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The magnetoconductivity of GaxIn1−xAs/InP quantum wires with widths in the range of 1220–250 nm was
investigated. The finite zero-field spin splitting in our samples gives rise to spin relaxation and weak antilo-
calization in wide wires. In contrast, for the narrow wires, only weak-localization behavior is seen even though
the zero-field spin splitting is independent of wire width. The observed renormalization of the spin-relaxation
length due to purely geometrical effects can be described quantitatively using a model where the effect of spin
precession is represented by spin-dependent pseudomagnetic fluxes, and by exact numerical transport
calculations.
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Controlled spin precession in semiconductor heterostruc-
tures is a key mechanism in spin-electronic devices1 where
electric current is manipulated by addressing the electrons’
spin instead of their charge. In two-dimensional electron
gases �2DEGs� realized in III-V semiconductor heterostruc-
tures, spin-orbit coupling gives rise to a spin precession at
zero external magnetic field. Possible origins of zero-field
spin splitting can be the lack of inversion symmetry of the
crystal lattice �bulk inversion asymmetry�,2 and the structural
macroscopic electric field present in an asymmetric quantum
well.3 The latter is called Rashba spin-orbit coupling and can
be controlled by external gate voltages,4–7 which makes this
mechanism especially interesting for spin-electronic
devices.8 A detailed understanding of spin-orbit effects in
nanostructures and elucidation of methods for their accurate
measurement is therefore of great current interest. Here we
report on an experimental study of the interplay between spin
precession and quantum interference in quasiballistic semi-
conductor nanowires, which complements previous studies
performed in 2DEGs,9–16 dirty quantum wires,17 and ballistic
quantum dots.18 We observe a remarkable sign change of the
quantum correction to the conductance, signifying a cross-
over from weak antilocalization �WAL� to weak localization
�WL� as the wire width is reduced. Detailed experimental
and theoretical investigations show that this effect arises
from the confined orbital dynamics of electrons in narrow
wires and not from a changed value of the Rashba spin
splitting.

The measurement of the quantum correction to the con-
ductance is a versatile tool to investigate spin-orbit coupling
in 2DEGs. In a system with spin-rotational invariance �i.e.,
without spin-orbit coupling� and in the absence of external
magnetic fields, contributions of time-reversed electron paths
to the quantum-mechanical backscattering amplitude inter-
fere coherently, leading to an increased resistance �WL� for a
quantum-coherent conductor.19 A finite spin-orbit coupling
introduces random deviations between the spin states of elec-
trons that are backscattered on time-reversed paths. The re-
sulting spin-space average suppresses the quantum correc-

tion to the conductance and changes its sign �WAL�.19,20

Quantitative analysis of the magnetoconductance was used to
extract the characteristic spin-relaxation time �so in various
types of heterostructures; e.g., AlGaAs/GaAs,10

GaInAs/AlInAs,13 GaInAs/ InP,9,15 and AlSb/ InAs/AlSb.11

For 2DEGs covered by a metal electrode13,14 as well as for
gated InAs nanowires,21 it was confirmed by WAL measure-
ments that �so can be controlled by a gate voltage that effec-
tively tunes the Rashba spin splitting. In contrast, we show in
this Rapid Communication how wire confinement affects
spin relaxation. Our measurements were performed on quan-
tum wires fabricated in GaInAs/ InP heterostructures, which
are well known for showing a large Rashba spin splitting.22

We start by describing the experimental method and present-
ing measured data. Our interpretation of the observed
WAL-WL crossover as a confinement-induced effect is ex-
plained afterward, and results of supporting numerical simu-
lations are shown.

The Ga0.47In0.53As/Ga0.23In0.77As/ InP heterostructure was
grown by metal-organic vapor-phase epitaxy on a semi-
insulating InP substrate. The layer system is shown schemati-
cally in inset �a� of Fig. 2 below. Quantum-wire structures
were defined using electron-beam lithography and reactive
ion etching.7 A number of 160 identical wires, each 620 �m
long, were connected in parallel. Six sets of wires were ana-
lyzed with a width ranging from 1220 nm down to 250 nm.
An electron-beam micrograph of the 250 nm wide wires is
shown in Fig. 1, inset �a�. From magnetoresistance measure-
ments in a reference Hall bar sample fabricated on the same
chip, a carrier concentration of n=5.3�1011 cm−2 and a mo-
bility of �=205 000 cm2/V s at 0.6 K were determined.
Analysis of the temperature-dependent Shubnikov–de Haas
oscillations yielded an effective electron mass m*=0.039me.
A clear beating pattern exhibited in the Shubnikov–de Haas
oscillations indicates the presence of Rashba spin-orbit cou-
pling. We extracted a Rashba coupling parameter of �R
=4.84�10−12 eV m from the 1/B fast Fourier transform of
the magnetoresistance.22
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The magnetoresistance of the set of 630 nm wide wires
over a larger field range is shown exemplarily in Fig. 1.
Clear Shubnikov–de Haas oscillations were observed for
magnetic fields above 0.5 T. The electron concentration ex-
tracted from the 1/B fast Fourier transform is, as for all other
sets of wires, identical to the one obtained from the Hall bar
sample. A resistance maximum is found at Bmax=0.18 T
which can be attributed to diffusive boundary scattering. For
decreasing widths of the wires this maximum shifts to higher
magnetic fields. We use Bmax to calculate the electrical width
of the quantum wires using the expression Weff
�0.55�kF / �eBmax�,23 where e is the elementary charge and
kF the Fermi wave number. The values of Weff for all wires
are summarized in Table I.

The conductivity � and the mobility � were determined
for each set of wires using Weff as the width of conducting
area. As seen in Fig. 1 inset �b�, a sharp dip appears in the
magnetoresistance at B=0 for the 630-nm-wide wire which
can be attributed to WAL. The transition to a decreasing
resistance with increasing magnetic field at �7 mT is due to

weak localization being the dominant contribution at higher
fields.

Data shown in Fig. 2 illustrate how WAL observed for
wider wires is suppressed for narrow wires. In contrast to the
previous figure, the quantum correction �� to the two-
dimensional conductivity is plotted in units of 2e2 /h. The
occurrence of WAL is thus indicated by an enhanced conduc-
tivity at B=0.36 The decrease of peak height as the wire
width is reduced from 1220 to 830 nm reflects the expected
1/Weff scaling of the quantum correction to the 2D
conductivity.24 Simultaneously the minimum in �� indicat-
ing the transition to WL is shifted toward larger magnetic
fields. As the wire width is reduced further, the WAL peak
starts to decrease and completely vanishes for the narrowest
wire of 250 nm width. Thus only WL is observed for the
very narrow wires.

To understand the apparent suppression of WAL, we ana-
lyzed the relative values of spin-relaxation length lso

=�D�so, elastic mean free path lel, and phase-coherence
length l�. Here, D denotes the diffusion constant. Fundamen-
tally, spin relaxation in our wires arises due to the spin pre-
cession that is induced by the presence of Rashba spin split-
ting. In our samples, it was found that the Rashba coupling
parameter �R does not depend on the wire width.25 Hence,
the ballistic spin-precession length lR=�2 / �2m*�R� is identi-
cal for all wires and given by lR=200 nm. In the 2D limit,26

lso= lR, but the observed WAL-WL crossover indicates that
lso in wires must have a strong width dependence. Intuitively,
we expect a suppression of spin relaxation in ballistic narrow
wires, as the elongated shape of relevant closed paths �see
Fig. 2 inset �b�� effectively reduces the magnitude of accu-
mulated random spin phases. A more quantitative analysis is
possible using the concept of spin-orbit-induced effective
magnetic fluxes.14,27 In complete analogy with the width de-
pendence of the magnetic dephasing length in wires,24 we
find an estimate

TABLE I. Summary of values for relevant length and time
scales in our samples. The geometrical wire width W, effective
electrical wire width Weff, elastic scattering time �el, elastic mean
free path lel, phase coherence time ��, and phase coherence length
l� are extracted from transport data. lso

�est� is an estimate for the
spin-relaxation length according to Eq. �1�.

W
�nm�

Weff

�nm�
�el

�ps�
lel

��m�
�� at 0.6 K

�ps�
l� at 0.6 K

��m�
lso
�est�

��m�

1220 1180 4.47 2.42 103.79 8.25 0.5

1020 830 4.33 2.35 83.60 7.29 0.7

830 570 3.56 1.93 62.73 5.72 0.9

630 410 2.41 1.30 45.26 4.00 0.9

340 210 1.14 0.62 23.24 1.97 1.1

250 120 0.79 0.43 14.35 1.29 1.8

FIG. 2. �Color online� Magnetoconductivity corrections �� in
units of 2e2 /h for various wire widths W at a temperature of 0.6 K.
The layer sequence of the heterostructures is shown in inset �a�. The
inset �b� shows a typical loop for a narrow wire.

FIG. 1. Magnetoresistance of the 630-nm-wide set of wires at
0.6 K. Inset �a� shows a scanning electron micrograph of a detail of
the 250-nm-wide set of wires with the Ohmic contact pads. In inset
�b� a detail of the magnetoresistance close to B=0 of the 630 nm
wire is shown.
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The constants C1 and C2 depend on the type of boundary
scattering �specular or diffusive� in the wire.24 As will be
seen from the discussion presented in the following para-
graph, our wires are in the regime where lel
Weff.

The elastic scattering times �el=�m* /e as well as the cor-
responding elastic mean free path lel=vF�el were extracted
from the mobility and the electron concentration of the wires
�see Table I�.37 The observed decrease of lel for reduced wire
widths can be explained by the additional contribution of
diffusive boundary scattering. In contrast to the case of total
specular boundary scattering where the conductivity of the
wires remains equal to the conductivity of the 2DEG, pres-
ence of the diffusive boundary scattering leads to its reduc-
tion. For the narrowest set of wires a probability p of specu-
lar boundary scattering of 0.5 was estimated following the
approach described in Ref. 28. The large contribution of dif-
fusive boundary scattering can be attributed to the relatively
rough boundaries resulting from definition of the wires by
reactive ion etching. A comparison of the elastic mean free
path lel with the spin-precession length lR reveals that, owing
to the strong Rashba effect in our structures, the value of lR
is always shorter than the mean distance between two scat-
tering centers. Furthermore, all of our wires are in the qua-
siballistic regime where lel
Weff.

In our case the inelastic scattering time �� cannot be ex-
tracted directly from the experiment, however it can be can
be reliably estimated28 by the following expression:29

1

��

=
�

2

�kBT�2

�EF
ln� EF

kBT
	 + � �kBT

�DWeffm
*	2/3

, �2�

with EF being the Fermi energy. The inelastic mean free path
is given by l�=�D��. As can be seen in Table I, l� at 0.6 K
is reduced from 8.25 �m for the 1220-nm-wide wires to
1.29 �m for the narrowest ones. Nevertheless, l� at this tem-
perature exceeds the elastic mean free path lel as well as the
spin-precession length lR for all wires.

Suppression of weak antilocalization occurs when the
spin-relaxation length lso exceeds the phase-coherence length
l�, because no significant spin-dependent phases can be ac-
cumulated then by coherently backscattered electrons. We
can estimate lso according to Eq. �1� for each wire and com-
pare these with the extracted value of l� in the same system.
�See Table I. We have used the values of C1,2 for diffusive
boundary scattering.24� The conspicuously large value found
for lso

�est� in the narrowest wire is consistent with the observed
absence of WAL in its magnetoconductance. For all the other
wires, lso

�est�	 l�, and signatures of WAL are seen in the trans-
port data �see Fig. 2�. Temperature-dependent measurements
displayed in Fig. 3 provide further support for this explana-
tion. At the lowest temperature, a signature of WAL is super-
imposed on a negative �i.e., localizing� correction to the con-
ductance. As temperature is increased, the WAL peak gets

progressively weaker until, for temperatures above 6 K, any
trace of WAL has vanished. Evidently, the decrease of l�

below the spin-relaxation length renders spin effects irrel-
evant, obliterating the WAL signal. At the crossover tempera-
ture of 4 K, we obtain a phase-coherence length of 0.94 �m,
which agrees quite well with the spin-relaxation length esti-
mated from Eq. �1� and given in Table I.

It appears that modeling spin precession by spin-
dependent fluxes14,27 yields a quantitative agreement with the
observed WAL-WL crossover in our wires. However, further
analysis is needed to confirm this result, because the ap-
proach yielding Eq. �1� neglects the non-Abelian nature of
spin-dependent gauge fields that are associated with spin-
orbit coupling. Additional spin relaxation arising from non-
Abelian contributions can be expected to become relevant in
the limit lR	�Wefflel. To make sure that non-Abelian contri-
butions do not destroy, in principle, the effective renormal-

FIG. 4. �Color online� Quantum correction to the magnetocon-
ductance, calculated for disordered wires with length L=2 �m,
Rashba coefficient �R=4.8�10−12 eV m, and mean free path lel

=1.33 �m. From top to bottom, curves correspond to Weff=580,
420, 220, 180 nm. Indicated values for lso were estimated using Eq.
�1�. Conductances were obtained by averaging over 50 different
configurations of random bulk impurities and 50 slightly different
energy values.

FIG. 3. �Color online� Magnetoconductance corrections of the
set of 340-nm-wide wires for temperatures from 1 to 8 K.
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ization of spin relaxation in our narrow wires, we performed
numerical transport calculations where the effect of spin-
orbit coupling is treated exactly. A spin-dependent tight-
binding model is adopted to describe a quasi-1D wire with
finite Rashba spin splitting.30 The total zero-temperature
Green’s function of the system is calculated using a recursive
method,31,32 and the quantum-mechanical transmission and
reflection coefficients are found using a standard
procedure.33 These yield the conductance by means of the
Landauer-Büttiker formula,34,35 from which the quantum cor-
rection is extracted. We assume that the external leads that
are attached to our system are subject to the same homoge-
neous magnetic field as is present in the sample, but have no
spin-orbit coupling. In Fig. 4, we show quantum corrections
to the magnetoconductance for a set of wires with different
widths, all having the same Rashba spin-splitting parameter
�R. Mirroring the experimental observation, WAL behavior
is exhibited in the simulations for large Weff, but is sup-
pressed for narrow wires. We calculated lso

�est� for the simu-

lated wires and, as for the experimental data, find WAL sup-
pression whenever lso

�est� exceeds the wire length L �which
plays the role of dephasing length l� in our zero-temperature
simulations�. The striking congruence between experimental
and numerical results, as well as the applicability of our ana-
lytical description in both cases, provide strong support for
our interpretation of the WAL-to-WL crossover as a geo-
metrical effect.

In conclusion, the effect of spin-orbit coupling on the
quantum correction to the conductivity of GaInAs/ InP wires
was investigated. Although the bare spin splitting was the
same in all wires, we observed a clear width dependence of
spin relaxation. Wide wires showed WAL behavior, but only
WL was found for very narrow wires. This WAL-WL cross-
over can be explained as being due to a confinement-induced
suppression of spin relaxation as the wire width is decreased.
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