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Nonlinear effect of stress and wetting on surface evolution of epitaxial thin films
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An epitaxial thin film can undergo surface instability and break up into discrete islands. The stress field and
the interface interaction have profound effects on the dynamics of surface evolution. In this work, we develop
a nonlinear evolution equation with a second-order approximation for the stress field and a nonlinear wetting
potential for the interface. The equation is solved numerically in both two-dimensional (2D) and three-
dimensional configurations using a spectral method. The effects of stress and wetting are examined. It is found
that the nonlinear stress field alone induces “blow-up” instability, leading to cracklike grooving in 2D and
circular pitlike morphology in 3D. For thin films, the blow-up is suppressed by the wetting effect, leading to a
thin wetting layer and an array of discrete islands. The dynamics of island formation and coarsening over a
large area is well captured by the interplay of the nonlinear stress field and the wetting effect.
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I. INTRODUCTION

A macroscopically flat surface of a stressed solid is un-
stable. The instability is driven by the competition between
surface energy and strain energy.'> The rate of surface
roughening is controlled by associated kinetics of mass
transport, such as surface diffusion. A linear analysis predicts
exponential growth of surface perturbation with wavelengths
longer than a critical length. Nonlinear analyses in two-
dimensional configurations showed that the stress-driven sur-
face instability evolves into a deep, cracklike groove or cusp
morphology.*~® Experimental investigations have observed
similar surface instability and morphology evolution in a
number of material systems.”!?

An epitaxial thin film is inherently stressed due to lattice
mismatch between the film and the substrate, which has
drawn tremendous interests for a broad range of applications
in electronic and optoelectronic systems.!" Similar to other
stressed solids, the film can undergo surface instability. How-
ever, unlike a semi-infinite homogeneous solid, the presence
of a substrate affects the instability in several ways. First, the
elastic stiffness of the substrate may differ from that of the
film, which leads to a different critical wavelength:'>'4 a
stiffer substrate tends to stabilize the film and increases the
critical wavelength, while the contrary is true for a softer
substrate. At the limit of a rigid substrate, a critical film
thickness exists, below which the thin film is stable against
perturbations of any wavelengths. However, the stiffness ef-
fect is insignificant for cases when the film and the substrate
have similar elastic properties, such as a SiGe film on a Si
substrate.'* A more important effect is owing to the interface
between the film and the substrate. At close proximity to the
interface, the wetting interaction between the film and the
substrate becomes significant. If the film wets the substrate,
the wetting interaction will prevent the substrate from being
exposed. Even when the wetting interaction is weak or the
film is nonwetting, in which case the substrate surface may
be partly exposed, the surface of the unstressed substrate is
stable against further roughening. In both cases, instead of
forming deep grooves, the film breaks up into discrete
islands.!>~!8 Furthermore, the mismatch stress in an epitaxial
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film may also be relaxed by dislocation mechanisms.!” The
competition between surface instability and dislocation
mechanisms has been reasonably understood.!® This paper
focuses on diffusion-controlled surface instability and evolu-
tion dynamics, assuming dislocation free in the film.

A continuum theory based on nonequilibrium thermody-
namics has been developed for modeling surface evolution
of epitaxial films. Within this framework, numerical simula-
tions have revealed rich dynamics of surface evolution such
as self-assembly of quantum dots.?*?> However, three-
dimensional (3D) nonlinear simulations have been limited to
small surface areas or a small number of quantum dots.
Some large-scale simulations assumed same elastic proper-
ties for the film and the substrate.?! Alternatively, Spencer et
al.? derived a simple evolution equation in the limit of a
rigid substrate and under a small-slope approximation. They
found that the solution blows up in a finite time, similar to
formation of the cracklike morphology in stressed semi-
infinite solids, but with the tip pointing upward (away from
the substrate). Golovin et al.* showed that certain wetting
potentials between the film and the substrate can lead to a
nonlinear stabilization of the instability and to self-
organization of spatially regular arrays of quantum dots or
nanopits. Tekalign and Spencer? derived a similar evolution
equation for a deformable substrate and showed that the
equation possesses islandlike steady state solutions in both
2D and 3D. Their equation includes a nonlinear wetting po-
tential and a linear analysis of the stress field. In the present
study, we derive a nonlinear evolution equation based on an
asymptotic analysis of the stress field including the second-
order terms, to study the nonlinear effect of stress in addition
to that of wetting. Both 2D and 3D numerical simulations are
conducted to study the dynamics of surface evolution. By
combining the nonlinear stress analysis with a nonlinear wet-
ting potential, our simulations show island formation over a
relatively large area as well as subsequent coarsening and
stabilization.

The paper is organized as follows. Section II outlines the
general formulation of the model. In Sec. III, an asymptotic
analysis of the stress field is presented, following which the
linear and nonlinear effects of stress are discussed. Section
IV considers the effect of a nonlinear wetting potential, first
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FIG. 1. (Color online) Schematic of surface evolution of an
epitaxial film. (a) Reference state. (b) Evolving state.

by a linearized analysis and then by numerical simulations. A
spectral method is developed in Secs. III and IV for both 2D
and 3D simulations. The results are summarized in Sec. V.

II. GENERAL FORMULATION

Consider an epitaxial thin film on a thick substrate. At the
reference state [Fig. 1(a)], the film has a flat surface with a
uniform thickness h,. Due to lattice mismatch between the
film and the substrate, the film is subjected to a uniform
equibiaxial stress o;=05=0,. Upon annealing (assuming
no deposition), atomic diffusion on the surface leads to evo-
lution of the film surface, with a thickness profile i(x,,x,,1),
where ¢ is the time of evolution and the coordinates x; (j
=1,2,3) are set up such that x;=0 at the interface between
the film and the substrate, as shown in Fig. 1(b). The film is
unbounded in the x; and x, directions. Following the varia-
tional analysis by Freund and Jonsdottir,'* we define a
chemical potential at the film surface with respect to the
reference plane of a flat surface as

,LL(.X],.Xz,t):Q(UE—'yK‘F UW)V’l+h(lha/’ (1)

where Uy represents the elastic strain energy density at the
surface, vy is the surface energy density, « is the surface

curvature, Uy, represents a wetting potential, hazﬁ a

Xy
=1,2) is the gradient of the surface morphology, and () is the
atomic volume. A repeated Greek subscript implies summa-
tion over 1 and 2.

The surface chemical potential, if nonuniform, drives sur-
face diffusion. For simplicity, assume a linear kinetic law,
where the diffusion flux is proportional to the gradient of the
chemical potential, namely,

Ju=-ME )
ox,
where M represents the mobility of surface atoms. By mass
conservation, the divergence of the flux leads to evolution of
the thickness profile
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[(Ug— yr+ Up)N1+hghgl.  (3)

The evolution equation (3) takes into account the effects of
strain energy, surface energy, and wetting energy. Other pos-
sible contributions are ignored in the present study.

The elastic strain energy density is given by

1
UE=50-ij8ij’ (4)

where the stress o;; and the strain g;; are obtained by solving
a boundary value problem of linear elasticity. The subscripts
i,j take values 1, 2, and 3; a repeated subscript implies sum-
mation over its possible values. Referring to the coordinates
in Fig. 1, the boundary condition at the film surface (x3=£) is

o;n. =0, (5)

v

with a unit vector of the surface normal given by
—hy 1

Ng= T——, (6)
\"1 + hﬁhﬁ

n3 AY 1 + h Bl’l B ’
The interface between the film and the substrate (x3=0) re-
mains coherent, implying continuity for tractions and dis-
placements. The substrate is assumed to be infinitely thick
with both the stress and the displacement diminishing as x3
——o0, Due to the nonlinearity in the boundary condition (5),
the elasticity problem in general must be solved numerically,
which is computationally expensive in 3D. An alternative
approach will be developed in Sec. III.
The surface curvature is given by

_ (1+h,h)hgs—hohgh,g
(1 +h,h,)*? '

()

The sign of « is defined such that it is positive for a concave
surface. The curvature can be expanded as

K=hlgﬁ<1 —%52> = hoghahg+ 0(8Y), (8)

where o= \my is the magnitude of the surface gradient vec-
tor. In the present study, only the linear term (k=/gp) is used
for the first and second-order analyses, because the first non-
linear term in Eq. (8) is of the third order.

For the wetting potential, we adopt a “transition-layer”
model?® based on a surface energy that depends on the film
thickness and undergoes a rapid transition from y; (film) to
v, (substrate) over a length scale b, i.e.,

1 1 h
y(h) = 5(7f+ Ys) + ;('yf— %)arctan(g>- 9)

Equation (9) leads to a nonlinear wetting potential

_ ’Yf_ Ys b
YTt hgh, B+ D)

(10)

The physical significance of the length b and the wetting
potential will be discussed in Sec. IV. Other types of wetting
potentials®?7-?8 have been proposed, with qualitatively simi-
lar effects.
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It should be noted that the present formulation assumes an
isotropic system, with isotropic elastic properties for the film
and the substrate, isotropic surface energy density, isotropic
wetting potential, and isotropic surface diffusion mobility. In
addition, the surface energy density is assumed to be inde-
pendent of deformation. More sophisticated models taking
into account the effects of anisotropy and strain-dependent
surface energy (i.e., surface stress) can be found
elsewhere.?’3! The present study focuses on nonlinear ef-
fects of stress and wetting on the evolution dynamics based
on the isotropic model.

III. EFFECT OF STRESS

At the reference state [Fig. 1(a)], the strain energy density
in the film is uniform, namely,

1_
yO = =2 (11)
Ef

where E; is Young’s modulus of the film and v, Poisson’s
ratio. However, the reference state is an unstable equilibrium
configuration because a small perturbation can grow. As the
surface evolves, the stress field changes, governed by the
boundary condition (5). Following an approach by Xiang and
E?} we expand the stress into a series in the order of the
surface gradient, namely,

0= Ug.)) + 50'5}) + 520',(-?) + e, (12)

where g[(f» is the stress at the reference state (uniform,
equibiaxial for the present case). The second term on the
right-hand side of Eq. (12) represents the linear perturbation
to the stress field. The third term is to the second order of the
magnitude of the surface gradient, as the leading term of the
nonlinear stress field. While higher order terms can be in-
cluded, the present study will be confined to the second or-
der. In the following, we solve the boundary value problems
for the first- and second-order stresses, respectively, from
which the first- and second-order strain energy terms are de-
termined. The surface evolution equation (3) is then solved
analytically and numerically. To focus on the stress effect,
the wetting potential is not included in this section.

A. First-order solution: Linear analysis

Substituting Eq. (12) into (5) and keeping only the first-
order terms, we obtain the boundary condition for the first-
order stress field

sol) = goh, and 0ty =0. (13)

The stress field in general depends on the elastic properties
of both the film and the substrate. At the limit of a thin film,
however, the deformation is predominantly controlled by the
elastic substrate.'* In this case, the corresponding surface
displacement of the film can be approximately obtained by
applying the surface traction onto the surface of the semi-
infinite substrate. From the solution to the classical Cerruti’s
problem in linear elasticity, a simple form of the surface
displacement is obtained in terms of Fourier transforms

PHYSICAL REVIEW B 74, 075413 (2006)

ﬁfxl) = l.k'BCaB(TohA, (14)
where ﬁ(al) and h are the Fourier transforms of the surface
displacement and the thickness profile, respectively, C,z is
the compliance matrix of the substrate given in the Appen-
dix, Eq. (A2), and kg is the component of the wave vector in
the Fourier space. The thin-film approximation effectively
takes into account the elastic properties of the substrate,
while the mismatch stress o, depends on the elastic proper-
ties of the film. Consequently, different elastic properties can
be accommodated. Equation (14) is exact if the film and the
substrate have identical elastic properties, thus can also be
used as a reasonable approximation for cases with elastically
similar film and substrate materials.

Corresponding to the surface displacement in Eq. (14), the
first-order elastic strain energy density at the surface is

19u(al)
X,

vl =g, (15)
Substituting Eq. (15) into the evolution equation (3) and
again keeping the first-order terms only, we obtain the first-
order evolution equation

oh P ou'l)
A 0m <0’0 S (16)
Jt aXﬁ &xﬁ ﬁxa X
Fourier transform of Eq. (16) leads to
Jh 203 .
—= QZMkz(TOk - 'yfk2)h, (17)
ot E,

where Eszf—i% is the plane-strain modulus of the substrate
and K2=k+13.

The two terms in the bracket of Eq. (17) compete: the first
term, strain energy, drives surface instability, while the sec-
ond term, surface energy, stabilizes the surface. The compe-
tition sets up a length scale and an associated time scale,
namely,

_ ks
L= 20%, (18)
) i
L vEs (19)

T= = .
OPMy;, 160°Moy

For a constant wave number k, the solution to Eq. (17) is
simply

fz(k,t) =A exp(s—j), (20)

where s=(kL)3(1-kL) is the normalized growth rate. A criti-
cal wavelength (\,=27L) and the fastest growing mode
(Am= %wL) can be determined accordingly. This result agrees
with previous studies by linear perturbation analysis.!>~#
To simulate surface evolution with an arbitrary initial per-
turbation, a spectral method is employed for numerical simu-
lations. At each step, the current thickness profile is trans-
formed into the Fourier space by fast Fourier transform
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FIG. 2. Two-dimensional simulation of surface evolution based

on the linear analysis.

(FFT). The evolution equation (17) is integrated by a back-
ward Euler scheme of finite difference
AR

],Al(n+1) — ,
1-sAr

(21)

where At is the time step, normalized by the time scale in Eq.
(19). The new profile can then be obtained by an inverse
FFT, assuming periodic boundary conditions in the plane of
the film. Same procedure can be applied for both 2D and 3D
configurations. Notably, normalization with the length L and
the time 7 leads to a generic equation with no system-specific
parameters. Consequently, numerical simulations can be per-
formed without specifying any particular material properties;
the result is general for all systems in the linear regime, with
the system dependence implicitly accounted for by the defi-
nitions of the length and time scales.

The result from a 2D simulation is shown in Fig. 2, where
the film thickness varies in one direction only. A film stripe
of 20L width is considered, whose surface is discretized into
128 grid points. The simulation starts from a sinusoidal per-
turbation with a wavelength 10L (close to the fastest growing
mode) and a small amplitude (107*L), using the normalized
time step Ar=0.1. As the amplitude of the perturbation
grows, the surface profile remains sinusoidal, as expected
from the linear perturbation analysis. Figure 3 shows the
result from a 3D simulation, with a square computational cell
of size 100L by 100L, starting from a random initial pertur-
bation [Fig. 3(a)]. The computational cell is discretized into a
128 by 128 grid, and the normalized time step is again 0.1.
Refining the computational grid and the time step leads to no
difference in the simulation results. As shown in Figs.
3(b)-3(e), the surface pattern quickly selects a characteristic
length. Subsequently, the overall pattern remains unchanged,
while the root mean square (r.m.s) roughness of the surface
grows. Therefore, using the first-order evolution equation,
the film surface evolves self-similarly in both 2D and 3D
configurations. The Fourier spectrum of the surface pattern
[Fig. 3(f)] exhibits a circular ring of the peak intensity at the
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radius corresponding to the wave number of the fastest grow-
ing mode 2wL/\,,=0.75. The randomly oriented labyrinth-
type surface pattern is a common feature for isotropic sys-
tems, similar to the domain patterns of modulated phases in a
variety of physical-chemical systems3> and the wrinkling
patterns of thin films.333*

B. Second-order analysis: Nonlinear effect of stress

Following the same procedure as in the previous section,
the second-order terms in the nonlinear boundary condition
(5) lead to

Fol)=00\)hg and FoY =opghghg.  (22)
Here both shear and normal tractions are in action for the
second-order field. Under the thin-film approximation de-
scribed earlier, the Fourier transform of the second-order sur-
face displacement is

4% = Copbp+ Cosood, (23)

where ¢p= 50'3 )hy, ¢=hghg, and the elastic compliances C;;
are given in Eq. (A2). The corresponding second-order straln
energy density at the surface is

ou®
)% 5“ el + 0y a". (24)

Noting Eq. (13) for the first-order surface tractions, the first
term at the right-hand side of Eq. (24) can be written as

5 0'511)8 D= —£U0)¢+lﬂ (25)
where ¢=-5cr(alﬁ (al;); and

1 ou?  oul)
s$g=—<—“+—-3— : (26)

2\ dxg  Ix,

E, 1%

So'l) = f ( 4 s ) 27
o-aﬁ 1 + Vf ap 1 - st}/)’ ap ( )

Substituting Eq. (25) into Eq. (24) and then into Eq. (3),
together with the zero and first-order strain energies in Egs.
(11) and (15), and keeping terms up to the second order, we
obtain a nonlinear evolution equation

oh ) P &ug) Bug)
—=0 [ - ’}’fhaa + 0y
ot dxgdxg 0x, 0x,
L3 Lo
Ug'o+ ). (28)
2(1 - f)

The first two terms in the bracket of Eq. (28) are the linear
terms as in the first-order equation (16), and the last three
terms are the nonlinear terms of second order.

Fourier transform of Eq. (28) leads to
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FIG. 3. Three-dimensional simulation of surface evolution based on the linear analysis. (a)-(e) are gray scale contour plots of the
thickness profile 4(x;,x,), white for crests and dark for troughs. (a) Random perturbation at r=0, r.m.s.=5.77 X 1073; (b) r=20, r.m.s.
=7.40X 1073; (c) t=50,1r.m.s.=1.64 X 1073; (d) =75, r.m.s.=2.39 X 1072; (e) t=100, r.m.s.=3.60 X 107'; (f) the Fourier spectrum of the

surface pattern, which remains the same for (b)—(e).

oh | (203 N )
(9_ =QO"Mk Tk - ’)’fk h— lkaCaB(PBO'O
d E

s

—AUV - fp], (29)

where

3+Vf

_ (1+v)(1 -20) E;
2(1—Vf) '

I—VS E

s

(30)

A semi-implicit algorithm is adopted to integrate Eq. (29),
where the linear part is integrated by a backward finite dif-
ference scheme and the nonlinear part by a forward scheme.
The time integration takes the form

A — QWA

ﬁ(n+1) —
1-sAt

; 31)

where s is the normalized growth rate as obtained from the
linear analysis and

2 AEs 9l Es g 1 g A A
¢+ - l,[/+ leaca'BQDﬁ . (32)
Efo%) %o

1
Q=7k -
(1 + Vf)Ef
The length scale L, the time scale 7, and the modulus E ' have
been used above to normalize length, time, and stress, re-
spectively. Unlike the first-order equation, numerical simula-
tion of the second-order equation requires specification of a
set of physical parameters, including the normalized mis-
match stress (Gy=0y,/ Ef), the modulus ratio (E,/ Ef), and the
Poisson’s ratios (v, and v,).

A brief description of the numerical procedures follows.
Starting with a thickness profile h(x;,x,,7), compute
fl(kl ,ky,t) with the fast Fourier transform (FFT). Then, in the
Fourier space, compute ikaﬁ, ﬁ(oj):ikﬁcaﬁfwo, and ikﬁﬁ(l), by

a 1
simple multiplications. Next, we obtain #,, ug), and L:f by
inverse FFT, and compute the nonlinear terms ¢=h,h,, ¢,
=.50'$2;h5, a.nd. 1/1.2%50'(011236223, in. the .real space, again .by
simple multiplications at each grid point. After transforming
the nonlinear terms into the Fourier space, Eq. (31) is used to
update the Fourier transform of the thickness profile

h(k, ,ky,t+At). The new thickness profile is then obtained by
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FIG. 4. Two-dimensional simulation of surface evolution by the
nonlinear analysis with no wetting effect.

an inverse FFT. The procedures repeat to simulate evolution
of the thickness profile. Similar numerical methods have
been used in simulations of other evolution problems33
with good stability and efficiency.

The result from a 2D simulation is shown in Fig. 4. The

normalized physical parameters are 0(=0.01, Ef/Es:I.l,
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and v;=v,=0.25. All the numerical parameters are identical
to those in Fig. 2, and the convergence of the result was
confirmed with finer discretization and time steps. The result
is dramatically different from Fig. 2. Instead of self-similar
evolution of a sinusoidal perturbation, the surface develops
deep grooves, exemplifying the effect of the nonlinear stress
field. The result is similar to those obtained by Spencer and
Meiron’ and Xiang and E.® but different from that by Yang
and Srolovitz.*> In the latter case, the grooving was more
localized, which may be attributed to stronger nonlinearity in
the finite element model as opposed to the second-order con-
sideration in the present study. As pointed out by Yang and
Srolovitz,*> the grooving may lead to nucleation of surface
cracks in a stressed solid, even with an initially defect-free,
nearly flat surface. For an epitaxial thin film on a substrate,
however, the development of deep grooving would be sup-
pressed by the wetting effect at the film/substrate interface,
as will be discussed in Sec. IV.

A 3D simulation is shown in Fig. 5, with the same physi-
cal parameters as for Fig. 4. The numerical parameters (in-
cluding the initial random perturbation) are identical to those
in Fig. 3. The initial stage of surface evolution is similar to
Fig. 3. However, after a finite time, the solution blows up
[Figs. 5(e) and 5(f)]. Instead of a cracklike grooving ex-
pected from the 2D simulations,*~® the surface develops a
circular pitlike morphology. The result persists with finer nu-

FIG. 5. (Color online) Three-dimensional simulation of surface evolution based on the nonlinear analysis with no wetting effect. (a)—(e)
are gray scale contour plots of the thickness profile /(x;,x,), white for crests and dark for troughs. (a) Random perturbation at #=0,
r.m.s.=577X107>; (b) =20, r.m.s.=7.40X1073; (c) =50, r.m.s.=1.64X1073; (d) r=75, r.m.s.=2.44X10"%; (e) r=88, r.m.s.
=1.24 X 107"; (f) the local 3D view of a circular pit at r=88.
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merical grids and time steps. Similar features were also ob-
served in previous studies.”* This is believed to be a result of
the isotropic model, where both the driving force and the
kinetics are isotropic, with no particular direction(s) favored
for grooving. On the other hand, the cracklike morphology
observed in experiments could be due to the effect of aniso-
tropy in the real systems. For example, in one case, the ap-
plied stress was uniaxial.'9 Furthermore, even for an isotro-
pic system, it has been known that a circular void in a
stressed solid can be unstable and evolve into a cracklike
slit.3” This process, however, is not captured in the present
model because the simulation becomes numerically unstable
shortly after the blow up: the tip of the circular pit advances
increasingly faster, requiring higher-order nonlinear analysis
for simulations of further evolution.

The above numerical simulations clearly demonstrate the
effect of the nonlinear stress field on the dynamics of surface
evolution. The nonlinear behavior is far from what can be
expected from a linear analysis, and the results can be quite
different between 2D and 3D configurations. Since the wet-
ting potential is ignored, the effect of the film/substrate in-
terface is not accounted for and the result is essentially iden-
tical to that for stressed semi-infinite solids. For thin films,
however, the wetting effect must be considered explicitly, as
discussed in the next section.

IV. EFFECT OF WETTING

The transition-layer model® assumes a smooth transition
of the surface energy density and leads to a self-consistent
wetting potential as given in Eq. (10). The effect of this
wetting potential on surface evolution is discussed in this
section.

A. Linear analysis of wetting effect

In the same spirit of the linear analysis of the stress effect,
by linearizing the wetting potential in Eq. (10), we obtain the
first-order evolution equation with the wetting effect
oh & ou'l
—=0? (0' =

~ _20y- %)bh)
7f aa .

It dxgdxg\ " x4 wh;

(33)

Fourier transform of Eq. (33) leads to

oh 207 2b(y— ) | »
2o 2mi| Lok -y + 4 3%) ho (34
: wh;
For a constant wave number k, the solution to Eq. (34)
takes the same form as Eq. (20), but with a different growth
rate

2
5= (kL)z{kL— (kL) + w} (35)
mhyyy
The third term in the bracket of Eq. (35) represents the effect
of wetting on the initial growth rate, which depends on the
film thickness (/) and the transition of surface energy (i.e.,
¥s» ¥p> b). The growth rate versus the wave number is plotted
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FIG. 6. (Color online) Linear analysis of the wetting effect: the
growth rate versus the wave number for different film thickness.
The critical thickness 4, is defined by Eq. (36).

in Fig. 6 for different film thicknesses. When y,<1y,, a criti-
cal thickness is defined as

bl — 113
h, = 2L<%ﬁ)) . (36)
s

If hy<h,, the growth rate is negative for all wave numbers;
the film is thus stable with a flat surface. If hy>h,, the
growth rate becomes positive for wave numbers between two
critical values. Consequently the flat surface becomes un-
stable. This is consistent with the Stranski-Krastanov growth
of epitaxial thin films, in which the film morphology under-
goes a 2D-3D transition after a critical thickness.'> Using

typical values oy=1 GPa, E;=150 GPa, y,=1 N/m, v,
=1.2 N/m, and »=0.1 nm, we obtain that 4,=6.6 nm, in rea-
sonable agreement with experimental observations. The criti-
cal thickness weakly depends on the length b, which may be
selected empirically. For relatively thick films (e.g., A
>5h,), the wetting effect is negligible at the initial stage, and
the growth rate is essentially independent of the film thick-
ness. In between, both the growth rate and the fastest grow-
ing wave number increases as the film thickness increases.
The wetting potential therefore has a significant effect on
surface stability and evolution of thin films (hy<5h,).

Interestingly, if y;> v,, the present analysis predicts that
the film becomes increasingly unstable as the thickness de-
creases. Consequently, the film tends to form clusters at the
beginning of growth, characteristic of the Volmer-Weber
mode.*® The dynamics of surface evolution for this case will
be left for future studies.

B. Nonlinear effect of wetting

Including the full nonlinear wetting potential, Eq. (10)
together with the second-order stress field, leads to a nonlin-
ear evolution equation
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FIG. 7. Two-dimensional simulation of surface evolution based

on the nonlinear analysis of both stress and wetting effect: (a) stable
growth (0<<7<<200); (b) coarsening (¢>200).
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where §=75T—arctan(%).

Following the same procedures described in Sec. III B,
numerical simulations of surface evolution are conducted us-
ing the spectral method. First, the result from a 2D simula-
tion is shown in Fig. 7. In addition to the same parameters
used in Fig. 4, we take hy=0.1L, b=0.001L, and 'ys/yf= 1.2,
which leads to a critical thickness #,.=0.08L. Starting from a
sinusoidal perturbation of wavelength 10L, the initial stage
of surface evolution (<< 100) is similar to those in Figs. 2
and 4, but with a slower growth rate due to the wetting
effect, as predicted by the linear analysis. Further evolution
(t=200) shows stabilization of a wetting layer between the
peaks (or islands), differing from the deep grooving mor-
phology observed in Fig. 4. Evidently, the wetting effect pre-
vents exposure of the substrate surface. This result is consis-
tent with the “steady state” predicted by Tekalign and
Spencer® using the same wetting potential but with a first-
order stress analysis. The effect of the nonlinear stress field
in the present study becomes prominent as the evolution con-
tinues [Fig. 7(b)]. After a long-time, one island grows at the
expense of the other. Eventually, only one island remains
within the computational domain, resembling the coarsening
process observed in experiments,3® where the number of is-
lands decreases over time. The present simulation shows that
the height of the surviving island increases while its lateral
size (diameter) and location remain unchanged. This, how-
ever, contradicts with experiments where islands typically
grow in both height and diameter. The contradiction may be
attributed to the effect of anisotropy in the surface energy of
real materials, which tends to select a particular surface ori-
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entation, thus leading to simultaneous growth in the height
and diameter during coarsening as well as shape transition in
the later stage.?® With the isotropic model of the present
study, however, more elastic energy can be released as the
aspect ratio of the island increases, without much penalty of
increasing the surface energy. The effect of anisotropy in the
nonlinear analysis will be left for future studies.

Figure 8 shows a 3D simulation of the surface evolution.
The computational parameters are the same as in Figs. 3 and
5, including the initial perturbation, the computational grid,
and the time step. In addition, as for the 2D simulation in
Fig. 7, we take hy=0.1L, b=0.001L, and ys/yf:l.2. The
simulation shows similar surface roughening at the initial
stage. As predicted by the linear analysis (Fig. 6), the wetting
effect leads to a slower growth rate and a longer wavelength
for the fastest growing mode. The surface pattern is different
owing to the different wavelength. Remarkably, the solution
does not blow up, even after a very long time (up to ¢
=30 000). Instead of deep, circular pits in Fig. 5, the film
breaks up, forming discrete islands on a thin wetting layer.
As observed in the 2D simulation, the wetting effect prevents
exposure of substrate surface and leads to self-assembly of
an array of islands. Further evolution observes coarsening of
the island array: some islands grow higher at the expense of
the others; consequently, the island number density decreases
over time, in agreement with experimental observations.*”
After a long time of evolution (up to =30 000), the island
array appears to reach an equilibrium state with no further
coarsening. However, theoretical proof of the equilibrium
state (with minimum total energy) is challenging due to the
formidably large number of variables including island size,
island shape and spatial organization, and is not available for
the 3D configuration. The island size in the final array is
quite uniform, but no particular ordering is observed in the
spatial pattern. It is noted that, while island coarsening is
generally observed in experiments, it is not a ubiquitous fea-
ture. In a growth regime very close to the thermodynamic
equilibrium, such as liquid phase epitaxy reported by Dorsch
et al.,** coarsening was not observed. In spite of the limita-
tions of the present model, the dynamics of island formation
and coarsening over a large area is reasonably captured by
the interplay of the nonlinear stress field and the wetting
effect.

Figure 9 compares the evolution of the surface roughness
obtained from the 3D simulations (i.e., Figs. 3, 5, and 8). The
surface roughness is quantitatively determined by the root
mean square (r.m.s.) of the thickness profile, namely,

N N
> 2 [hGmn) —he?,  (38)

m=1 n=1

1
r.m.s.(¢)= Iz

where N=128 is the number of the grid points along one side
of the computational cell, and h(m,n,1) is the local thickness
at the grid point (m,n). Without the wetting effect, the sur-
face roughness initially grows exponentially, with the same
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FIG. 8. Three-dimensional simulation of surface evolution based on the nonlinear analysis of both stress and wetting effect. (a)—(f) are
gray scale contour plots of the thickness profile /(x;,x,), white for crests and dark for troughs. (a) Random perturbation at =0, r.m.s.
=5.77X107; (b) 1=20, r.m.s.=2.07 X 1073; (c) +=50, r.m.s.=6.27 X 107; (d) t=220, r.m.s.=4.86X 107%; (e) r=500, r.m.s.=9.11

X 1072 (f) 1=5000, r.m.s.=1.18 X 107",

growth rate for the linear and nonlinear equations. The
growth rate corresponds well with the fastest growing mode
predicted by the linear analysis (s=0.105 for )\m=§7TL).
While the surface evolves self-similarly by the linear equa-
tion (Fig. 3), the nonlinear stress field leads to blow-up of the
surface roughness when it develops deep pitlike grooves as
shown in Fig. 5. Including the wetting effect leads to a
slower growth rate at the initial stage (s=0.042). Again, the
growth rate agrees well with that of the fastest growing mode
predicted by the linear analysis (Fig. 6). After about =200,
the surface roughness saturates. While coarsening of the is-
land array continues for a much longer time, the r.m.s. sur-
face roughness does not change significantly after r=500,
which can be understood as a result of the competition be-
tween roughening due to the growth of the island height and
flattening due to the decrease of the island number density.
Also of interest is the combination of the nonlinear wetting
potential and the linear stress analysis in the evolution equa-
tion. While not presented here, it is found that the solution
typically blows up and develops whiskerlike morphology, in
contrast to the ‘“steady state” predicted by Tekalign and
Spencer.”> However, the “steady state” was obtained from
numerical simulations starting from one period of a sinu-
soidal perturbation, in which case no coarsening can occur.
In our simulations, with a random initial perturbation over a

large area, blow-up occurs shortly after coarsening begins,
similar to those reported by Spencer et al.** and Golovin
et al.* Therefore, both the nonlinear stress field and the wet-

Surface Roughness RMS

I. Linear stress, no wetting
II. Nonlinear stress, no wetting
lIl. Nonlinear stress and wetting

0 100 200 300 400 500
Normalized Time t

FIG. 9. Comparison of the evolution of surface roughness from
three-dimensional simulations using the linear equation (I), the non-
linear equation with no wetting (1), and the nonlinear equation with
wetting (I11).
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ting effect must be included in studying long-time dynamics
of surface evolution.

V. CONCLUDING REMARKS

In summary, we have developed a nonlinear evolution
equation with a second-order approximation for the stress
field and a nonlinear wetting potential for the interface effect.
The equation is solved numerically by a spectral method in
both two-dimensional (2D) and three-dimensional configura-
tions. In absence of the interface effect, the nonlinear stress
field leads to a “blow-up” solution with cracklike grooving in
2D and circular pitlike morphology in 3D. The blow-up is
suppressed by the wetting effect for thin films, leading to
formation of an array of islands. Subsequent coarsening and
stabilization are observed in the simulations. It is thus con-
cluded that the interplay between the nonlinear stress field
and the interfacial wetting has a profound effect on the dy-

(1- )i+ Vk%

2(1+v)

[Cij] = I3 — vkik,
1-2v,

k
y M

PHYSICAL REVIEW B 74, 075413 (2006)

namics of surface evolution that may lead to organization of
self-assembled islands or quantum dots.
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APPENDIX

For a semi-infinite solid subjected to surface tractions o3;
(j=1,2,3), the displacement at the same surface can be ob-

tained analytically in the Fourier space
i; = Cij03, (A1)

where ii; and §; are the two-dimensional Fourier transforms
of the displacement and the traction, respectively, and

1-2v
- Vklkz - lklk
2
1-2
(1= k] == Y ikok (A2)
1-2
5 Yok (1= )k

Here E is Young’s modulus of the solid, v the Poisson’s ratio, k; and k, are components of the wave vector in the Fourier
space, and k2=k%+k%. The solution is essentially a combination of the integral solutions for the classical Cerruti and Bouss-

inesq’s problems in elasticity.*!
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