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A procedure is developed to rigorously decompose experimental loss spectra of medium-energy
�50 eV–50 keV� electrons reflected from solid surfaces into contributions due to surface and volume electronic
excitations. This can be achieved by analysis of two spectra acquired under different experimental conditions,
e.g., measured at two different energies and/or geometrical configurations. The input parameters of this pro-
cedure comprise the elastic scattering cross section and the inelastic mean free path for volume scattering. The
�normalized� differential inelastic mean free path as well as the differential surface excitation probability are
retrieved by this procedure. Reflection electron energy loss spectroscopy �REELS� data for Si, Cu, and Au are
subjected to this procedure and the retrieved differential surface and volume excitation probabilities are com-
pared with data from the literature. The present results are compared with earlier proposed procedures in which
surface excitations are neglected, in particular the deconvolution formula by Tougaard and Chorkendorff �Phys.
Rev. B 35, 6570 �1987�� that is frequently employed for this purpose. It is shown that application of the latter
procedure to realistic REELS spectra �that always contain a significant contribution due to surface excitations�
does not lead to a single scattering loss distribution of any kind, but rather yields a mixture of contributions of
electrons that have suffered an arbitrary number of surface and bulk collisions. Therefore, quantitative inter-
pretation of the retrieved loss distributions is troublesome. On the other hand, the results using the procedure
proposed in the present work exhibit satisfactory quantitative agreement with theoretical calculations and
verify the commonly accepted model for medium energy electron transport in solids with unprecedented detail.
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I. INTRODUCTION

The susceptibility of a solid to polarize under the influ-
ence of an external electromagnetic perturbation governs
many physical phenomena taking place at the surface of a
solid and therefore determines important technological prop-
erties of solid materials. The solid-state polarizability is char-
acterized by the frequency- and momentum-dependent di-
electric function ��� ,q�. This quantity can be measured by
probing a solid surface with elementary particles, e.g., by
photons1–5 or electrons.6 A vast number of such experiments
has been conducted in the past from which an extensive da-
tabase of optical data has been established. Furthermore,
with the advent of density functional theory beyond the
ground state,7 ab initio theoretical calculations of optical data
have recently become available.8

Nonetheless there still seems to be a need for experimen-
tal work in this field since the available datasets are not al-
ways consistent �in particular in the range between the vis-
ible and vacuum-ultraviolet �VUV� part of the optical
spectrum� which complicates comparison with theoretical re-
sults. One commonly accepted reason for the inconsistency
of the available datasets is that the early experiments were
not always conducted under ultrahigh-vacuum �UHV� condi-
tions. However, there also exist inherent problems with the
conventional methods to measure optical data. In optical ex-
periments, large scale research facilities �e.g., synchrotrons�
are required to reach the UV part of the optical spectrum and,
moreover, it is not straightforward to use such experiments to
study structures on the subnanometer scale since photons are
hard to focus on this scale. The latter deficiency can be over-
come by employing transmission electron energy loss mea-
surements, which are moreover dominated by the dielectric

response in the UV regime, but even nowadays these experi-
ments are still not routinely conducted under UHV condi-
tions and, moreover, specimen preparation puts quite a strict
limit on the types of nanostructures that can be investigated
with this technique.

Reflection electron energy loss spectroscopy �REELS�
measurements have the potential to bridge this gap. Like any
charged-particle-scattering experiment, such loss spectra are
dominated by the UV response, the experimental procedure
is extremely simple, and the experiments can be routinely
carried out under UHV conditions and can nowadays be per-
formed with sub-nm lateral resolution on a large number of
instruments on a specimen prepared in an arbitrary way.

Owing to the energy dependence of the quasielastic back-
scattering coefficient that decreases rapidly above several
keV for any material,9 such experiments need to be carried
out in the medium-energy range �several tens to several thou-
sands of an eV�. Unfortunately this severely complicates
quantitative interpretation of REELS spectra which are ob-
scured in this energy range by the occurrence of multiple
surface and volume excitations. Furthermore, the particles
are multiple elastically scattered and the elastic-scattering
cross section exhibits a pronounced energy and angular de-
pendence. Therefore, the interaction of the probing particle
with the solid is governed by multiple scattering processes of
different types and is consequently very complex. This is the
reason why earlier proposed procedures to extract optical
data from REELS measurements have not led to satisfactory
results.10–12 Since, on the other hand, such experiments have
a great potential for the measurement of optical data, as out-
lined above, an attempt to resolve the problems addressed
above seems worthwhile.

The existing body of literature in this field can be divided
into different categories: papers dealing with the model de-
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scribing the electrodynamics of the particle surface interac-
tion itself;11,13–25 Simulations of electron transport near a
solid surface that take into account surface excitations either
by employing �analytic� transport theory17,18,21,26 or a nu-
merical model �mostly Monte Carlo models�11,24,25,27–32 to
describe the particle transfer near a solid vacuum boundary;
finally, and most importantly in the present context, papers
treating the deconvolution of REELS spectra into single scat-
tering loss distributions.10–12,31–37

Extracting information on the dielectric function from a
REELS spectrum requires, in a first step, the development of
a procedure to extract the distribution of energy losses in an
individual bulk and surface excitation from an experimental
spectrum, which is dominated by multiple scattering pro-
cesses of different types. In a further step these loss distribu-
tions need to be converted to optical data.

In the present work, the first step of this ambitious pro-
gram is addressed. The elementary interaction characteristics
are reviewed and it is shown that in Fourier space, the loss
spectrum can be expressed as a bivariate power series in the
bulk and surface scattering distributions in an individual col-
lision. An algorithm to reverse this bivariate power series
using a pair of loss spectra taken under different experimen-
tal conditions is developed. The procedure is successfully
applied to experimental loss spectra of 20 elemental solids.
The resulting distribution of energy losses is presented for Si,
Cu, and Au and compared with theoretical results based on
optical data from various sources in the literature.

II. THEORETICAL

A. Elementary interaction characteristics

The degrees of freedom of a medium energy electron tra-
versing a solid are subject to fluctuations brought about by
the strong interaction of the probing electron with the ionic
and electronic subsystem of the solid. Owing to the large
mass difference between the incoming electron and the ionic
subsystem on the one hand and the similarity of the mass of
the probing electron and the electronic subsystem on the
other hand, large momentum transfers are accompanied by
small energy losses and vice versa.9 Therefore the distinction
between elastic and inelastic scattering is a meaningful one
for medium-energy electrons.

For noncrystalline solids the interaction with the ionic
subsystem is adequately described9 in terms of an atomic
cross section for elastic scattering d�e��� /d�, that can be
established ab initio on the basis of a screened Coulomb
potential for free atoms.38 The solid is modelled as a random
array of scattering centers, and the mean distance between
successive elastic deflection processes, the so-called elastic
mean free path �e is the reciprocal of the differential elastic
cross section integrated over the unit sphere multiplied with
the density Na of scattering centers.9

The above model for the elastic electron-solid interaction
is commonly used in this field, but it should be emphasized
that it neglects coherent scattering �diffraction� which can
lead to significant oscillations in the angular distribution of
the reflected intensity. The coherence is partially lost for in-
elastically scattered electrons,39 but still discernible. Even in

the case of polycrystalline or amorphous materials, diffrac-
tion takes place, but when the signal is averaged over a suf-
ficiently large area of a specimen, diffraction effects on im-
perfect crystals are obscured.40 The practical validity of this
approach is seen in the angular distribution of elastically
backscattered electrons. For perfect crystals, the diffraction
pattern is dominated by the crystallographic structure of the
solid in reciprocal space41 convoluted with the single atom
diffraction pattern which can be discerned upon close inspec-
tion of individual diffraction spots. When the periodicity of
the solid is partially destroyed, as for polycrystalline materi-
als, the diffraction pattern due to the crystallinity becomes
completely diffuse, and the angular distribution reduces to
the single atom diffraction pattern, which is identical to the
elastic scattering cross section �see, e.g., Ref. 42�. Therefore,
in the model employed in the present work, the wavelike
nature of the electron is taken into account in individual
elastic collisions, but it will be assumed that there is no fixed
phase relationship between successive scattering processes,
allowing one to interpret the signal electron transport in
terms of a Boltzmann-type kinetic equation.

The inelastic interaction is commonly conceived as a dec-
laration of the incoming electron by a polarization field set
up by it inside the solid. The susceptibility of the solid to the
external perturbation is given in terms of its frequency ���
and momentum �q� dependent dielectric function ��� ,q�.
Extensive data for the dielectric function of solids are avail-
able in the literature for zero momentum transfer.1–5 The di-
electric function for arbitrary momentum transfers can be
obtained by fitting a Drude-Lindhard-type expansion to such
optical data �see, e.g., Ref. 21�, invoking an appropriate dis-
persion relation to extrapolate the optical loss function onto
the �� ,q� plane.

In electron reflection measurements it is obviously not
possible to discriminate individual momentum transfers in an
inelastic process. Rather, reflection energy loss spectra rep-
resent an average over all possible momentum transfers, in
contrast to transmission experiments, which are conducted in
the single-scattering regime and allow one to discriminate
the momentum transfer by means of angle-resolved experi-
ments.6 Therefore, for REELS, the basic physical quantity
governing inelastic scattering deep inside the solid is the
differential inverse inelastic mean free path �DIIMFP�
Wb�T�, i.e., the distribution of energy losses T=� per unit
path length in an individual collision. It is related to the
dielectric function ��� ,q� of the solid via the well known
formula,43

Wb��� =
1

�E
�

q−

q+

Im� − 1

���,q��dq

q
, �1�

where the subscript “b” indicates bulk inelastic scattering
deep inside the solid, E is the energy of the incoming elec-
tron, and q is the momentum transfer which, for parabolic
bands, is confined by q− and q+ given by

q± = �2E ± �2�E − �� . �2�

In the above expressions as well as in the remainder of this
section, atomic units are used, unless indicated otherwise.
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The average path length between successive inelastic colli-
sions in the bulk of the solid, the so-called inelastic mean
free path �i �IMFP� is a quantity of paramount importance
for electron spectroscopy and is the reciprocal of the
DIIMFP integrated over all possible energy losses. The dif-
ferential inverse mean free path normalized to unity area,
that will be denoted by wb�T� in the following, is related to
the unnormalized DIIMFP via wb�T�=�iWb�T�.

In the vicinity of the surface, both in vacuum and inside
the solid, additional modes of the inelastic interaction, so-
called surface excitations, occur, as required by the boundary
conditions of Maxwell’s equations. Several models to de-
scribe surface excitations have been put forward in the
past.11,13–17,20–23 The resonance frequency �s of these surface
modes �indicated by the subscript “s” in the following� is
slightly lower than for volume excitations. The distribution
of surface energy losses decays faster with the energy loss
than for volume losses: while the distribution of volume
losses tails off slowly towards the maximum energy loss
given by the energy E of the probing electron, the typical
energy loss for which the distribution of surface losses drops
below a relevant value is much smaller than for bulk losses;
usually it is less than 50 eV. Furthermore, surface excitations
exhibit a pronounced depth dependence, decaying rapidly
with the depth from the surface both inside the solid and in
vacuum. The decay length is of the order of v /�s	5 Å,
where v is the speed of the electron. Since this decay length
is of the order of, or smaller than, the elastic mean free path
�e, the part of an electrons trajectory passing through the
surface-scattering zone is approximately rectilinear, at least
inasmuch as in vacuum the dynamic interaction of the elec-
tron with its image charge can be neglected.20 Therefore it
makes sense to use the differential surface excitation prob-
ability Ws�E ,�� �DSEP� as the basic physical quantity to
describe surface excitations, i.e., the integral of the differen-
tial mean free path over the surface-scattering zone, where �
is the polar angle of surface crossing. Tung and co-workers21

give the following expression for the DSEP:

Ws��,�,E� = Ps
+��,�,E� + Ps

−��,�,E� , �3�

where the quantity Ps
±�� ,� ,E� is defined as

Ps
±��,�,E� =

1

�E cos �
�

q−

q+ 
qs
±
dq

q3 Im� ����,q� − 1�2

���,q�����,q� + 1��
�4�

and

qs
± = �q2 − �� + q2/2

�2E
�2�1/2

cos � ± �� + q2/2
�2E

�sin � .

�5�

The total surface excitation probability ns�� ,E�� is obtained
from expression �3� by integrating over the energy loss. Note
that this �dimensionless� quantity, that will be referred to as
�total� surface excitation probability �SEP� below, is equal to
the average number of surface excitations in a single surface
crossing. The normalized differential surface excitation prob-
ability is therefore given by ws�T ,��=Ws�T ,�� / ns�� ,E��.

To avoid confusion, it is noted that although the same
symbol �“W” in Wb and Ws� is used to denote the distribution
of energy losses in a surface and bulk excitation, the physical
meaning of these quantities is quite different. While the
DIIMFP is the volume scattering probability per unit path
length and energy, the DSEP represents the surface excitation
probability per unit energy, since this quantity is obtained by
integrating over the path the electron takes through the sur-
face scattering zone.21 The normalized distribution of energy
losses wb�T� and ws�T� are physically equivalent quantities
and both have the dimension of reciprocal energy, which is
the reason why the same symbol is chosen for these quanti-
ties �see the next section�.

Examples for the DIIMFP and DSEP for Si and Au are
given in Fig. 1. The DIIMFP is shown for two energies �1000
and 3000 eV�, while the DSEP is given for 1000 eV for two
different surface crossing angles of 0° and 70°. It is seen that
for the considered energy loss range, being significantly
smaller than the probing energy, the shape of the DIIMFP
hardly depends on the energy, or, in other words, that the
normalized distribution of energy losses is independent of
the incoming energy wb�T ,E��wb�T� to a good approxima-

FIG. 1. Normalized differential inverse inelastic mean free path �DIIMFP� and differential surface excitation probability �DSEP� for
medium energy electrons in Si and Au. The DIIMFP is presented for 1000 eV �solid curves� and 3000 eV �dashed curves� while the DSEP
is shown for 1000 eV for two different angles of surface crossing �0°, solid curves and 70°, dashed curves�. The DSEP was divided by a
factor of 5 to facilitate comparison. The curves labeled 	DSEP and 	DIIMFP in �a� represent the difference of the DSEP and DIIMFP for
the considered angle of surface crossing and energy, respectively. �a� Si; �b� Au.
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tion. The same holds for the DSEP �not shown�. On the other
hand, the angular dependence of the normalized DSEP is
seen to be very weak as well, ws�T ,E ,���ws�T�. Of course
the total surface excitation probability ns�E ,��� exhibits a
pronounced angular and energy dependence, while the en-
ergy dependence of the IMFP, �i�E�, that governs the total
bulk scattering probability, is appreciable as well.

Comparison of these quantities for Si and Au clearly re-
veals the pronounced difference of the electronic structure of
these materials: while the inelastic interaction in Si is gov-
erned by the collective plasmon modes of the weakly bound
solid state electrons, interband and intraband transitions de-
termine the shape of the energy loss distributions of Au.

Another noteworthy feature in this figure is the negative
excursion of the DSEP, being very pronounced for Si, while
it is much weaker for Au, but still clearly distinguishable.
This is a consequence of the coupling between the bulk and
surface modes, that are orthogonal, and is commonly re-
ferred to as begrenzungs effect after the German word for
boundary.13 In other words, in the presence of the surface,
the intensity of the volume modes is decreased owing to the
depolarization of the surface charge by the surface modes.
This is clearly seen in the case of Si where the negative
excursion peaks exactly at the energy loss corresponding to a
volume plasmon loss. This means that the DSEP in fact con-
sists of two terms: the pure surface term, which is positive,
and the begrenzungs or coupling term, which is negative. It
also makes it clear that surface and bulk excitations are dif-
ferent modes of the same phenomenon and that the distinc-
tion between these two types of inelastic scattering is essen-
tially artificial. Nonetheless, for practical purposes it is
useful to make this distinction in the sense that volume ex-
citations are considered as those loss processes that occur in
an infinite boundless medium, while surface excitations are
defined as all changes in the loss probability due to the pres-
ence of a boundary. Thus, in accordance with this definition,
the DSEP is in fact a difference of two loss probabilities, the
pure and the coupling term and a negative excursion in the
DSEP is observed whenever the latter exceeds the former.

In conclusion of this section, it is noted that several semi-
empirical formulas have been presented to estimate the
IMFP �Ref. 44� and the SEP.45 The latter quantity is given in
terms of a material parameter as, the so-called surface exci-
tation parameter, by the formula

ns�E,��� =
1

as
�E cos � + 1

. �6�

The quantity as is given for a large number of elemental
solids in Ref. 45 in units of the free electron value aNFE
=�8a0 /�2e2=0.173 eV−1/2, where e2=14.4 eV Å is the el-
ementary charge squared and a0=0.53 Å is the Bohr radius.
An empirical relationship between the surface excitation pa-
rameter as and the generalized plasmon energy was also de-
rived, allowing one to estimate the extent of surface excita-
tions for an arbitrary material.

B. Multiple scattering

The energy and direction of motion of a charged particle
travelling through a solid is changed repeatedly by multiple

scattering processes. For noncrystalline materials, where co-
herent scattering can be neglected �see Ref. 40 for the limi-
tations standard model for particle transport where diffrac-
tion effects are neglected� the fluctuations after multiple
scattering can be expressed in terms of the fluctuation distri-
butions for a single collision, that were introduced in the
preceding section, by solving a linearized Boltzmann-type
kinetic equation.46 The Green’s function of this problem can
be expressed in terms of the �n−1�-fold self-convolution of
the single-scattering fluctuation distributions weighted with
the collision statistics, i.e., the number of times n a given
scattering process occurs for the considered boundary condi-
tions �Eq. �12� in Ref. 46�. The resulting spectrum, or yield,
Y�E� �for one type of inelastic scattering� is then found by
superposition

Y�E� = �
n=0




An�n�T� � f0�E + T� . �7�

Here f0�E� is the energy distribution at the source and the
symbol “�” denotes a convolution over the energy loss T.
The quantities �n�T� represent the �normalized� distribution
of energy losses after n collisions and are given by the �n
−1�-fold self-convolution of the single scattering fluctuation
distribution w�T�,46

�n=0�T� = ��T� , �n�T� = �n−1�T�� � w�T − T�� , �8�

where w�T� is the normalized distribution of energy losses in
an individual collision.

The partial intensities An represent the number of elec-
trons that arrive in the detector after being n-fold inelasti-
cally scattered in the solid and are given by an integral over
all possible lengths of the paths s taken by the particle in the
solid,

An = �
0




Wn�s�Q�s�ds . �9�

Here Q�s� is the distribution of path lengths and Wn�s� is the
stochastic process for multiple scattering, which, in the
quasielastic regime, is given by47

Wn�s� = � s

�i
�ne−s/�i

n!
. �10�

In a REELS experiment, the incoming electron experi-
ences surface excitations on the way into the solid, is mul-
tiple scattered in the bulk and again suffers a surface elec-
tronic energy loss when crossing the solid-vacuum boundary
on its way out of the solid. In the following, the ingoing and
outgoing part of the trajectory will be denoted by the super-
scripts “i” and “o,” respectively. When interference effects
between the different types of inelastic scattering can be
neglected,9 the total energy fluctuation distribution for all
types of scattering is given by a convolution of the individual
fluctuation distributions and Eq. �7� may be generalized as
follows:
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Y�E� = �
nb=0




�
ns

i=0




�
ns

o=0




Anb,ns
i ,ns

o�nb
�T� � �ns

i�T�� � �ns
o�T��

� f0�E + T + T� + T�� . �11�

As mentioned before, the width of the surface scattering
zone v /�s is smaller than, or of the order of, the elastic mean
free path �e. In this case the electrons path in the surface-
scattering zone is rectilinear to a good approximation. A
most beneficial consequence of this fact is that the partial
intensities for the three types of scattering are uncorrelated,32

Anb,ns
i ,ns

o = Anb
 Ans

i  Ans
o. �12�

Although �small� effects of deflections in the surface-
scattering zone have been experimentally observed for a
rather pathological case,48 implying that Eqs. �12� �and �13�
below� are not strictly true, this approach nonetheless has
proven to constitute an effective approximation.31,32,48,49

Since there exists a unique straight line path connecting
any two points in space, the part of the path-length distribu-
tion relevant for surface excitations resembles a � function,
Qs�s����s−v /�s�i� when the passage through the surface-
scattering zone is approximately rectilinear. In this case Eq.
�9� can readily be integrated giving

Ans
i��i� =

ns
i��i��ns

i

ns
i!

e−ns
i ��i��, �13�

where the shorthand notation �i=cos �i was used to indicate
the incident polar direction of surface crossing. This reveals
that the average number of surface excitations may alterna-
tively be expressed as

ns
i��i�� �

v

�s�i
s,i�i

, �14�

where �i
s,i is the effective inelastic mean free path for surface

scattering along the incoming part of the trajectory. Analo-
gous expressions hold for the outgoing partial intensities.

For bulk inelastic scattering the situation is more compli-
cated. The distribution of pathlengths depends in a complex
manner on the incident and outgoing angle and the energy of

the particle.9,31,34,48 Therefore the partial intensities for bulk
scattering, Anb

, are most conveniently established by calcu-
lating the path-length distribution by some numerical proce-
dure, e.g., a Monte Carlo calculation,9,50 and using Eq. �9�.

Examples for the bulk partial intensities are given in Fig.
2 for electrons of various energies reflected from a Si and a
Au surface for normal incidence and for an off-normal emis-
sion angle of 60°, corresponding to the geometrical configu-
ration used throughout this work. The sequence of partial
intensities is seen to be qualitatively different for the two
considered materials and also for the different energies con-
sidered. This is a well-known effect34,48,50 that is caused by
the relative strength of elastic and inelastic scattering for a
given geometrical configuration, being governed by the com-
plex energy and angular dependence of the elastic scattering
cross section.

To simplify Eq. �11�, the reduced spectrum y�E� is intro-
duced. This is the spectrum divided by the area of the elastic
peak. The latter is per definition given by the zero order
partial intensity Anb=0,ns

i=0,ns
o=0. It will furthermore be as-

sumed that the width of the energy distribution at the source
�i.e., the thermal spread in the electron gun� is negligible
compared to the width of any feature in the relevant differ-
ential mean free paths, implying that the source energy dis-
tribution can be replaced by a � function, f0�E�=��E−E0�
where E0 is the source energy. For the following manipula-
tions, it is convenient to consider the Fourier transform of the
spectrum, since, by virtue of the convolution theorem, this
quantity can be written as a power series in the respective
mean free paths �cf. Eq. �8��. Below, any quantity in Fourier
space will be indicated by a tilde sign �“ ˜ ” �. The Fourier
transform of the reduced spectrum is given by

ỹ = �
nb=0




�
ns

i=0




�
ns

o=0

ns
i

�nb,ns
o,ns

i−ns
ow̃b

nbw̃s,i
ns

o

w̃s,o
ns

i−ns
o

, �15�

where the reduced partial intensities �nb,ns
i ,ns

o =Anb,ns
i ,ns

o /
Anb=0,ns

i=0,ns
o=0 were introduced. Note that the order of the

summation in Eq. �15� was also changed. Using expression
�12� and �13� and the binomial theorem, one finds

FIG. 2. Reduced partial intensities for quasielastic reflection, �nb
=Anb

/Anb=0 for volume scattering for several energies. These model
calculations were performed for normal incidence and for an off-normal emission direction of 60° �a� Si; �b� Au.
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ỹ = �
nb=0




�nb
w̃b

nb �
ns=0



�ns

i�w̃s,i + ns
o�w̃s,o�ns

ns!
, �16�

where ns=ns
i +ns

o. Since the results in Fig. 1 clearly show that
the normalized DSEP only depends weakly on the surface
crossing angle, it is reasonable to put ws,i�T��ws,o�T�
�ws�T�, in this way combining the effects of surface excita-
tions along the in- and outgoing part of the trajectory. Going
back to real space, this gives

y�E� = �
nb=0




�
ns=0




�nb
�ns

�nb
�T� � �ns

�T�� � ��E − E0 + T + T�� ,

�17�

where �ns
are the reduced partial intensities for surface scat-

tering

�ns
=

Ans

Ans=0
=

ns�ns

ns!
, �18�

and with ns�= ns
i��i��+ ns

o��o��.
Finally, the elastic peak is removed from the spectrum and

the energy scale is converted to an energy-loss scale giving
the reduced loss spectrum yL�T� as

yL�T� = �
nb=0




�
ns=0




�nb,ns
�nb

�T�� � �ns
�T − T�� , �19�

with �nb=0,ns=0=0. This form of the loss spectrum is used in
the further analysis.

C. Decomposition of REELS spectra

It is the objective of the present work to extract the
DIIMFP and DSEP from experimental loss spectra. Recog-
nizing Eq. �19� as a bivariate power series �in w̃b and w̃s� in
Fourier space, it is immediately obvious that this equation
has no unique solution. However, when two loss spectra with
different partial intensities

ỹL,1 = �
ns=0




�
nb=0




�ns,nb
w̃b

nbw̃s
ns,

ỹL,2 = �
ns=0




�
nb=0




�ns,nb
w̃b

nbw̃s
ns, �20�

with �0,0=�0,0=0, are measured, reversion of the bivariate
power series becomes possible. Experimentally, this implies
that two loss spectra need to be acquired at different energies
and/or geometrical configurations. From the theoretical point
of view, we need to make the assumption, in this case, that
the normalized DIIMFP and DSEP are independent of the
surface crossing angle and/or the energy to a good approxi-
mation �cf. Fig. 1�.

Formally, the reversion of this bivariate power series is
achieved by the expansion

w̃b = �
p=0




�
q=0




up,q
b ỹL,1

p ỹL,2
q , w̃s = �

p=0




�
q=0




up,q
s ỹL,1

p ỹL,2
q , �21�

with u0,0
b =u0,0

s =0. This can be seen by substituting Eq. �20�
back into Eq. �21� and equating coefficients of equal powers
of w̃b and w̃s. This gives the equations for the unknown co-
efficients up,q

b and up,q
s .

In doing so, one is faced with the problem of evaluating
the pth power of ỹL,1 times the qth power of ỹL,2 that can be
expressed as

ỹL,1
p ỹL,2

q = �
ns=0




�
nb=0




�p,q,nb,ns
w̃b

nbw̃s
ns. �22�

The coefficients �p,q,nb,ns
are found to be given by

�p,q,nb,ns
= ��p,�q��nb,ns�

�p+q� . �23�

These components are equal to the sum of all possible terms
with p factors in �k,l and q factors in �m,n, whose indices
“add up” to the target index combination �ns ,nb�= �k+m ,
l+n�. For example,

��2��2,1�
2 = �1,0�1,1 + �0.1�2,0 + �1,1�1,0 + �2,0�0,1,

��1,�2��1,2�
3 = �0,1�0,1�1,0 + �0,1�1,0�0,1 + �1,0�0,1�0,1.

�24�

Obviously, one has

�p,q,nb,ns
= 0 for all p + q � ns + nb, �25�

since the target index combination �ns ,nb� can only be pro-
duced by a number of factors less than or equal to �ns+nb�
when �0,0=�0,0=0 �see Eq. �20��. Furthermore, one has

�nb,ns,1,0 = �nb,ns
, �nb,ns,0,1 = �nb,ns

. �26�

Based on these guidelines, the coefficients �p,q,nb,ns
can

readily be established by means of a recursive algorithm for
any sequence of partial intensities �nb,ns

and �nb,ns
.

Inserting Eq. �20� into Eq. �21� and equating coefficients,
one finds a set of two equations with two unknowns for the
first-order bulk coefficients,

1 = �
p=0




�
q=0




up,q
b �p,q,1,0 = u0,1�1,0 + u1,0�1,0,

0 = �
p=0




�
q=0




up,q
b �p,q,0,1 = u0,1�0,1 + u1,0�0,1. �27�

The solution is

u1,0
b =

�0,1

�0,1�1,0 − �1,0�0,1
, u0,1

b =
�0,1

�0,1�1,0 − �1,0�0,1
.

�28�

Similarly, for the first order surface coefficients one finds
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u1,0
s =

�1,0

�1,0�0,1 − �0,1�1,0
, u0,1

s =
�1,0

�1,0�0,1 − �0,1�1,0
.

�29�

The equation determining the higher order �p+q�1� coeffi-
cients

0 = �
p=0




�
q=0




up,q�p,q,nb,ns
, �30�

can be split into two parts by using property �25�, changing
the order of the summation and writing

0 = �
p=0

ns+nb−1

�
q=0

p

uq,p−q�q,p−q,nb,ns
+ �

p=0

ns+nb

up,ns+nb−p�p,nb+ns−p,nb,ns
.

�31�

The first term represents a �ns+nb+1�-dimensional vector
containing the coefficients up�nb,q�ns

, which have been estab-
lished during the previous step of the algorithm. The latter
term is the product of a square matrix with the same di-
mension and the unknown vector �u0,nb+ns

,u1,nb+ns−1 ,
u2,nb+ns−2 , . . . ,unb+ns,0

�. Thus, for each value of nb+ns, the
corresponding coefficients are obtained by solution of a sys-
tem of nb+ns+1 linear equations with as many unknowns.
Consecutively performing this procedure for values of the
total scattering order nb+ns=1,2 ,¼ ,nmax, where nmax is the
collision order where convergence of the series Eq. �21� is
attained, leads to the desired coefficient matrices up,q

b and
up,q

s . Note that Eqs. �30� and �31� are identical for the surface
and bulk coefficients, only the calculation for the first order
term is different �see Eqs. �28� and �29��.

Finally, having established the bulk and surface expansion
coefficients, the Fourier back-transform of Eq. �21� gives

wb�T� = �
p=0




�
q=0




up,q
b yL,1

�p� �T�� � yL,2
�q� �T − T�� ,

ws�T� = �
p=0




�
q=0




up,q
s yL,1

�p� �T�� � yL,2
�q� �T − T�� , �32�

where yL,1
�p� and yL,2

�q� denote the �p−1�-fold self-convolution of
yL,1 and the �q−1�-fold self-convolution of yL,2, respectively.

III. RESULTS AND DISCUSSION

The procedure outlined above was implemented and ap-
plied to simulated data, to test its performance in terms of
numerical stability and accuracy. Subsequently it was applied
to experimental REELS spectra, to gain information on the
dielectric response of several solids to incoming electrons. In
all cases, the pair of spectra considered was a set of two
REELS spectra taken at different energies, but for the same
geometrical configuration.

Calculation of the coefficients �p,q,nb,ns
was performed us-

ing a simple recursive algorithm �about 20 lines of code�,
following the guidelines given in the preceding section.

While computation of the first few orders �p+q�7� takes
several seconds on a modern PC, the eighth order alone takes
10 seconds, the ninth order 10 minutes, the tenth order takes
several hours and the eleventh order several weeks. Although
faster algorithms for reversion of multivariate power series
are available,51–53 these are quite complex and were not con-
sidered since convergence of the proposed algorithm is typi-
cally attained for nmax�7 for energy-loss ranges extending
up to 100 eV.

The convergence of the algorithm can be assessed in a
simple way by using the retrieved DSEP and DIIMFP to
simulate the loss spectra and compare these with the original
loss spectra from which these quantities were retrieved. For
the energy range for which the procedure has attained con-
vergence, these simulated spectra are exactly identical to the
input spectra, while for higher energies, corresponding to
scattering orders beyond the value of nmax, they diverge rap-
idly. In this way the required value of nmax can easily be
determined for a specific application. For the results shown
in the present work, the maximum energy loss considered
was 100 eV and the procedure converged for nmax=5−7.

It was found that the outlined algorithm is very robust
when a reasonable choice for the difference of the partial
intensities of the two input spectra is made. The stability of
the procedure is governed by the quantity 	= 
�1,0�0,1
−�0,1�1,0
 which should not be too much smaller than unity
	�0.1 when the procedure is applied to experimental data.
On the other hand, the difference in energy and/or emission
angle should not be too large since then the difference of the
normalized DIIMFP and/or DSEP for the different experi-
mental conditions becomes more pronounced. This implies
that one should select that combination of energies for which
this criterion is optimally fulfilled �see Fig. 2�.

Spectra were simulated by calculation of the path-length
distribution using a Monte Carlo algorithm50 and using Eq.
�9� to calculate the bulk partial intensities. The inelastic
mean free path was derived from the TPP-2M formula,44 and
elastic cross sections were calculated with the computer code
of Ref. 54 for a Thomas-Fermi-Dirac potential.55 The surface
partial intensities were obtained from Eq. �13�, using the
values for the SEP given in Ref. 45. The DSEP and DIIMFP
were established by means of Eqs. �1� and �4� using the
Drude-Lindhard parameters for the dielectric function in Ref.
21.

Three different types of simulated spectra were analyzed
before the procedure was applied to experimental data, in
order to assess the influence of several assumptions that are
made in this procedure on the outcome of a retrieval opera-
tion: �I� loss spectra that were simulated for an elastic peak
modelled by a true � function and using identical normalized
DIIMFPs and DSEP for both energies and/or geometries of
the spectrum pair; �II� loss spectra that were simulated taking
into account the energy and/or angular dependence of the
normalized loss distributions using an infinitely sharp elastic
peak; and �III� loss spectra with different DIIMFP and DSEP
at the considered energies and/or geometries and using an
elastic peak with a finite width. These different types of
model calculations will be referred to below by their roman
numeral indicated above.

The type I model calculations always returned the exact
model DIIMFP and DSEP �within the numerical precision of
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the PC�, even when a significant amount of noise was added
to the model spectra. When the energy dependence of the
DIIMFP and DSEP is accounted for in the simulation �type II
model calculations�, minor deviations were observed, of the
order of the deviations seen for different energies and/or
angles shown in Fig. 1. These deviations were more pro-
nounced—but still minor—for sharply peaked loss distribu-
tions �e.g., for Si�. When a finite width of the elastic peak
was used �type III model calculations�, the retrieved loss
distributions become smoother. Results of type III model cal-
culations are shown and discussed below where the retrieval
results using experimental data are presented.

The procedure used to acquire the experimental data has
been described in detail before.50 REELS data were taken for
20 elemental solids �Ag, Al, Au, Be, Bi, C, Co, Cu, Fe, Ge,
Mo, Ni, Pd, Pt, Si, Ta, Te, Ti, V, W� in the energy range
between 300 and 3400 eV for normal incidence and an off-
normal emission angle of 60°, using a hemispherical ana-
lyzer operated in the constant-analyzer-energy mode giving a
width of the elastic peak of 0.7 eV. Count rates in the elastic
peaks were kept well below the saturation count rate of the
channeltrons and a dead time correction was applied to the
data. For each material the optimum energy combination for
the retrieval procedure of two loss spectra was determined by
inspection of the partial intensities. For most materials the
optimum energy combination was �1000–3000 eV�.

The investigated specimen were either polycrystalline or
were amorphized by ion bombardment �e.g., in the case of
Si�. Sample cleaning was performed by repeated cycles of
3 keV Ar+ ion bombardment until the C and O contamina-
tion signal in Auger electron spectra dropped below an
atomic percent. The samples were not annealed during the
cleaning procedure.

Figures 3–5 show the results for Si, Cu, and Au. In �a� the
experimental loss spectra used as input are represented by
the noisy curves. These loss spectra were obtained from the
REELS spectra by fitting the elastic peak to a Gaussian. Sub-
sequently, the experimental data were divided by the area of
the gaussian peak, the fitted peak was subtracted from them
and the energy scale was converted to an energy-loss scale.
Finally, the measured spectrum SL�T� �in counts per channel�
was converted to experimental yield yL�T� �in reciprocal eV�,
corresponding to Eq. �19�, by division by the channel width
	E.

The smooth curves in �a� are the simulated spectra for an
elastic peak width matching that of the experimental data and
with the energy dependence of the normalized loss distribu-
tions taken into account �type III model calculations�. In �b�
the retrieved normalized DIIMFP �open circles� is compared
with the theoretical DIIMFP �Eq. �1�, solid curves� and with
the DIIMFP retrieved from the simulated spectra �type III
model calculations, dotted curve�. In �c� the retrieved nor-
malized DSEP is compared with theory �Eq. �4�, solid
curves� and the result based on simulated spectra �type III
model calculations, dotted curves�. The results in �b� and �c�
are presented as returned by the decomposition algorithm,
and were not scaled in any way. Finally, the DIIMFP and
DSEP retrieved from the experimental data were used to cal-
culate another set of model spectra which are compared in
�a� with the experimental data, but are impossible to distin-

guish from the latter since these model data exactly coincide
with the experimental data since Eq. �32� and Eq. �20� are
each others exact inverse for the energy loss range where
convergence has been attained.

The raw loss spectra for Si shown in Fig. 3�a� are seen to
be quite similar for 1000 and 3000 eV. Close inspection of
the loss features for the fourth and fifth order plasmon re-
veals that the data for 1000 eV decrease slightly faster with
increasing energy loss than for 3000 eV, in full accordance
with the partial intensities for these energies, shown in Fig.
2�a�. However, the main difference between the two spectra
is the relative intensity of the first surface plasmon, being
clearly lower for 3000 eV. The main difference between the
experimental data and the simulated REELS spectra is the
fact that the experimental plasmon peaks are broader than the

FIG. 3. �a� Measured energy loss spectra for 1000 and 3000 eV
for Si after removal of the elastic peak �noisy curves�. The smooth
curves are the simulated loss spectra using theoretical shapes for the
DSEP and DIIMFP. �b� Retrieved normalized DIIMFP �open
circles�. The solid curve is the theoretical result, Eq. �4�. The dashed
curve represents the retrieved volume loss distribution using the
simulated spectra in �a� as input. �c� Same as �b� for the DSEP. �See
text�.
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simulated ones, and in consequence the intensity at higher
loss energies is lower than for the simulated data.

The retrieved bulk loss distribution �open circles in Fig.
3�b�� agrees fairly well with the result predicted by theory
�solid curve�, but significant deviations are observed as a
shoulder at around 12 eV and a spurious peak at about twice
the volume plasmon energy. However, these features are also
present in the loss distribution retrieved from the simulated
spectra �type III model calculations, dotted lines�. Further-
more, the feature at 	12 eV exactly coincides with the peak
in the difference distribution 	DSEP in Fig. 1�a�. The
	DIIMFP difference distribution has a peak in the vicinity of
the bulk plasmon energy implying that the theoretical se-
quence of partial intensities no longer matches those required
for the retrieval �since the area under the normalized DI-
IMFP is different�. In consequence, the elimination of the
second bulk plasmon is not complete, exactly as observed in
the data at about 32 eV. It can therefore be concluded that
the deviations between the theoretical loss distributions—for
Si, with quite sharply peaked loss features—and those re-
trieved from experimental data are mainly a consequence of
the energy dependence of the shape of the DIIMFP and the

angular dependence of the shape of the DSEP �see Fig. 1�,
which is ignored by Eq. �32�.

For the differential surface excitation probability, a simi-
lar behavior is seen: near 32 eV, a second negative excur-
sion, apart from the theoretically expected begrenzungs ef-
fect at 	16 eV, can be seen. Again this feature is also
present in the type III model data and can thus be attributed
to the energy dependence of the shape of the DIIMFP and
DSEP. The begrenzungs effect itself is quite nicely repro-
duced by the experimental loss distributions. The only devia-
tion from theory that cannot be explained by the assumption
that the shape of the DIIMFP and DSEP do not depend on
the energy and surface crossing angle are the features below
	10 eV, being significantly higher than the type III model
calculations and rendering the overall shape of the DSEP
broader than theoretically expected. This explains the differ-
ences between the model data and experiment in Fig. 3�a�.
Such deviations were observed before32 but a clear explana-
tion has not been proposed. We note, however, that the phys-
ical model for electron reflection discussed in the present

FIG. 4. Same as Fig. 3 for Cu. FIG. 5. Same as Fig. 3 for Au for measured spectra taken at 500
and 3400 eV.
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paper completely disregards direct creation of electron-hole
pairs as a result of the impact of the primary electrons on the
solid.

The differences between the simulated and experimental
spectra for Cu shown in Fig. 4 are similar to those for Si in
that the intensity of the simulated data differs from the ex-
perimental ones and that the surface loss features are more
clearly more pronounced for 1000 eV. The width of the loss
features agrees quite well in this case. Also, in the experi-
mental data, a faint trace of the Cu MII edge at 	77 eV is
discernible which is absent in the simulated data, being at-
tributable to the fact that core edges are difficult to describe
by means of a Drude-Lindhard fit to optical data. The re-
trieved bulk loss distributions agree satisfactorily with
theory, while the experimental surface loss distribution is
slightly broader and tails off unexpectedly slowly towards
higher loss energies. The larger width of the retrieved DSEP
explains the higher intensity of the experimental raw data
compared to the model calculations in Fig. 4�a�, but the re-
maining intensity at loss energies above 	30 eV is not clear.
It may be attributable to the uncertainty of the value of ns�
used in the retrieval.

The results for Au are shown in Fig. 5. Note that the shape
of the raw data far away from the surface loss features is
distinctly different for the two energies, as predicted by the
corresponding sequences of bulk partial intensities for these
energies, shown in Fig. 2�b�. The retrieved loss distributions
again agree quite well with theory except for deviations in
the DIIMFP at around 	30 eV.

These deviations, however, are of the same order of mag-
nitude as differences between different sets of optical data
found in the literature, as shown in Fig. 6. For Cu, the
present data are in reasonable agreement with the DIIMFP
calculated from optical data in Ref. 21 and Ref. 1, except for
the two peaks at 	20 and 	30 eV which are slightly sharper
as expected from the optical data. The density-functional-
calculations of Ref. 56 agree closely with our data for the
first peak at 	20 eV, but deviate for higher energies. For Au,
on the basis of the good mutual consistency of the present
data, and those of Ref. 21 and Ref. 1, one might be inclined
to suspect a systematic error in the dataset of Ref. 57. This
comparison emphasizes the necessity of having an effective

means for experimental determination of optical constants at
one’s disposal.

Since, in principle, optical data can be derived from ex-
perimental DIIMFPs, the present results are encouraging in
that the proposed approach seems to open up a new way to
obtain such data. The involved experimental procedure is
conceivably straightforward and at any rate much simpler
than other techniques to obtain optical data in this energy
range like absorption or reflection of light or loss measure-
ments in the transmission microscope. Most importantly,
data on the dielectric response can be derived from measure-
ments with an inherent lateral resolution below a few nm on
a specimen prepared in an arbitrary way �as long as it can be
brought into an ultrahigh vacuum chamber�. This constitutes
an important advantage over other measurements including
loss measurements conducted in transmission.

A comparison as given here for Si, Cu, and Au was made
for other measured materials for which Drude-Lindhard pa-
rameters for the dielectric function are available �Ag,30,33

Al,11 Be,58 Bi,58 C,58 Co,58 Fe,21,30,33 Ge,58 Mo,58 Ni,58

Pd,21,33 Pt,58 Ta,58 Te,58 Ti,33 V,58 W58��. These comparisons
showed similar features as those for Si,30 Cu,30 and Au,30

which therefore constitute a representative subset of all re-
sults.

For materials with sharp loss distributions the energy
and/or angular dependence of the DIIMFP and/or DSEP pro-
duced spurious features in the retrieved data, as discussed for
Si, and, in most cases, these were reproduced by the type III
model calculations in much detail. For the other materials
these deviations were smaller. Nonetheless it seems worth-
while to try to apply the proposed algorithm to angle-
resolved data �taken at the same energy� in order to reduce
these spurious features. The remarkable agreement between
the type III model calculations and experimental retrievals
confirm the model of medium energy electron transport in
solids in unprecedented detail �see Fig. 3�, in particular the
angular dependence of the shape of the DSEP and the energy
dependence of the shape of the DIIMFP, which are very
subtle effects.

An issue that deserves to be addressed at this stage is the
influence of any uncertainty in the input parameters on the
outcome of the retrieval procedure. The input parameters
comprise the elastic scattering cross section, and the total

FIG. 6. Comparison of the DIIMFP obtained in the present work �open circles� with results based on Eq. �1� using optical data taken from
different sources. �a� Cu, 1000 eV. Solid curve, Tung, Ref. 21; dashed-dotted curve, Palik, Ref. 1; dotted curve, Ambrosch-Draxl, Ref. 56;
�b� Au, 1000 eV. Solid curve, Tung, Ref. 21; dashed-dotted curve, Palik, Ref. 1; dotted curve, Hageman, Ref. 57.
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scattering probabilities, i.e., the inelastic mean free path and
the surface excitation probability, or average number of sur-
face excitations in a single surface crossing. While the scat-
tering potential employed to establish the elastic cross sec-
tion is known to critically affect the angular distribution of
the elastic peak intensity in some cases,59 it is not expected
to affect the sequence of reduced partial intensities in a sig-
nificant way since it is the shape of the path-length distribu-
tion that governs the latter, while the absolute elastic peak
intensity is determined by the absolute value of path-length
distribution �cf. Eq. �9��. The same reasoning holds for the
inelastic mean free path that is used to convert the path-
length distribution into the sequence of partial intensities.
These considerations are supported by the fact that the bulk
loss distributions retrieved from experiment shown in Figs.
3–5 agree quite well—on an absolute scale—with the theo-
retical normalized DIIMFPs.

The relative error in the surface partial intensities is pro-
portional to the relative error in the surface excitation param-
eter. The latter varies between 	1–2 for all materials studied
so far and is known with an accuracy of about 10%.45 Model
calculations show that the main influence of an error in the
SEP of this order of magnitude on the outcome of a retrieval
is that the area under the retrieved curve deviates from unity
by approximately the same relative amount. The deviations
from theory observed for the DSEP of Cu can be explained
in this way.

IV. COMPARISON WITH OTHER DECONVOLUTION
PROCEDURES

The analysis so far has shown that a simultaneous decon-
volution of two REELS spectra leads to the unique recon-
struction of the DSEP and the DIIMFP. Such a simultaneous
deconvolution procedure is necessary since a REELS spec-
trum is given by a bivariate power series in Fourier space.
Therefore, a reversion of a single spectrum leading to a
unique reconstruction of the single scattering loss distribu-
tion does not exist. Nonetheless, in the past 20 years many
papers have been presented where it was attempted to
achieve exactly this, since, with very few exceptions, all pre-
viously proposed REELS analysis procedures are based on
reversion of a univariate power series. Among these, the
most frequently used procedure is the one by Tougaard and
Chorkendorff.10 The fact that reversion of a univariate power
series does not give a unique solution was realized by
Krynko and co-workers,37 who proposed an empirical proce-
dure based on analysis of a set of REELS spectra acquired at
several different geometrical configurations. The procedure
by Chen36 is based on a bivariate power series. This author
used a slightly different �but equivalent� formalism as the
one outlined in the present work but used two individual
spectra deconvoluted by Tougaard and Chorkendorffs algo-
rithm as a starting point. The final result ignores mixed terms
corresponding to electrons that have suffered both surface
and volume electronic excitations. As will be shown below,
the mixed term gives a pronounced �negative� contribution to
Tougaard and Chorkendorff’s loss distribution.

It is commonly believed that the procedure by Tougaard
and Chorkendorff yields some kind of “effective” single

scattering loss distribution, i.e., some kind of linear combi-
nation of the DIIMFP and DSEP, but this has never been
proved. Therefore, it seems worthwhile to study this proce-
dure in more detail and to put it into perspective with the
present more rigorous procedure.

In their pioneering work10 on analysis of REELS spectra,
Tougaard and Chorkendorf neglected surface excitations and
used Landau’s loss function �for volume scattering� as a
starting point. Meanwhile35,46 Landau’s loss function has
been generalized to take into account deflections as well as
different types of inelastic scattering as a power series ex-
pansion �in Fourier-Legendre space� of the respective mean
free paths. Thus, Tougaard and Chorkendorff’s approach is
equivalent to using a univariate power series �in Fourier
space� for the spectrum

yL�T� = �
nb=0




�nb
�nb

�T� . �33�

Furthermore, multiple elastic scattering was treated within
the framework of the P1 approximation, in which the expan-
sion of the elastic cross section in terms of Legendre poly-
nomials is terminated after the first order. Within this ap-
proximation, Tofterup60 found that the path-length distri-
bution is given by

QP1
�s� � exp�− s/L� , �34�

where the characteristic length L is about twice the transport
mean free path L�2�tr. Inserting this result into Eq. �9�, the
following simple relationship is found for the bulk partial
intensities:

�nb

P1 = �nb, �35�

with �=L / �L+�i�.
Convoluting Eq. �33� with �2 /�1wb�T� and subtracting

the result from Eq. �33� gives

yL�T� −
�2

�1
wb�T�� � yL�T − T��

= �1wb�T� + �
n=3


 ��n −
�2

�1
�n−1�wb

�n�. �36�

For a sequence of partial intensities of the form �n=�n, all
terms in the sum on the right-hand side vanish. Therefore,
within the P1 approximation for elastic scattering, the exact
solution of Eq. �33� is

�wb�T� =
�iL

�i + L
Wb�T� = yL�T� −

�iL

�i + L
Wb�T�� � yL�T − T�� ,

�37�

where the normalization of the DIIMFP �Wb�T ,E�=w�T ,E�
has been used. This is the deconvolution formula of Tou-
gaard and Chorkendorff for which a simple recursive scheme
was proposed by these authors.10

The exact solution of Eq. �33� for an arbitrary sequence
of partial intensities, not necessarily of the form �n=�n, was
found independently by Vicanek11 and the present author,12
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wb�T� = �
q=1




uqyL
�q��T� . �38�

The coefficients uq in this solution are functions of the partial
intensities, that are given in Ref. 32. For partial intensities of
the form ��nb

=�nb�, the coefficients uq assume a particularly
simple form,

uq =
�− 1�q+1

�
. �39�

Therefore, a nonrecursive alternative representation of Eq.
�37� is found by inserting Eq. �39� into Eq. �38�,

�wb�T� =
�iL

�i + L
Wb�T� = �

q=1




�− 1�q+1yL
�q��T� . �40�

The latter formula, being completely equivalent to Eq. �37�
makes it possible, in a simple way, to theoretically analyze
the outcome of the procedure by Tougaard and Chorkendorff,
when applied to a realistic REELS spectrum, given by a
bivariate power series in Fourier space. To this end, Eq. �19�
is inserted into Eq. �40�, giving

�wTC�T� = �1,0wb�T� + �0,1ws�T� − �1,1wb�T�� � ws�T − T��

− �2,0ws
�2��T� + O�w�3�� , �41�

where Eqs. �12� and �13� were used. It is seen that the loss
distribution retrieved by the procedure of Tougaard and
Chorkendorff is not a single scattering loss distribution, but
is made up of contributions of any scattering order, the sec-
ond order mixed �one-surface and one-bulk excitation� and
surface term �two-surface excitations� giving the most pro-
nounced �negative� contribution.

The above theoretical analysis is confirmed by the results
displayed in Fig. 7 that shows simulated spectra for 300 eV
electrons reflected from a Si surface in �a�–�c� as solid lines.
The retrieved loss distributions are represented by the dashed
lines. These retrieved distributions were obtained by subject-
ing the spectra to Eq. �37�. It is indeed seen that the retrieved
distribution contains a significant �negative� contribution of
electrons being scattered twice �two-surface or one-surface
and one-bulk excitation�, in accordance with Eq. �41�. In
consequence, the resulting retrieved distribution is not a lin-
ear combination of the single scattering loss distributions.
Note that the results in Figs. 7�a� and 7�b� only differ in the
width of the plasmon peak that was taken to be 0.5 eV in
Fig. 7�a� for clarity while a more realistic value of 2.4 eV
was chosen in Fig. 7�b�. The results in Fig. 7�c� for the
experimental spectrum agree quite well with the simulated
data in Fig. 7�b�. Comparison with Fig. 3 that displays the
results of the rigorous retrieval procedure confirms the model
of Tung and co-workers for the DIIMFP and DSEP in detail.
This proves that the negative excursion in the loss distribu-
tion retrieved from the experimental data reported in many
works presented over the past 20 years �see, e.g., Ref. 10� is
in fact an artifact of the procedure of Tougaard and Chork-
endorff and has no physical basis.

Summarizing the results in this section, one may state that
the earlier REELS analysis procedures do not provide any
kind of single scattering loss distribution and are therefore
difficult to interpret physically. On the other hand, the pro-
cedure proposed in the present work was successfully ap-
plied to REELS data of a few materials and for these con-
firms the model of Tung and co-workers for the electro-
dynamic interaction of electrons with surfaces21 with unprec-
edented detail.

FIG. 7. Application of the deconvolution formula of Tougaard and Chorkendorff, Eq. �37�, to simulated and experimental reflection
electron energy loss spectra of Si. Solid line, spectrum; dashed line, retrieved loss distribution. �a� Simulated spectrum, bulk plasmon energy
17.0 eV, surface plasmon energy 12.0 eV, plasmon width �full width at half-maximum� 0.5 eV; �b� same as �a� for a plasmon width of
2.4 eV; �c� experimental spectrum. In all cases, it is clearly seen that the loss distribution retrieved by the Tougaard and Chorkendorff
procedure is not in any way a linear combination of the single scattering loss distributions.
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V. SUMMARY

The energy-loss process of electrons reflected from solid
surfaces was studied theoretically. It was shown that the Fou-
rier transform of the loss spectrum can be written as a bivari-
ate power series of the normalized differential surface and
bulk loss distribution in individual collisions. A reversion of
this bivariate power series is given on the basis of two input
spectra with sufficiently different sequences of partial inten-
sities. The resulting procedure was applied to model data and
experimental spectra. The retrieved loss distributions com-
pare satisfactorily with theory. On the whole, the results pro-
vide a detailed verification of the commonly accepted model
of medium energy electron transport in solids. In particular,
the energy and/or angular dependence of the shape of the
DIIMFP and the DSEP was confirmed in detail for Si.

The proposed method was compared with the frequently
employed procedure by Tougaard and Chorkendorff that is

based on reversion of a univariate power series in Fourier
space. It was shown, both theoretically and through analysis
of experimental and simulated data, that this earlier proce-
dure does not provide any kind of single scattering loss dis-
tribution, but rather a mixture of multiple surface, volume
and mixed terms. Therefore, it is troublesome to interpret the
results of this earlier procedure.
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