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Graphene exhibits quantum Hall ferromagnetism in which an approximate SU�4� symmetry involving spin
and valley degrees of freedom is spontaneously broken. We construct a set of integer and fractional quantum
Hall states that break the SU�4� spin �valley� symmetry, and study their neutral and charged excitations.
Several properties of these ferromagnets can be evaluated analytically in the SU�4� symmetric limit, including
the full collective-mode spectrum at integer fillings. By constructing explicit wave functions we show that the
lowest-energy skyrmion states carry charge ±1 for any integer filling, and that skyrmions are the lowest-
energy-charged excitations for graphene Landau-level index �n��3. We also show that the skyrmion lattice
states which occur near integer-filling factors support four gapless collective-mode branches in the presence of
full SU�4� symmetry. Comparisons are made with the more familiar SU�2� quantum Hall ferromagnets studied
previously.
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I. INTRODUCTION

Recent experimental work1 has established graphene as a
new two-dimensional �2D� electron system with linear
Dirac-type energy-band dispersion. An important aspect of
graphene physics is the twofold valley degeneracy of its low-
energy band structure, which, in combination with the usual
spin doublet, implies band eigenstates with degeneracy N
=4. In a strong magnetic field, the fourfold degeneracy of
Landau levels in graphene has been clearly observed in re-
cent quantum Hall measurements.2–4 This property is
expected5 to lead to an intriguing interplay between interac-
tion and quantum Hall physics by introducing a rich variety
of new states with different types of spontaneous symmetry
breaking, and new varieties of low-lying collective modes. In
this paper we explore some of the theoretical possibilities for
quantum Hall ground states and collective modes that follow
from the enlarged �N=4� Landau-level degeneracy of
graphene, emphasizing similarities and differences compared
to the well-studied N=2, spin-only circumstance6,7 relevant
to GaAs 2D systems.

One of the most theoretically interesting8–10 and phenom-
enologically significant11 consequences of quantum Hall fer-
romagnetism is the presence of a finite density of skyrmions
in the ground state near integer-filling factors. A dense sys-
tem of skyrmions constitutes an emergent set of low-energy
degrees of freedom that qualitatively alters11 NMR, optical,
thermal, and transport properties of the 2D electron system.
In the N=2 case, dense skyrmion systems occur only near
Landau-level filling factor �=1. We predict that in graphene,
dense skyrmion states8,9,11 occur near many integer-filling
factors, and that they have a larger number of gapless collec-
tive modes than for N=2.12 For Coulombic electron-electron
interactions, skyrmion lattice states occur only13 near �=1 in

the SU�2� case. For graphene we predict skyrmion lattice
states near �= ± l for all l�14 except for l=2,6 ,10 when all
Landau-level multiplets are either full or empty, and that
skyrmion lattice states in graphene have four branches of
gapless collective modes at all these filling factors in the
absence of symmetry-breaking perturbations.

The N=4 internal degrees of freedom present in graphene
take on a particular significance because of the very strong
Coulomb interaction energy scale �estimated to be more than
1000 K at 45 T,4 several times larger than in GaAs�, which
will help make all the physics that follows from interaction-
driven, spontaneous symmetry breaking �i.e., phases which
break the internal symmetry associated with the degeneracy
N� more accessible experimentally. The point of departure
for our analysis will be an SU�N=4� symmetric Hamiltonian,
which allows us to obtain a number of exact results. This
highly symmetric model is believed to be a good approxima-
tion of the full Hamiltonian of graphene.5,14 For relatively
low carrier densities the largest symmetry-breaking term in
the Hamiltonian will be Zeeman coupling, which favors spin
alignment along the field direction. We will discuss some of
the important consequences of this term.

We remark that the possibility of a spontaneously broken
valley symmetry is akin to orbital ordering, with the novel
twist that the orbital ordering is in momentum space, rather
than in real space. The anticipated exotic orbital order in
graphene should coexist with spin-order, making graphene
�along with systems such as superfluid He-3, manganites,
and related systems where real space-orbital order apparently
coexists with spin order� an interesting system to study novel
quantum phases with interplay between spin and orbital or-
der. The momentum space orbital ordering discussed here
may also imply observable Jahn-Teller coupling effects in
graphene, but we do not explore this idea further in this
paper.
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The consequences of SU�4�, or more generally, SU�N�
symmetry in quantum Hall physics have been discussed pre-
viously by Arovas and co-workers15 in the context of silicon
systems, which also have additional �approximate� valley de-
generacies, and by Ezawa and co-workers16,17 in the context
of bilayer quantum Hall systems where the additional degen-
eracy comes from the which layer degree of freedom. Al-
though both groups used nonlinear sigma-model descriptions
they reached different conclusions on the properties of Skyr-
mion excitations in SU�N� quantum Hall ferromagnets, and
in particular, on the minimum charge a Skyrmion can carry.
By explicitly constructing the microscopic wave functions
for collective modes and Skyrmions, we demonstrate that the
lowest-energy Skyrmion excitations of the system carry
charge ±1. This analysis also allows us to enumerate the
internal degrees of freedom associated with an individual
Skyrmion and predict the number of gapless collective
modes present in SU�4� Skyrmion lattice states.

Our paper is organized as follows. In Sec. II we identify
exact eigenstates of SU�N� quantum Hall ferromagnets at
integer-filling factors, which have broken symmetry. We ar-
gue that these states are the ground states for any physically
sensible repulsive interaction between the particles, and ob-
tain exact results for their elementary particle-hole excita-
tions. We find that in the absence of symmetry-breaking per-
turbations there are M�N−M� gapless collective modes when
M of the N members of a Landau-level multiplet are occu-
pied. In Sec. III we discuss the properties of skyrmions in
graphene. We find that for Coulombic electron-electron in-
teractions, skyrmions are much more robust in systems like
graphene with a Dirac band structure, than for the more fa-
miliar parabolic band systems. We predict that dense-
skyrmion systems will be ubiquitous in the quantum Hall
regime of graphene, and that at even integer fillings skyr-
mion lattice states will have four branches of gapless collec-
tive modes, two with k1 dispersion, one with k3/2 dispersion,
and one with k2 dispersion. Finally, in Sec. IV we briefly
present some elementary considerations on broken symmetry
states in graphene at fractional-filling factors. We conclude in
Sec. V with a brief summary of our results and some final
comments.

II. SYMMETRY-BREAKING GROUND STATES AND
COLLECTIVE-MODE SPECTRA

For simplicity we ignore disorder and mixing between
different Landau levels. To keep the discussion general, we
assume electrons have N internal states and that the electron-
electron interaction is independent of these internal states, so
that the Hamiltonian is SU�N� symmetric. Thus the total de-
generacy of each Landau level �LL�, including the internal
degeneracy, is N�N�, where N� is the number of flux
quanta enclosed in the system. We start by considering the
case where the filling factor of the valence LL �with LL
index n� is an integer,

�n = Ne/N� = M � N , �1�

where Ne is the number of electrons occupying the valence
LL. We note that in the case of graphene N=4 and the four-

fold degenerate n=0 LL is half filled �corresponding to �0
=2� at zero doping; thus the Hall conductance is

�xy = �e2/h , �2�

with

� = 4n − 2 + �n. �3�

In the absence of interactions, the quantum Hall effect occurs
only when each of the four fold-degenerate Landau levels is
completely full ��n=N=4� or completely empty ��n=0� and
the quantized Hall conductance is

�xy = �4n + 2�e2/h , �4�

where n is the index of the highest-filled Landau level. Quan-
tum Hall ferromagnetism will5 lead to quantum Hall
pleateaus characterized by intermediate integers and by frac-
tions. In the following, we neglect interaction-induced mix-
ing between orbitals with different n. For different values of
n the properties of the SU�N� quantum Hall ferromagnet are
different. In the following, the dependence on n is sometimes
left implicit to avoid notational clutter.

Because of the SU�N� symmetry of the system, the fol-
lowing single Slater-determinant state �in which only elec-
tronic states in the valence LL are explicitly described� is an
exact eigenstate of the Hamiltonian:

��0� = �
1���M

�
k

ck,�
† �0� . �5�

Here c† is the electron-creation operator, �0� is the vacuum
state, � is the index of the internal state that runs from 1 to
N, and k is an intra-LL orbital index; for example, in the
Landau gauge it is the wave vector along the plane-wave
direction, while in the symmetric gauge it is the angular-
momentum quantum number.

For a broad class of repulsive interactions, we expect ��0�
to be the exact ground state of the system; for the case of
�n=M =1 this can be proved rigorously for short-range re-
pulsion �see below�. In this paper we use this assumption as
the starting point of our discussion. Obviously, the ground
state ��0� breaks the SU�N� symmetry spontaneously since
an SU�N� rotation transforms the M spontaneously chosen
occupied single-electron orbitals to another different set. It
therefore represents the ground state of an SU�N� ferromag-
net, and is expected to support ferromagnetic spin waves. In
the following, we construct the exact single-spin-wave states
and determine their spectrum in a manner similar to that of
Kallin and Halperin.18 Consider the following Landau gauge
states, with ŷ in the direction of the plane waves:

�k��1�2
= �kx,ky��1�2

=
1

�N�

�
k�

eikxk��2
ck�+ky,�2

† ck�,�1
��0� .

�6�

These spin-wave states are labeled by a two-dimensional
wave vector k and two internal indices: 1��1�M and M
��2�N. �=�	c /eB is the magnetic length. Physically they
can be understood as single particle-hole states formed from
the �2 and �1 internal states, i.e., as magnetic excitons. Since
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there are M choices for �1 and N−M choices for �2, the total
number of these spin-wave modes is M�N−M�. It follows
from translational invariance that k is a good quantum num-
ber, from SU�N� invariance that excitons with distinct
��2 ,�1� labels are uncoupled, and that �k��1,�2

is therefore an
exact eigenstate of the Hamiltonian. The exact SU�N� quan-
tum Hall ferromagnet magnetoexciton-dispersion relation is

E�k� = �k�V̂�k� − ��0�V̂��0� =
1

2

	

0

�

qV�q�
Fn�q��2e−q2�2/2
1

− J0�qk�2��dq , �7�

where V�q� is the Fourier transform of electron-electron in-
teraction, J0 is the Bessel function, and

Fn�q� = 1
2 
L�n��q2�2/2� + L�n�−1�q2�2/2�� �8�

is the Landau-level structure factor appropriate for Dirac
fermions.5,14 �In Eq. �8� Ln�x� is a Laguerre polynomial. The
dependence of graphene-quantum Hall-ferromagnet proper-
ties on n enters only through Fn.� The second term in Eq. �7�
is due to particle-hole attraction18 and vanishes for k→�
where E�k� approaches the energy of a widely separated
electron-hole pair. For the case of a 1/r Coulomb interaction
and n=0 
F0�x��1�, we have

E�k� =
e2

��
�


2

1 − e−k2�2/4I0�k2�2/4�� , �9�

where � is the effective dielectric constant and I0 is the modi-
fied Bessel function. In the long-wavelength limit E�k�
k2

as expected for ferromagnetic spin waves.
It is worth pointing out here that among the various

sources of perturbations that break the SU�4� symmetry in
graphene, the simplest but most important one is the Zeeman
splitting of electron spin,

Hz = − g�BBStot
Z , �10�

where g is the electron-spin g factor and �B is the Bohr
magneton. Due to the fact that the total spin along the
magnetic-field direction Stot

Z commutes with the
SU�4�-invariant Hamiltonian, it only shifts the energies of
individual eigenstates without changing the states them-
selves. In the presence of HZ, electrons will choose to occupy
spin-up states in the ground state, Eq. �5�, until all such states
are filled; the internal states as labeled by � are thus eigen-
states of SZ. The single spin-wave states take the same form
as in Eq. �6�; the spectrum remains the same as Eq. �7� if �1
and �2 are of the same spin orientation, while it gets shifted
to E�k�+g�BB if they are of opposite spin orientations.

Returning to the SU�N� symmetric case, we note that the
nature of the symmetry breaking as realized in the ground
state �5�, as well as the resultant gapless spin-wave excita-
tions, may be understood from the following group-
theoretical analysis. The state �5�, while not invariant under a
general SU�N� transformation, is invariant under a subgroup
of SU�N�, SU�M��SU�N−M�. Physically the SU�M�
�SU�N−M� subgroup represents SU�M� transformations
among the M-occupied levels, and SU�N−M� transforma-

tions among the N−M unoccupied levels; these transforma-
tions do not change the state �5�. Thus the order parameter as
represented by the symmetry-breaking state �5� forms a coset
space of SU�N� /SU�M��SU�N−M��U�1� �where the last
U�1� represents an overall phase difference between the oc-
cupied and unoccupied levels�, or equivalently,
U�N� /U�M��U�N−M�. Since a U�N� transformation is pa-
rametrized by N2 parameters �its number of generators�, we
find the dimensionality �or the number of independent fields�
of the coset space to be N2−M2− �N−M�2=2M�N−M�. Be-
cause we are dealing with a ferromagnetic state �whose ef-
fective action contains a dynamic term with a single time
derivative, see below�, half of these fields are the conjugate
momenta of the other half; we thus expect M�N−M� inde-
pendent spin-wave modes, in agreement with the micro-
scopic construction �6�. Very similar analyses were per-
formed in Refs. 15 and 16 that led to the same conclusion.

The analysis above suggests the following matrix param-
etrization of the ferromagnetic order parameter, appropriate
for the symmetry breaking corresponding to U�N� /U�M�
�U�N−M�:15

Q�r,t� = U†�r,t�ŜU�r,t� , �11�

where U�r , t� is the �space-time dependent� N�N U�N�
transformation matrix, Ŝij 
�ij is a diagonal matrix with Ŝii

=1 for 0� i�M, and Ŝii=−1 for M � i�N. The N�N ma-
trix field Q�r , t� is the order parameter. Ezawa and
co-workers16 use a different, but presumably equivalent, pa-
rametrization of the order parameter.

In terms of the matrix field Q�r , t�, the long-wavelength,
low-energy effective action of the system takes the form15

S
Q�r,t�� =	 dtdr

�
� tr A�Q��tQ +
1

4
�s tr��Q� · ��Q� + ¯ � ,

�12�

where the first term is the Berry phase term15 that encodes
the commutation relations between different components of
the order-parameter field, and the second term describes the
energy cost when the order parameter is nonuniform. The
choice of the prefactor 1 /4 �instead of 1/2� for the second
term is for later convenience as it compensates for the fact
that the trace of the square of Pauli matrices is two. Terms
involving higher orders of either time or spatial derivatives,
as well as possible symmetry-breaking perturbations are rep-
resented by ¯. Thanks to the knowledge of the exact ground
state, the order-parameter stiffness �s may be determined ex-
actly in a manner similar to that of Ref. 19: We first construct
a state by performing a slow, r-dependent SU�N� rotation on
��0�, then project it to the appropriate LL, calculate its en-
ergy, and perform a gradient expansion of the energy func-
tional. The result is
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�s =
1

32
2	
0

�

q3V�q�
Fn�q��2e−q2�2/2dq , �13�

and for the case of n=0 and 1/r Coulomb interaction, �s

=e2 / �16�2
���.15 �s is independent of both N and M; Eq.
�13� is identical to the N=2 and �n=M =1�s expression de-
rived in earlier work.8,19 This finding is not surprising since
any infinitesimal rotation in the U�N� /U�M��U�N−M� sub-
group of SU�N� can be decomposed into combinations of
SU�2� rotations between occupied and unoccupied levels. It
is easy to verify that the action �12� reproduces the spin-
wave spectrum �7� in the long-wavelength limit.

III. SINGLE-SKYRMION STATES AND COLLECTIVE
MODES OF SKYRMION LATTICES

The matrix field Q supports topologically nontrivial spa-
tial configurations, which can be parametrized by an integer-
valued topological quantum number called the Pontryagon
index,

q =
i

16

	 d2r��� tr
Q��Q��Q� , �14�

where ��� is the antisymmetric tensor. Field configurations
with nonzero q carry topological charge and are called skyr-
mions. As in the N=2, �n=M =1 case,8,19 quantum Hall fer-
romagnet skyrmions also carry an electric charge that is
equal to its topological charge. It follows from the above
considerations, as concluded in earlier work,15 that skyrmi-
ons with charge ±1 exist within the lowest Landau level.
This remarkable property implies that when skyrmions are
the lowest-energy-charged excitations, they will be
present8–10,20 in the ground state of the system when � is
close to, but not equal to, an integer. Skyrmions thus appear
as emergent low-energy degrees of freedom and influence all
observable properties.

To determine whether or not skyrmions are the lowest-
energy-charged excitation for a particular n, we need to com-
pare the energy of a skyrmion �antiskyrmion� pair,

�SK = 8
�s, �15�

with the energy of an ordinary Hartree-Fock theory particle-
hole pair,

�PH = E�k → �� . �16�

Table I compares results for graphene Dirac-band and the
ordinary parabolic-band cases. In the Dirac-band cases both
positive and negative values of n occur whereas the Landau-
level indices of parabolic systems are non-negative integers.
In both cases, the increase in cyclotron orbit radius with �n� is
reflected in the quantum form factor Fn; for the parabolic
case the form factor Fn=Ln

2�q2�2 /2�. Since the cyclotron-
orbit radius Rc���n, it is clear simply on dimensional
grounds that for Coulomb interactions and large n, �PH

�e2 /Rc�e2 /��1/�n, whereas �SK�e2Rc /�2�e2 /���n.
This difference in the large-n behavior is already apparent in
both cases in Table I. For sufficiently large n then, �SK will

exceed �QP, the lowest-energy-charged excitations will be
ordinary Hartree-Fock quasiparticles, and the ground state
near integer-filling factors will not have low-energy skyr-
mion degrees of freedom. The quantitative calculations sum-
marized in Table I show that ordinary quasiparticles are al-
ready energetically preferred for n=1 in the parabolic band
case, a result obtained first by Wu and Sondhi.13 Interest-
ingly, the crossover to ordinary quasiparticles does not occur
until n=4 in the Dirac-band case; thus skyrmion physics will
occur within n=0, n=1, n=2, and n=3 Landau levels in
graphene.

We note in passing that we have so far compared only
quasiparticle- �quasihole-� and skyrmion- �antiskyrmion-�
pair excitation energies. In order to conclude that skyrmions
and antiskyrmions are present in the ground state on both
sides of integer-filling factors, we need to demonstrate that
the skyrmion energy and the antiskyrmion energy are sepa-
rately smaller than the quasiparticle and quasihole energies,
respectively, whenever the pair-excitation energies are
smaller. In the case of N=2 and �n=M =1, this property
follows21 from particle-hole symmetry. We demonstrate be-
low that the pair-excitation-energy criterion also applies for
graphene, although the justification is subtly different for
�n=1 and �n=3 cases compared to the �n=2 case.

In earlier work Ezawa16 and co-workers concluded that
for �n=M �1, lowest-Landau-level �LLL� skyrmions must
have a charge that is a multiple of M. To address this dis-
crepancy, we explicitly construct LLL skyrmion wave func-
tions and demonstrate that it is indeed possible to have
charge ±1. Our microscopic single-Slater-determinant skyr-
mion wave function is constructed in a manner similar to that
of Ref. 9. For definiteness we discuss a holelike skyrmion
with q=−1,

TABLE I. Hartree-Fock quasiparticle ��QP� and Skyrmion �an-
tiskyrmion� ��SK� particle-hole excitation gaps for the Dirac �D�
bands of graphene and for parabolic bands �P�. The two cases are
distinquished by different dependencies of form factor Fn on Lan-
dau level �LL� index n. These results are for Coulomb interactions
in an ideal two-dimensional electron system without finite-thickness
corrections and energies are in units of e2 /���
 /2. In graphene, the
effective value of � depends on the dielectric screening environment
provided by the substrate but is typically less than 2, whereas in
GaAs and other common heterojunction systems ��10.

�LL index� �QP
�D�

�SK
�D�

�QP
�P�

�SK
�P�

0 1 1/2 1 1/2

1 11/16 7/32 3/4 7/8

�0.6875� �0.2188� �0.75� �0.875�
2 145/256 169/512 41/64 145/128

�0.5664� �0.3301� �0.6406� �1.1328�
3 515/1024 839/2048 147/256 687/512

�0.5029� �0.4097� �0.5742� �1.3418�
4 0.4608 0.4754 0.5279 1.5522

5 0.4298 0.5328 0.4927 1.6834
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��sky� = �
m=0

N�−2


umcM,m+1
† + vmcM+1,m

† � � �
m=0

N�−1

� �
1���M

c�,m
† ��0� ,

�17�

where the internal-state labels match those of the symmetry-
broken ground state. Hartree-Fock skyrmion states are ob-
tained by minimizing the expectation value of the Hamil-
tonian with respect to um and vm. Skyrmion states with larger
topological charges may be constructed in a similar manner.
These single Slater-determinant �or Hartree-Fock� skyrmion
states correspond to classical skyrmions of the field theory
�12�, although the Coulomb self-interaction energy of skyr-
mions must be included in the field theory8 in order to de-
scribe small skyrmions.

The Hartree-Fock �or semiclassical� skyrmion state �17�
has a rich internal structure, which may be analyzed in a way
similar to the analysis performed earlier on the ground state
�5�. The state �17� is invariant only under unitary transfor-
mations among the first M −1 labels or the final N−M −1
labels. It follows that the family of SU�N� transformations,
that actually transforms the skyrmion states, form a coset
space of dimension N2− �N−M −1�2− �M −1�2=2M�N−M�
+2�N−1�. The set of transformations of dimension 2M�N
−M� corresponds to the order-parameter fields of the ground
state itself, and the additional 2�N−1�-dimensional space to
�N−1� skyrmion internal-complex degrees of freedom.
These must be specified in addition to location and size �de-
termined by minimizing the energy with respect to um and
vm� in order to completely characterize a classical skyrmion.
In other words, the skyrmion has N−1 internal �complex�
degrees of freedom. A more intuitive way to understand this
point is the following. Let us assume the ground-state order-
parameter configuration is fixed �either spontaneously or by
symmetry-breaking perturbations�. We now introduce a
single skyrmion at the origin and minimize its energy. This
fixes the size of the skyrmion and the magnitudes of um and
vm. On the other hand, um is a 
CP�M −1�� vector that lives
in an SU�M� space spanned by the M-occupied levels of the
ground state, so there are M −1 remaining internal �complex�
degrees of freedom associated with it. Similarly there are
N−M −1 remaining internal degrees of freedom associated
with vm. Adding the relative overall phase between um and
vm, we find the total internal degrees of freedom is N−1. As
a matter of fact, um and vm may be combined and viewed as
a CP�N−1� vector in the original SU�N� space; thus the N
−1 internal �complex� degrees of freedom of a skyrmion may
be viewed as those of a CP�N−1� superspin.24

Once we move away from �n=M, we have a finite density
of skyrmions in the ground state, provided that they are in-
deed the lowest-energy-charged excitations. For graphene we
are able to judge the energetic ordering of charged excita-
tions based on the energetic ordering of particle-hole excita-
tions. To justify this statement at �n=M =1, we must appeal
to Zeeman coupling which is always present experimentally.
Zeeman coupling selects a fully spin-polarized state and also
selects fully spin-polarized skyrmions. We can therefore sim-
ply ignore the spin degree of freedom and appeal to the same
arguments21 used for �n=M =1 when N=2. For �n=M =3 we

can then appeal to particle-hole symmetry in the N=4
Landau-level multiplet, which suggests that the situation is
the same as �n=M =1. Finally, for �n=M =2 we can gener-
alize the argument of Ref. 21 by appealing directly to
particle-hole symmetry at this filling.

In their classical ground state, skyrmions will form a lat-
tice. �Quantum corrections to the classical ground state be-
come more important as the skyrmion density increases.12,22�
In this case the internal degrees of freedom associated with
skyrmions on different sites will interact and the classical
energy will be minimized by an arrangement with long-range
order. When quantized, fluctuations in the internal degrees of
freedom will result in N−1 spin-wavelike modes, which will
be present in addition to the single phonon mode associated
with fluctuation in skyrmion positions. �In a strong magnetic
field transverse- and longitudinal-position fluctuations are
canonically conjugate leading23 to phonons with k3/2 disper-
sion.� In the presence of full SU�N� symmetry these internal
modes are gapless, and some �or all� of them may remain
gapless in the presence of symmetry-breaking perturbations,
under appropriate conditions �see below for examples�. For
the SU�2� case we find N−1=1 internal mode, which is
known previously;12 here we provide a more general under-
standing of this result.

For graphene N=4, and the case �n=M =2 is particularly
interesting. Weak Zeeman coupling will select a unique fully
spin-polarized, valley-singlet ground state. All collective
modes are therefore gapped for �n exactly equal to 2, i.e., in
the absence of skyrmions. In this case the SU�2� valley sym-
metry is preserved by the ground state. We nevertheless pre-
dict that the skyrmion lattice state near �n=2 will have
phonons and 3 additional gapless modes. Of these three in-
ternal modes, we predict that one has quadratic dispersion,
while the other two will have linear dispersions. The qua-
dratic mode may be understood in the following manner. The
skyrmion lattice state has a finite pseudospin �valley� mag-
netization, and is thus a spontaneous valley ferromagnet; the
quadratic mode is simply the ferromagnetic spin wave in the
valley channel. The two linear modes are the Goldstone
modes corresponding to the two additional spontaneously
broken U�1� symmetries; these symmetries are broken by the
fixed relative phases between um and vm with the same valley
index. Adding the phonon mode, we thus find one quadratic
mode, one k3/2 mode, and two linear modes, all gapless.

The situation is very different at �n=M =1. In this case,
the ground state is still fully spin polarized due to the Zee-
man coupling, but is also a spontaneous valley ferromagnet
that breaks the SU�2� valley symmetry spontaneously. Thus
we expect a single gapless mode with quadratic dispersion in
the absence of skyrmions, the SU�2� valley pseudospin
waves. The lowest-energy skyrmion states are thus pseu-
dospin textures in the valley degree of freedom,25 and the
skyrmion lattice states at low temperature will be fully spin
polarized. As a result, we expect only one gapless internal
mode with quadratic dispersion, which does not involve spin
flips, while the other two internal modes, which do involve
spin flip will have a gap of g�BB. Thus the only new gapless
mode of the skyrmion lattice state is the phonon mode in this
case.
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Isolated individual quantum-skyrmion states have well-
defined total-orbital angular momentum and internal SU�N�
quantum numbers, which can be analyzed for �n=M =1 fol-
lowing the strategy of Ref. 20. These are the quantum coun-
terparts of classical CP�N−1� skyrmions. In this case the
single-Slater-determinant state �5� is the exact ground state
for �-function interaction between electrons, since it has ex-
actly zero energy. Holelike skyrmion states may be identified
as all zero-energy states for the case N�=Ne+1. As empha-
sized in Ref. 20 �see also Ref. 26�, all such states may be
written in the form

��z,�� = ��
i�j

�zi − zj���B�z,�� , �18�

where the antisymmetric Jastrow factor �i�j�zi−zj� ensures
zero energy, while �B�z ,�� is a bosonic wave function that is
symmetric under the exchange of spatial and internal coordi-
nates of two particles. We can classify the skyrmion states
based on the properties of this bosonic wave function.

Due to the fact N�=Ne+1, the bosons can only be in m
=0 or m=1 orbital states. Letting these occupation numbers
be n0 and n1, respectively, the total angular momentum of a
state �18� measured from that of the ground state is �L=n1,
thus n0=Ne−�L. We now classify all the skyrmion states for
a fixed �L based on the SU�N� representations they form �in
the familiar SU�2� case these representations are labeled by a
single quantum number, the total spin20�. Because bosons
occupying the same orbital have totally symmetric orbital
wave functions, their internal wave function must also be
totally symmetric. It follows that the internal states of the n0
bosons in orbital m=0 form a totally symmetric representa-
tion of SU�N�, as do the n1 bosons in orbital m=1. In terms
of Young tableau, they form two horizontal-row representa-
tions, with n0 and n1 horizontal boxes, respectively. More
generally, each irreducible representation of the SU�N� group
as represented by the Young tableau27 can be labeled by a set
of N−1 non-negative integers in descending order:

l1 , l2 , . . . , lN−1�, where each integer represents the number of
boxes in each row. Thus the two representations formed by
the bosons in m=0 and m=1 orbitals form representations

n0 ,0 , . . . � and 
n1 ,0 , . . . �, respectively. Now we take the di-
rect product of these two representations and decompose
them into irreducible representations of SU�N�,


n0,0, . . . � � 
n1,0, . . . �

= 
n0 + n1,0,0, . . . � � 
n0 + n1 − 1,1,0, . . . �

� . . . � 
n0,n1,0, . . . � = 
Ne,0,0, . . . �

� 
Ne − 1,1,0, . . . � � . . . � 
Ne − �L,�L,0, . . . � .

�19�

In the above equation we have assumed that n0�n1 or Ne
�2�L. If the opposite is true, the positions of n0 and n1 need
to be interchanged. The dimensionality of these representa-
tions may be found in the literature.27 This procedure classi-
fies the holelike skyrmion states at �n=1 based on their
angular-momentum quantum number and the irreducible
SU�N� representations they form.

IV. SU„N… FERROMAGNETS AT FRACTIONAL-FILLING
FACTORS

We now turn our discussion to possible fractional quan-
tum Hall �FQH� states �which have not yet been observed in
graphene�, many of which are also SU�N� ferromagnets.
Many FQH states may be constructed by starting with inte-
ger quantum Hall �IQH� states28 and using the composite
fermion �CF� flux-attachment ansatz. In this construction, we
start from an IQH state with filling factor �n,CF=m, and at-
tach an even 2n� flux quanta to the CFs to turn them into
electrons; after the flux is spread out the electron-filling fac-
tor in the valence LL becomes

�n =
m

2n�m ± 1
. �20�

This is, of course, the familiar Jain’s sequence.28,29 The dif-
ference here is that in the presence of the internal degeneracy
and SU�N� symmetry, the CF IQH state is an SU�N� ferro-
magnet as long as m is not a multiple of N. We thus expect
the SU�N� symmetry properties to be reflected in the FQH
states. The number of collective modes and the number of
branches of skyrmion excitations should be the same as that
of the IQH states at �n=M, if we identify M =mod�m ,N�. On
the other hand if m is a multiple of N, we obtain an SU�N�
singlet, and there is no spontaneous symmetry breaking; the
system will be fully gapped. For cases with m�N, we dis-
play below Laughlin-Halperin type trial wave functions for
the FQH states with the expected SU�N�-symmetry proper-
ties in first quantization,

�n�,m�z� = ��
i�j

Ne

�zi − zj�2n���A�
�=1

m

�
k�l

N�

�zk� − zl��� . �21�

Here A represents antisymmetrization of all coordinates, and
we have neglected the common exponential factors for LL
wave functions. The second factor is the first quantized wave
function for �5�, while the first factor reflects flux attachment.
The wave functions for m�N is more complicated, as in this
case some of the CFs occupy higher LLs, and LLL projection
is necessary.28 We note that this type of construction was
found to be generally reliable in predicting the spin structure
in the SU�2� case without Zeeman splitting.28

The low-energy physics of the FQH SU�N� ferromagnets
are also described by field theory �12�. In this case we do not
have exact knowledge about the parameters �like the stiffness
�s� of the theory, but �s has been calculated numerically for
the members of the Laughlin sequence �=1/3 ,1 /5 for 1 /r
interaction based on the Laughlin trial wave function in the
SU�2� case;19 they are 9.23�10−4�e2 /��� and 2.34
�10−4�e2 /���, respectively. Using the same arguments as for
the IQH case discussed above, we expect �s to take the same
two values at the same filling factors in graphene. These
values can be used to determine the energies of skyrmion-
antiskyrmion pairs, which may be compared with transport
measurements should FQH states be observed in graphene in
future experiments. We caution, however, that at fractional-
filling factors, we can no longer appeal to particle-hole sym-
metry properties so that it is possible,30 in general, for
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Laughlin-type fractionally charged quasiparticles to be
present in the ground state on one side of an incompressible
filling factor and fractionally charged skyrmions on the other.

V. CONCLUDING REMARKS

In closing we comment on the possible effect of single-
particle valley splitting on our SU�4�-based analysis of
graphene. We first note that the valley degeneracy of
graphene is rather robust; for example, unlike in silicon,
simple strain cannot lift the degeneracy. Electron-electron
interactions are likely to provide the most important source
of Hamiltonian matrix elements that break the valley portion
of the SU�4� symmetry. Our considerations should neverthe-
less largely apply for weak valley-symmetry breaking, as
long as the characteristic energy scale of these terms is much
weaker than the Coulomb interaction scale. We mention that
among the possible extrinsic sources of four-fold degeneracy
lifting in the single-particle Hamiltonian are edge effects and
intervalley scattering. For large extrinsic splittings, the SU�4�
symmetry will be reduced to SU�2��U�1��U�1�, where the
remaining SU�2� symmetry corresponds to spin, which is
further reduced by Zeeman splitting as discussed earlier. At
the lowest temperatures and energy scales the physics may
be be similar to that of a bilayer system,31 which may sup-
port other types of broken symmetry states.32,33 The question
of whether our predicted interaction-driven spontaneous
breaking of valley degeneracy is playing the key role in the
observed valley splitting at high field4 can be decided by
careful measurements of zero-field valley splitting. If the ex-
perimental zero-field valley splitting is negligibly small, then
it seems certain that SU�4� quantum Hall ferromagnetism,
associated with the spontaneous breaking of valley and spin
degeneracy, is already playing a role in the high-field quan-
tum Hall experiments in graphene. �It seems clear that many-
body physics does not have a large influence on quasiparticle
valley splitting in the absence of a field.� Direct observations
of skyrmions and associated collective excitations in
graphene then take on a particular experimental relevance.
We further note that both Zeeman and valley splittings are
single-electron effects; electron-electron interactions also
have weak symmetry-breaking effects due to physics at lat-
tice scale, as discussed recently.14

In summary, we have identified exact broken-symmetry
eigenstates of SU�N�-invariant Hamiltonians in the quantum
Hall regime of graphene. We argue that these states are
ground states for any physically sensible repulsive interac-
tion between the particles, and for Coulomb interactions be-
tween electrons in particular. Given SU�N� invariance we
were able to obtain exact results for the elementary
collective-excitation spectrum. We found that in the absence
of symmetry breaking there are M�N−M� gapless collective
modes when M of the N members of a Landau-level multi-
plet are occupied. In addition, we have shown that for Cou-
lombic electron-electron interactions, skyrmions are much
more robust in systems like graphene with a Dirac-band
structure, than for the more familiar parabolic-band systems.
We predict that dense-skyrmion systems will be ubiquitous
in the quantum Hall regime of graphene and that skyrmion
lattice states near even-integer filling factors will have four
branches of gapless collective modes, two with k1 dispersion,
one with k3/2 dispersion, and one with k2 dispersion. The
identification of probes that can study skyrmion physics in
graphene layers is therefore an attractive challenge for ex-
periment.

Note added. While this paper was being written, a
preprint34 authored by Alicea and Fisher appeared, which has
some overlap with the present paper. Among other contribu-
tions, Alicea and Fisher34 studied collective modes in the
long-wavelength limit, and single-skyrmion states at certain
specific integer fillings. Where overlap occurs, our results are
consistent with those of Alicea and Fisher. We thank Jason
Alicea for informative conversations about this work.
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