving force for PS in a

t-J model when J / t is large will therefore be the desire to
form undoped antiferromagnetic regions.4 However, in the
Hubbard model we did not find PS for the values of param-
eters which are optimal for antiferromagnetic order in the
undoped region. For instance, with dynamical cluster ap-
proximation �DCA� the maximum Neél temperature in the
undoped system is obtained for U�3/4W, W=8t being the
electronic bandwidth, and for t�=0. The latter conditions can
be understood by noticing that a finite t� introduces an anti-
ferromagnetic exchange between the same sublattice sites,
thus frustrating the antiferromagnetism. Nevertheless, we
find PS only for a U�W and a finite next-nearest-neighbor
hopping t��0. Moreover, we find PS in the paramagnetic
solution which shows that short-range antiferromagnetic cor-
relations are sufficient for the PS to take place. Presumably
the PS is driven by the formation of weakly doped regions
with strong antiferromagnetic correlations and low kinetic
energy. The main culprit for the low value of the kinetic
energy is the parameter t� with the right sign.

FORMALISM

We use the dynamical cluster approximation15,16 to ex-
plore the possibility of PS in the two-dimensional �2D� Hub-
bard model, with

H = Hkin + Hpot, �1�

where

Hkin = − t �
�ij�,�

ci�
† cj� − t� �

��il��,�
ci�

† cl�, �2�

Hpot = U�
i

ni↑ni↓. �3�

Here ci�
�†� �creates� destroys an electron with spin � on site i

and ni� is the corresponding number operator. U is the on-
site Coulomb repulsion. We consider hopping t between
nearest neighbors �ij� and hopping t� between next-nearest
neighbors ��il��. We show results for t=1, t�=0.3, and U
=8, which are realistic values for cuprates.17–19 We find PS
for values of the filling smaller than 1, which for positive t�
corresponds to the electron-doped cuprates.

The DCA is an extension of the dynamical mean-field
theory �DMFT�.20 The DMFT maps the lattice problem to an
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impurity embedded self-consistently in a host and therefore
neglects spatial correlations. In the DCA we assume that cor-
relations are short ranged and map the original lattice model
onto a periodic cluster of size Nc=Lc�Lc embedded in a
self-consistent host. Thus, correlations up to a range ��Lc
are treated accurately, while the physics on longer length
scales is described at the mean-field level. We solve the clus-
ter problem using quantum Monte Carlo �QMC�
simulations.21 The cluster self-energy is used to calculate the
properties of the host, and this procedure is repeated until a
self-consistent convergent solution is reached.

Unlike most of the other numerical calculations on PS,
which study systems with a fixed number of particles, our
calculations are done in the grand canonical ensemble and in
the thermodynamic limit. Therefore, unlike in finite-cluster
calculations, we do not encounter any particular difficulty
associated with the small doping regime. Phase separation is
explored by calculating the filling dependence on the chemi-
cal potential and the charge susceptibility �or compressibil-
ity�, �charge= dn

d	 .

RESULTS

First we consider the case of an eight-site �Nc=8� cluster.
The filling as a function of the chemical potential is plotted
in Fig. 1 for different temperatures.30 Note that that at small
doping with lowering temperature the charge susceptibility is
increasing and diverging at a critical point �
c ,	c ,Tc�. The
divergence of the charge susceptibility is illustrated in the
inset. It is a clear indication that the filling is unstable and the
system is subject to phase separation into regions with dif-
ferent hole density. The critical point is characterized by the
temperature Tc�0.10t and the doping 
c�4.5%.

For temperatures smaller than Tc and for values of the
chemical potential close to 	c the DCA calculation provides
two distinct solutions for the same value of 	. As mentioned
before, the DCA equations are solved self-consistently, start-
ing with an initial guess for the self-energy, usually zero, or
that from a larger temperature or a perturbation theory result.
In most of the situations a unique solution is obtained inde-

pendent of the starting guess. This is the case at doping val-
ues far from 
c such as 0% �undoped� or 10% doping. How-
ever, close to 	c we find that the final solution is dependent
on the starting point. If one uses as the initial input the self-
energy corresponding to the undoped solution �n=1�, then n
versus 	 will look as the upper curve �squares� in Fig. 2. On
the other hand, if the starting self-energy is the one corre-
sponding to the large doped solution �n�1�, n versus 	 will
be described by the lower curve �circles� in Fig. 2. In both
cases, the fully converged self-energy of the previous point is
used to initialize the calculation. Thus, below Tc the filling as
a function of the chemical potential displays a hysteresis.

Simple thermodynamic ideas may be used to interpret
these results. A hysteresis implies the existence of a meta-
stable state and it is observed in many systems which suffer
a first-order transition, a common example being magnetiza-
tion versus the applied magnetic field �M�H�� in magnetic
materials. However, in the real systems, after a sufficient
time, the fluctuations always drive the system to the stable
solution �the equilibrium solution� and the hysteresis be-
comes a discontinuity characteristic to first-order transitions.
In our case, due to the mean-field coupling of the cluster to
the effective medium, the hysteresis is stable. This is shown
in the inset of Fig. 2 where a large number of iterations in the
self-consistent process is considered.

By analogy with the liquid-gas system discussed below,
we label the two states found for T�Tc as a Mott liquid
�ML� and Mott gas �MG�. The Mott liquid is incompressible
and insulating. Both the compressibility and doping of the
ML are small and decrease with decreasing temperature. Its
density of states at the Fermi surface develops a gap with
lowering temperature characteristic of an insulator, as seen in
Fig. 3�a�. The MG is compressible and metallic. The DOS is
peaked at the chemical potential and increases with lowering
temperature; see Fig. 3�b�. Consistent with the narrow peak
width, the MG is a strongly correlated state with a small
value of the double occupancy ��ni↑ni↓� /n�0.04 at T
=0.077t� and strong AF correlations.

FIG. 1. Nc=8 results. Filling n versus chemical potential when
T�Tc�0.1t. Inset: inverse of the charge susceptibility �charge ver-
sus temperature for fixed chemical potential 	=	c.

FIG. 2. Nc=8 results. Filling n versus chemical potential below
Tc, at T=0.071t. Two solutions describing a hysteresis are found:
one incompressible with n�1 �squares� and a doped one �circles�.
Inset: stability of the two solutions versus DCA iterations when 	
=2.96t �middle of the hysteresis, corresponding to the dotted line in
the main figure�.

MACRIDIN, JARRELL, AND MAIER PHYSICAL REVIEW B 74, 085104 �2006�

085104-2



The stable solution below Tc, ML or MG, is the one with
lower free energy, F=E−	N−TS. Unfortunately, due to the
mean-field character of the DCA, the self-consistent solution
is not necessarily the equilibrium state and the QMC method
does not allow the calculation of the entropy. Therefore the
determination of the critical 	 where the jump in N�	�
should take place is difficult to identify. However, the calcu-
lation of the energy provides valuable information about the
transition mechanism. The energy plotted versus 	 displays a
cusp at 	c when T=Tc �not shown�. Below Tc, the energy is
hysteretic. As can be seen in Fig. 4�a� at fixed 	 the energy
of the gas phase is much smaller, due to the large gain in
kinetic energy �see Fig. 4�b�� produced by the next-nearest-
neighbor hopping t� as we will discuss. On the other hand,
the term −	N will favor the ML state since it has a larger
filling. In fact we find that the difference between E−	N for
the two solutions is small, with the ML state being favored
for larger values of 	. When the chemical potential is de-
creased the system will be driven to the MG state by both the
lower kinetic energy and the larger, presumably, entropy
characteristic to MG state. Therefore, for T�Tc, we expect
the jump in n will move to lower values of 	 as the tempera-
ture is lowered.

One can notice that a phase diagram with these character-
istics bears a striking similarity to the phase diagram of a
classical liquid gas mixture,28 where 	 plays the role of pres-
sure. A drawing which summarizes our results and illustrates
this similarity is shown in Fig. 5. At high T, n versus 	 is
linear, since correlations are irrelevant. As the temperature is
lowered, n�	� becomes nonlinear due to correlation effects.
At Tc, dn /d	 diverges. Below Tc the hysteresis appears.
Upon lowering the temperature the hysteresis broadens and
the MG �ML� solution shifts to slightly larger �smaller� dop-
ings. As T→0, the entropy term becomes smaller and the
chemical potential 	c where the jump takes place in the real
solution should move to smaller values. If a fixed N is im-
posed when T�Tc in the two-phase parameter regime, the
system will separate into distinct ML and MG regions.

Our calculations assume a paramagnetic host which im-
plies that the range of possible AF order is restricted to the
cluster size. For the Nc=8 cluster we find PS below the AF
critical temperature TN, the temperature where the AF spin
susceptibility is diverging and the AF correlations range
reaches the cluster size. Therefore it is important to address
the role of AF correlations on phase separation. For this we
investigate the behavior of the critical temperatures Tc and
TN when the cluster size increases. In the inset of Fig. 6 one
can see that at 5% doping TN decreases rapidly with increas-
ing cluster size. On the other hand, the Nc=12 and Nc=16
site clusters display a divergent charge susceptibility roughly
at the same Tc as the Nc=8 cluster, Tc�0.1t, as shown in
Fig. 6. The rapid decrease of TN with Nc and the fact that Tc
is nearly independent on Nc indicates that PS may persist in
larger clusters at a temperature higher than TN where the
range of AF correlations is smaller than the cluster size.
However, we must mention that the calculations on Nc=12
and Nc=16 clusters, close to the PS temperature, are ex-
tremely difficult. This region of parameter space is charac-
terized by very strong critical behavior �presumably because
a larger cluster implies a weaker hybridization with the ef-
fective medium; i.e., the results are less “mean-field”�, a se-
vere minus sign problem, and extremely large autocorrela-
tion times between measurements. Consequently, the error

FIG. 3. �a� DOS for ML solution at T=0.077t �dotted line� and
T=0.057t �solid line�. �b� DOS for MG solution at T=0.077t �dot-
ted line� and T=0.057t �solid line�.

FIG. 4. Energy per site versus 	 for the two solutions: �a� total
energy E= �H� �see Eq. �1�� at T=0.077t, �b� kinetic energy
= �Hkin� �see Eq. �2�� at T=0.077t, and �c� E−	N at T=0.077t and
T=0.057t.

FIG. 5. Schematic representation of the phase diagram.
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bar in the filling and charge susceptibility is increasingly
large for the low-temperature points in Fig. 6 and it is diffi-
cult to obtain converged solutions. Therefore, besides a
rough estimation of Tc�0.1t it is difficult to make other
quantitative estimates for the critical parameters. Low-
temperature calculations on larger clusters inside the critical
region where a hysteresis is expected are not possible due to
the severe sign problem which appears in the QMC calcula-
tion.

We find PS only when the next-nearest-neighbor hopping
t��0 and the filling n�1. A finite t� in the Hubbard and
t-J models is known to give rise to a strong asymmetry be-
tween electron-doped �t��0� and hole-doped �t��0�
systems.18,22–24 In exact diagonalization studies on small
clusters18,22,25–27 it was shown that, due to the kinetic energy
gain, the motion of holes caused by a positive t� stabilizes
antiferromagnetic configurations.18,22 Even though exact di-
agonalization on systems with four holes suggests that t� is
not favorable to hole clustering,22,26 the tendency to PS was
noted in Ref. 22. Our calculations also do not indicate hole
clustering but rather formation of a �8%–10%�-doped state
with strong AF correlations and low kinetic energy. Presum-
ably for this value of the doping the effect of t� on the kinetic
energy is the most significant.

For smaller values of t�, PS takes place at lower tempera-
tures. For instance, when t�=0.1t, the system shows PS at

Tc=0.055t for the Nc=8 cluster. For U�W we found no sign
of PS for temperatures above 0.04t. The charge susceptibility
behavior suggests that PS is not favored when t��0 and n
�1, in agreement with exact diagonalization results22,29

which show that in this case the effect of t� is to push the
holes apart from each other.

Our results imply phase separation into two regions with
different electronic density. However, even without consider-
ing long-range order, we cannot exclude the possibility that
PS competes with the formation of different charge patterns
such as stripes or checkerboard. The investigation of these
instabilities would require calculations on much larger clus-
ters, able to commensurate these patterns, which are unfea-
sible at the moment.

It would be interesting to investigate the competition be-
tween PS and d-wave superconductivity in the Hubbard
model. However, this implies a region of the parameter space
not accessible to our method. Calculations on clusters larger
than Nc=8 show PS but the sign problem precludes access to
temperatures where the superconductivity is expected. On
the other hand, calculations on the small 2�2 cluster, where
the sign problem is mild, show d-wave superconductivity for
finite t� but no definite evidence for PS, even though the
charge susceptibility is strongly increased when a positive t�
is considered.24

CONCLUSIONS

With the DCA we show that the Hubbard model with a
positive next-nearest-neighbor hopping displays PS for val-
ues of the filling slightly smaller than 1. Our results suggest
that the PS is driven by the desire to form slightly doped
��8% –10% � regions with low kinetic energy and strong
antiferromagnetic correlations. The phase diagram is similar
to that of the liquid-gas mixture, showing a second-order
critical point and a first-order transition from a Mott gas to a
Mott liquid state below Tc.
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