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In models of nucleation and growth of crystals on surfaces, it is often assumed that the energy surface of the
substrate is flat, that diffusion is isotropic, and that capture numbers can be calculated in the diffusion-
controlled limit. We lift these restrictions and formulate the general time-dependent problem in a two-
dimensional �2D� potential field. We utilize the master equation discretization �MED� method to solve the 2D
time-dependent diffusion field of adparticles on general nonuniform �rectangular grid� substrates, and compare
it against competing algorithms, including the fast Fourier transform �FFT� and hybrid-FFT methods previ-
ously introduced, for periodic boundary conditions. The physical context is set by the importance of repulsive
interactions in the nucleation and growth of many nanostructures, e.g., metal nanoclusters, hut clusters, and
nanowires. The programs, realized in MATLAB®6.5, are used to obtain quantitative capture numbers, aspect and
direct impingement ratios, and other island growth quantities in the presence of potential fields, when particular
surface processes are included. The case of no corner rounding is studied in detail. Strongly anisotropic
potentials favor wire growth, which can be considerably influenced by alternate deposition and annealing, and
the location of neighboring islands. Physical examples are given based on Ge/Si�001� material parameters.
Essentially similar programs, differing only in outputs, are used to visualize the diffusion field and to produce
realistic movies of crystal growth. Examples given here are linear deterministic calculations, but the framework
allows for inclusion of nonlinear and statistical effects for particular applications.
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I. INTRODUCTION

Diffusion and capture processes involved in nucleation
and growth on surfaces have received widespread attention
over many years.1,2 More recently, scanning tunneling mi-
croscopy �STM� and field ion microscopy �FIM� experiments
have been able to follow atomic-level events, and to measure
energies for individual activated processes. Over the last few
years, it has become clear that capture of adparticles cannot
always be treated in the diffusion-controlled limit, and that
adparticle interactions are often important in forming nano-
structures. Analyses have been presented of low-temperature
STM data on close-packed metal surfaces,3–5 in which repul-
sive interactions, between diffusing adatoms and other ada-
toms and clusters, causes capture rates to be reduced, some-
times substantially.6,7 Similarly, Ge/Si�001� hut cluster and
metal silicide growth involve repulsive interactions. Progress
in the quantitative description of the early stages of growth
has been reviewed,7,8 where more background information
and references can be found.

In this paper, we calculate and visualize the diffusion field
of adparticles around growing clusters, and derive capture
numbers and other quantitative data for several potentials,
extending previous conference papers.9,10 We first recap, in
Sec. II and Appendix A, the analytic formulation of diffusion
and capture on a substrate with a nonuniform potential for
diffusing adparticles. This potential is defined with respect to
an origin on the two-dimensional �2D� substrate, and so is
written V�r�. The object at the origin can be a cluster, a
defect site, or another �diffusing� adparticle. Solutions for
radial symmetric potentials have already been reported,6,7

and some further comments are made here. In Appendix B
we describe our procedure9 to obtain time-dependent field

and capture number solutions with anisotropic diffusion us-
ing a fast Fourier transform �FFT� method.

In Secs. III and IV, we adapt the master equation discreti-
zation �MED� algorithm11 to show how repulsive interactions
slow the growth of 2D quasirectangular clusters arranged on
a lattice. The MED algorithm accurately incorporates the un-
derlying dynamics of diffusion and drift on a lattice in a
general potential field; we compare this algorithm with oth-
ers in Appendix C. The case of rectangular clusters, with
restricted corner diffusion during annealing, both with and
without repulsive interactions, is examined quantitatively.

We then extend these same methods in Secs. V and VI to
the general case where deposition, growth, and/or annealing
occur simultaneously, and discuss the role of nucleation in
relation to growth at nanometer scales, for the specific cases
of Ge/Si�001� and silicide wire growth. The programs are
coded in MATLAB®6.5, and produce quantitative results, in par-
ticular anisotropic capture numbers and graphic output. The
programs enable one to visualize the diffusion field, and the
growth of individual crystals, when particular surface pro-
cesses are included. This output can be viewed conveniently
in the form of MATLAB® movies, which are realistic and fast
enough for real-time conference presentation using a modern
laptop computer. To conclude, we summarize the physical
insight gained, and outline some future developments, in-
cluding combined nucleation and growth, and other nonlin-
ear and statistical behavior.

II. DIFFUSION IN 2D POTENTIAL FIELDS: ANALYTIC
FORMULATION

We are interested in solutions of a 2D diffusion equation
for the adparticle concentration c�r , t�, when there may be
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sources and sinks at various positions. The simplest case to
think about is when we have a loss term governed by a
characteristic mean lifetime �. The governing partial differ-
ential equation �PDE� is then

�c�r�/�t = G − c�r�/� − � · j�r� , �1�

where j�r� is the diffusive flux at position r. In the epitaxial
growth literature,1,2,7,8 the source term G is equal to the
deposition flux F during deposition and is typically zero dur-
ing annealing and the adparticle concentration may be vari-
ously described as c, n, or n1.

In the absence of a potential field, the flux term j�r� is
defined as −D�c�r�, where D is the chemical diffusion con-
stant. Thus the last term in Eq. �1� is equal to D�2c�r� if D is
indeed constant; but on an anisotropic substrate, the general
form of D is a second rank tensor, and there is no absolute
reason for D to be independent of position or of time. Equa-
tion �1� has been solved for constant D in various approxi-
mations to determine the growth rate of clusters by capture
of adparticles on surfaces. The case when � is finite �i.e.,
�−1�0� is a general way of introducing competing loss pro-
cesses, such as re-evaporation, or capture by other clusters,
in the uniform depletion or mean-field approximation.1,7,12,13

The other limiting possibility is to omit this term �i.e.,
�−1=0�, but to arrange the clusters on a lattice and use ap-
propriate boundary conditions. This lattice approximation1 to
capture numbers was developed for radial symmetry by
Halpern,14 Stowell,15 Lewis16 and others. The search for re-
alistic intermediate expressions, taking into account cluster
sizes and positions during deposition or annealing, is an on-
going research problem that has been reviewed8 but is not
pursued further here. Rather, we place the clusters on a lat-
tice, such as may be appropriate for directed nucleation on a
rectangular array of defects, and solve the full time-
dependent capture problem with 2D-periodic boundary con-
ditions.

Diffusion in a potential field obeys the Nernst-Einstein
equation,17 and the resulting advection-diffusion equations
for the adparticle concentration show, in general, both diffu-
sion and drift.11 We show that previous results in the 2D
nucleation and growth literature6,7 correspond to this type of
equation and solutions. With nonzero V�r� we need to evalu-
ate the response to concentration ��c�r�� and potential
��V�r�� gradients, via consideration of phenomenological
transport coefficients, which leads to a more general defini-
tion of j�r� in terms of the gradient of the chemical potential
���r�. This definition can be written in terms of either D,
the chemical, or D*, the tracer, diffusion coefficient. Under
certain reasonable conditions,7,17 �D /D*�=���� /��ln�c���.
The simplest expression for j�r�, using this ratio, is

j�r� = − �D*c���� . �2�

We now need the expression for ��r� for a nonideal ad-
sorbed gas of adparticles, which is ��r�=�0+V�r�
+�−1ln��c�, where � is the activity. For this form of ��r�, the
original definition of j�r� can be written as7

j�r� = − �Dc��1 + � ln���/��ln�c���−1���; �3�

�1+� ln��� /��ln�c��� is called the thermodynamic factor.
Thus from these equations we find that

j�r� = − D�c�r� − �c�r�D*���V�r� . �4�

The derivative of ��r� is needed to obtain D in the first
term in Eq. �4�, but D* remains in the second term. In par-
ticular, we are concerned here with solving the capture prob-
lem for reasonable forms of the dimensionless potential
�V�r�, for example due to adatom-adatom, and/or adatom-
cluster repulsion. Using Eq. �4�, Eq. �1� becomes

�c�r�/�t = G − c�r�/� + � · �D�c�r�� + � · ��c�r�D*���V�r�� .

�5�

Note that although the r dependence is written out explicitly
for c and V and there is an implied time dependence, the
“constants” G, �, D, and D* may also be functions of posi-
tion �e.g., via concentration or a diffusion energy�, or in the
cases of G, �, of time �e.g., during deposition or annealing�,
without changing Eq. �5�.

This paper is concerned with solving Eq. �5� on a rectan-
gular grid, where there may be �repulsive� potential fields
present, and providing physical examples where the solu-
tions are useful. There are no analytic solutions for the gen-
eral form of Eq. �5�, even in radial geometry. However, if we
assume ��r�=� in the model, the thermodynamic factor is
unity, so that D and D* are the same. In this low concentra-
tion limit, where D=D*=D1, the last term of Eq. �5� is given
by

� · ��c�r�D*���V�r�� = D1��c�r�·���V�r��� , �6�

where �= �kT�−1 makes the variable �V�r� dimensionless.
This restriction to low concentration is not a requirement, but
is made here to ensure linearity. The more general case is
outlined in Appendix A. These extra terms mean that Eq. �5�
is a type of advection-diffusion equation, in which diffusion
coexists with drift along concentration and potential gradi-
ents. Depending on the model details, we may wish to con-
sider fixed or moving boundary conditions.

III. DISCRETIZATION OF ADVECTION-DIFFUSION
EQUATIONS

The numerical solution of advection-diffusion equations
�ADEs� has a long history, but recently a new algorithm has
been developed that is very efficient in solving equations of
this type. Grima and Newman11 considered ADEs of the gen-
eral form

�c�r�/�t = � · �D�c�r�� − � · �c�r�v�r�� , �7�

where the velocity field v�r� can depend on the concentration
c�r�. The velocity field can be specialized to be proportional
to a potential gradient as v�r�=−��V�r�.18 With this con-
straint, the last term of Eq. �7� corresponds exactly to Eq. �6�
with D1=� /�.

The main algorithm proposed in Ref. 11 was called master
equation discretization �MED�. It is based on an exact trans-
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formation that turns Eq. �7�, via two Laplacians, into the
form of a master equation. Equation �7� can be shown to be
equivalent to

�c�r�/�t = D1��E−1��2�c�r�E� − �c�r�E��2�E−1�� , �8�

in our notation, where E=exp��V�r�� and �=� /2D1. Since,
for our application, we have shown that D1=� /�, the expo-
nential involved in the transformation is E=exp��V�r� /2�.

The discretization of Eq. �8� is especially simple because
the Laplacians can be expressed as sums of the relevant
quantities over neighboring lattice points on a grid. This re-
sults in the MED for the grid point concentration ci in the
form

�ci/�t = �
j

�Wj→icj − Wi→jci� , �9�

where in the special case we are considering, the transition
probabilities or hopping rates Wi→j are given on a lattice of
size a, for nearest neighbors �i and j� only, by

Wi→j = �D1/a2�exp���Vi − Vj�/2� . �10�

Computationally, the MED method is powerful because it
avoids linearization of the drift terms in Eq. �7�, allowing
one to use larger space steps than otherwise.11 The results
presented here are based on this MED algorithm. This
method satisfies the particle conservation sum rule for all
potentials; it is not unconditionally stable, but is accurate and
fast enough for the production of MATLAB® movies suitable for
real-time presentation, and it works well for very high Peclet
numbers. We also introduce a hybrid-FFT procedure, identi-
cal in principle to the MED method, which is highly stable
and fast for all reasonable time steps.19 FFT, real space
MED, hybrid-FFT and implicit methods are described and
compared in Appendixes B and C.

IV. CAPTURE NUMBERS IN RADIAL AND
RECTANGULAR GEOMETRY

A. Radial potential models

Two modeling papers have been published on the effect of
radial repulsive potential fields on capture numbers in the
context of nucleation and growth on surfaces.6,7 In the first,
Ovesson6 used a 2D square lattice and argued on physical
grounds that the energy of each diffusive jump, the transition
state energy, would be augmented by half the potential en-
ergy difference between the final and the initial sites. In our
notation, the diffusion constant for transitions between sites i
and j was modified from D1 to D1(exp���V�ri�−V�r j�� /2)�.
The continuum limit was taken, and then this model was
applied with radial symmetry. He showed that the effect
was the same as replacing the term �2�c�r�� in the usual
radial diffusion equation by �2�c�r��+���V�r�� ·�c�r�
+c�r��2��V�r��. These two terms are the same as those ap-
pearing in Eq. �5�, if D=D*, and can therefore be lumped
together as ��c�r� ·���V�r���, i.e., just as Eq. �6�, but limited
to radial geometry. Ovesson6 used his procedure to calculate
mean field nucleation densities with a specific form of V�r�,
constructed to mirror low-temperature STM data on close-
packed metal surfaces.3–5

Venables and Brune7 developed a continuum approach
based on Eqs. �4� and �5�, again in radial geometry, and
obtained mean field capture numbers, which can be exponen-
tially reduced when �V�r� is substantial. Ovesson6 did not
give explicit values of the capture numbers, but did calculate
the increased nucleation density that results at long times
from the repulsive potential field. An intriguing point is that
Ovesson6 and Grima and Newman11 have studied the same
problem from opposite ends. Grima and Newman started
from the general continuum equation �7�, and showed that
their MED not only embodies the microscopic dynamics, but
is also a very efficient numerical method of solving this
whole class of problems. The present discussion shows that,
for constant diffusion constants, the two approaches are com-
pletely equivalent for radial geometry, and we can represent
the general case concisely by Eq. �8�. But the approach of
Ref. 11 used here is much more general, and will work in
any geometry; thus we can proceed with confidence into new
areas. The use of the MED algorithm when the diffusion
coefficient varies with position �including via strain� is dis-
cussed in a companion paper;20 here the numerical examples
are all for spatially homogeneous Dx and Dy.

B. Rectangular line-by-line models without corner rounding

Here, we show that time-dependent capture numbers can
be calculated for rectangular geometry with general repulsive
potentials V�r�; in this section we use this example to illus-
trate the reduction in capture numbers during annealing of a
previously deposited adparticle field. The capture numbers
can be compared directly with figures for zero potential cal-
culated using the FFT method published in Ref. 9. These
numerical methods are given in Appendixes B and C. If Ref.
9 is not familiar it may be helpful to read Appendix B before
proceeding further; in particular, the examples given in this
section employ the “line by line” method of updating the
island size, as shown in Fig. 9�b�. This method gives rise to
“spikes” in capture number plots, corresponding to the
amount of growth that occurs when the island boundary is
updated. The size and position of the spikes are very useful
markers to track when the x and y edges move. They also
enable sensitive tests of the changes that result from different
algorithms, or the same algorithms with different integration
parameters, as set out in Appendix C.

Figure 1�a� shows the concentration profile which is ini-
tially in equilibrium under a 2D anisotropic Gaussian repul-
sive potential, with maximum value of �V�r�, �Vm=2.5. At
the center of the field an island �size 5	11� is introduced at
t=0 that acts as a sink. For these examples, we explore mod-
erate anisotropy, with Dx=5 and Dy =10, such that the r.m.s.
diffusion distance rd= �2�Dx+Dy�t�0.5 for the final value of
t=90 gives rd=52. Thus on a 64	64 mesh, we explore the
transition from a completely isolated sink �for rd�32 ini-
tially� to a relatively strongly coupled array of �nine� sinks
�for rd�32 finally�, as indicated schematically in Fig. 8�a�.
In Figs. 1 and 2, the adparticles join each side separately, and
corner rounding is not allowed.

The MED capture numbers shown in Fig. 1�b� for t�0
have strongly reduced values relative to the case of zero
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potential. The case for �Vm=2.5 shows the capture numbers
start low, but increase as the island size increases during
annealing. This happens because the repulsive potential is
fixed, and so the island eventually outgrows the range of the
potential. The absence of spikes in the curves for �Vm=5
means that essentially no growth occurred during the whole
period to t=90. These curves can be directly compared with
Ref. 9, Fig. 5�b� for V�r�=0, repeated in Appendix B as Fig.
10�b�; the concentration profile is shown as Fig. 10�a�.

Figure 2�a� shows a rectangular potential approximating
to the strain distribution around a rectangular island, initial
size 5	11. This particular potential follows the form used
by Ovesson6 for adparticle elastic interactions, but with the
constant B in his Eq. 16 chosen to give maximum repulsive
potential at the edge of the island, no matter what size or
shape. Here the potential is much “rougher” and more aniso-
tropic, leading to a more challenging test of the numerical
methods. For the real space MED method, the sum rules are

exactly satisfied as in Fig. 1, but there is a larger ratio of drift
to diffusion terms at the edge of the island. The correspond-
ing MED capture numbers are shown in Fig. 2�b� for �Vm
=1.87 and 2.81. Physically, we notice that the capture num-
ber stays low, because as the island size is updated, the po-
tential field gets stronger, in contrast to Fig. 1, where it ef-
fectively weakens. This situation is more realistic for
strained epitaxial islands, e.g., for Ge/Si�001�, as discussed
in Sec. VI.

The grid Peclet number Pe which measures the relative
importance of drift and diffusion over a single mesh
element,11 is just the argument of the exponential in Eq. �10�,
namely, ��Vi−Vj� /2. Figure 2�b�, with the initial value of
�Vm=2.81, corresponds to a maximum Pe=0.61 at the island

FIG. 1. �Color online� �a� Concentration profile, initially in equi-
librium under a Gaussian test potential. �b� Capture numbers 
x

�upper curves, red online� and 
y �lower curves, blue online� for an
initial 5	11 rectangular island �height h=5�, and �Vm=0, 2.5 and
5 �after Ref. 9�. This figure can be compared with Ref. 9, Fig. 5�b�
for V�r�=0, reproduced here as Fig. 10�b�. See text for discussion.

FIG. 2. �Color online� �a� Rectangular potential with initial
maximum �Vm=2.32 at the edge of the 5	11 island. This illustra-
tive potential increases linearly with radial distance r inside the
island, and decreases as r−3 outside the island with a maxima at the
edge of the island. �b� Capture numbers 
x �upper curves, red on-
line� and 
y �lower curves, blue online� with no corner crossing, for
two similar potentials ��Vm=1.87 �upper curves� and 2.81 �lower
curves�� as a function of annealing time, starting from the equilib-
rium distribution. Note that the potential is recalculated every time
the island size changes.
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edge, dropping slightly as the island gets larger. The high
accuracy and stability of the MED algorithm has been
checked by repeating the calculation with increasing values
of �Vm, leading to Pe�3 being fully stable for quite large
time steps �t=0.05, as shown in Fig. 3 where �Vm=13.4.
Notably, this range of Peclet numbers is relevant for com-
parison with epitaxial deposition and annealing experiments.
An interesting point is that the real space MED and the hy-

brid FFT give slightly different answers for high Pe values,
as shown in Fig. 3�b�. A log-log plot of 
x values indicates
that the hybrid FFT approaches the common solution roughly
linearly as the time step is decreased, whereas the real space
MED approaches with a somewhat lower power law �0.85.
However, we can see that the latter method is more accurate
over the range of �t studied. In this limit the capture num-
bers are all very small, namely, diffusive capture is almost
entirely suppressed. Note, however, this does not mean that
diffusion is suppressed, quite the contrary; it is very rapid,
but very few diffusion steps result in capture. This means
that other effects may become more important; we return to
this case in Secs. V and VI.

Further work is in progress to calculate accurate potentials
for real materials and to incorporate such potentials into re-
alistic simulations. However, here we can note some general
features of annealing with repulsive potential fields from
Figs. 1–3, in comparison with previous work using radial
geometry. Venables and Brune7 calculated capture numbers
for various values of �Vm, and found that the capture number
expression could be initially approximated by 2��rk

+r0�exp�−�Vm� when �Vm�1, where the factor 2��rk+r0�
represents the number of edge sites just outside the island.
The number of edge sites just outside a rectangular 5	11
island with area 55 units is of order 32. Thus the sum of
capture numbers �
x+
y� for the cases illustrated in Fig. 1�b�
would be �2.63 for �Vm=2.5 and �0.216 for �Vm=5; the
corresponding values for Fig. 2�b� are 4.93 for �Vm=1.87
and 1.93 for �Vm=2.81. These values correspond to points
on the initial rapid drop in the graphs of 
x and 
y. This
shows that, with the possible exception of the �Vm=5 curve,
the barrier capture numbers represent an upper limit to the
long time behavior, as the diffusion zone around the island
sink is established.

The capture numbers for the anisotropic rectangular case
with strongly varying �Vm around the island edge can make
the comparison even closer for Fig. 3. The true solution for
high potentials can be estimated quite accurately as the bar-
rier limited capture numbers7 for x and y edges. In our com-
putation, these are simply the sum of the exponentially
weighted barrier heights, namely,


x = � exp�− �Ve� , �11�

where the sum is taken over the edge elements �Ve� of the
potential just outside the island that contribute to 
x, and
similarly for 
y. This formula has been checked explicitly for
the case shown in Fig. 3�b�; from Eq. �11� we find 
x
=0.0206, 
y =1.14.10−4, and �
y /
x�=0.0055, very close to
the computed values in the limit of small time steps. For a
high barrier, the diffusion gradient is very small, and capture
is just determined by the small probability of adparticles be-
ing present at the top of the barrier, as emphasized previously
�Ref. 7, especially Appendix B�. Note that the ratio �
y /
x�
is particularly sensitive to the time step for the hybrid
method, when the ratio is small as in this case; this is be-
cause the hybrid scheme is better suited for small Pe values,
when diffusion is dominant. The opposite is the case at the
top of a strong barrier.

FIG. 3. �Color online� �a� Capture numbers for a strong rectan-
gular potential with maximum �Vm=12.4, at the edge of the 5
	11 island. The values of capture numbers 
x �upper curves, red
online� and 
y �lower curves, blue online� and the weighted average
value �central black lines�, as a function of annealing time for two
MED integration schemes, direct �full lines� and hybrid-FFT
�dashed lines�, with the time step, �t as the parameter. Note that the
island size does not change for such a high barrier, even for much
longer times. �b� Time-convergence characteristics for these two
schemes at a given time �t=20�, showing 
x �upper curves, red
online�, the ratio �
y /
x� �lower curves, blue online�, and the
weighted average value �central black lines�. Note the superiority of
the direct MED scheme at high Peclet numbers �here maximum
Pe=2.85�, and the fact that the two schemes closely approach the
analytic barrier capture number �stars� at �t=0. See text for
discussion.
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C. Rectangular pixel by pixel models with and without corner
rounding

In the previous subsections, we have demonstrated pixel
by pixel updating of images, but the diffusion calculations
were updated line by line. This procedure is good for visu-
alization and for pedagogy, but the capture numbers cannot
be as accurately modeled as in a pixel-based computation. It
is of course well known that the growing shape of an island
depends on the extent of surface diffusion round the island
edge; continuum classical crystal growth models deal with
the competition between equilibrium and growth forms,
Mullins-Sekerka instabilities and dendritic growth, amongst
other phenomena. The extreme case of atomistic dendritic
growth is diffusion limited aggregation �DLA�,21 and some
experimental examples approach this limit. The shapes of 2D
islands have been extensively studied, both experimentally
and theoretically, particularly in triangular geometry.2,5,22

Once again, we can see that the problem as posed can
readily bifurcate, and get out of hand. For this initial ex-
ample, we address the same problem as the last section, and
restrain all the “pixel activity” to the edge layer immediate
surrounding the rectangular island. Here there are two rea-
sonable limits: the first is no corner rounding as in the pre-
vious sections, which makes the shape of the resulting island
most anisotropic.

Figure 4�a� shows the capture number results of a pixel
calculation with no corner rounding, for the case of no re-
pulsive potential, V�r�=0 at relatively short times. Note that,
especially for small islands, there are still considerable ex-
cursions in the values, which can be associated with the ad-
dition of individual pixels. In these calculations, rectangular
�mm� symmetry is preserved, so that four pixels are added at
once; clearly the excursions might be smaller if individual
pixels were added. However, in that case it would be impos-
sible to avoid introducing a statistical element, where indi-
vidual pixels were added on an unknown side of the island.
Including such statistical fluctuations is clearly an important
next step, but the present examples are all deterministic and
can serve as a point of reference.

What is noticeable in Fig. 4�a� is that the larger peaks in
the capture numbers are associated with adding the first new
pixels to a just completed edge. This pixel, which protrudes
into a steeply rising concentration field, attracts a far greater
flux than a smooth face. This effect, which is a well known
cause of roughening and dendritic branching, occurs in this
model at the single adparticle level.23 Moreover, since the
entire diffusion field is coupled, adparticles attached to the x
side, for example, can strongly suppress subsequent capture
by the y side �or vice versa�, even though no-corner rounding
is allowed. Thus 
x and 
y are anticorrelated, with quite
large excursions, whereas the average capture number fol-
lows a smoother curve.

We can use these pixel calculations to follow the evolu-
tion of the aspect ratio of the island shape A= �Ly /Lx� as the
island grows with no corner rounding, as shown in Fig. 4�a�
for the �5	11� island and in Fig. 4�b� for a range of initial
island shapes. Here we compare �5	N� with �N	5� islands,
where N=7, 11, and 15, keeping Dy =10 and Dx=5 as before.
The curves follow nonintegral values of Ly and Lx, by allow-

ing suitably for the addition of individual pixels.
As annealing proceeds, all these islands become squarer,

but at different rates; the fastest rate of approach occurs
when the longer side is fed by faster diffusion. This result
can be discerned from the comparison, shown in Table I, of
A for the �5	N� islands with A−1 for the �N	5� islands;
initially these are the same, but A−1 values, i.e., �Lx /Ly� drops
further, and at a greater initial rate. There are many interest-
ing pixel-level details that can be gleaned from Fig. 4�b�,
Table I, and from curves of 
x and 
y for all these cases. The
difference �A=A�t�−A�t−�t� shows each individual event,
when Ly or Lx changes; positive spikes correspond to in-

FIG. 4. �Color online� Pixel by pixel capture numbers �
� and
island aspect ratios �A=Ly /Lx� during early time annealing with
no potential. FFT calculations with fine time steps �t=0.025. The
markers �A=A�t�−A�t−�t� shows each individual event when Ly

or Lx changes. �a� Capture numbers 
x �upper lines, red online� and

y �lower lines, blue online� and the weighted average 
y �middle
lines, purple online�, plus A and �A �black lines� for an initial
5	11 island. �b� Comparison of aspect ratios A for initial island
sizes ranging from 5	15 to 15	5 �color online� with �A �black
lines� for 5	11 and 11	5 islands. See text and Table I for
discussion.

VENABLES et al. PHYSICAL REVIEW B 74, 075412 �2006�

075412-6



creasing Ly and negative spikes to increasing Lx. Thus, for
example, as shown at the foot of Fig. 4�b� the pattern of
�A�t� �the event markers� is completely different for the �5
	11� and �11	5� islands.

Although these examples shown here are completely de-
terministic, the individual 
x and 
y and A curves shown in
Fig. 4 can resemble statistical behavior over the long term.
Individual excursions are completely reproducible, although
they should probably not be over-interpreted. In particular,
for very short time steps, the sharp onsets of the changes
described here can represent less than one adparticle being
added to the island. This may be a good reason, in addition to
speed of execution, for settling on a relatively modest time
resolution, as further detail results in “empty magnification.”

The other limit is no corner barrier, or free corner round-
ing, which should make the island grow uniformly on x and
y edges, such that the initial edge-length difference is pre-
served. In a continuum model, it is “obvious” that the adpar-
ticles can diffuse anywhere around the island periphery, and
that “therefore” the difference �Ly −Lx� remains constant. But
if we are interested in exploring atomic level processes, this
case will never arise, and the details of edge nucleation need
to be considered. For example, if adparticle edge diffusion
were so rapid that nucleation could occur anywhere around
the island perimeter, then all symmetry has been lost from
that moment onwards. Adding a repulsive potential may even
decrease the interest of the results somewhat. First, the
growth is much less than without the potential; second, the
island shape that results is dominated by the shape of the
potential, which can of course be different on each edge. We
consider that deterministic-statistical hybrid models of this
type, with edge nucleation and other types of fluctuations,
may be interesting avenues to explore in future work.

V. DIFFUSION, DIRECT IMPINGEMENT, AND
NUCLEATION DURING DEPOSITION

A. Nucleation densities relevant to nanofabrication

Extra terms can be simply added in real space into the
MED equations to deal with deposition and with direct im-
pingement, as is common in rate equation treatments. New
nuclei can be added at times determined statistically.24 As

noted previously,7 repulsive fields around islands slow down
diffusive capture, and thereby make direct impingement a
more important contribution to growth of the islands. When
the repulsive potential is zero, it is well known that the low
coverage nucleation pattern when all islands are stable �i
=1� is determined by the parameter �D1 /F�; experimental
values lie in the range 103
 �D1 /F�
109 �see, e.g., Refs. 2,
8, 12, and 13 particularly�. For short simulation times, we
need to use relatively small values of �D1 /F� towards the
lower end of this experimental range, or else find a realistic
way to increase the allowable time steps. The hybrid-FFT
method is a means of extending the real time scale, as at
longer times there are fewer important Fourier spatial fre-
quencies, as described in Appendix D.

As we become more interested in true nanofabrication and
self-assembly in the nanometer scale range, these lower val-
ues are more and more realistic. As Table II shows, one
island at the center of an N	M mesh of points corresponds
to a nucleation density, nx= �NM�−1 in ML units, if each
mesh point corresponds to a single adparticle or atom. Since
for i=1, the maximum density nx=0.25�F /D1�1/3, we can see
that we need to have a 64	64 mesh to simulate the maxi-
mum density for �D1 /F�=109, and �D1 /F�=106 could al-
ready be simulated realistically with less than 16	16 mesh
at atomic resolution. Of course it is also known that accurate
computation using continuum equations typically requires a
few �linear� mesh points per adparticle;25 but if we are pri-
marily interested in rapid visualization with moderate accu-
racy, then smaller meshes will suffice. For example, if we
settle on 64	64 mesh as in Figs. 1–4, then we could visu-
alize the growth of a single island at a density of 2.44
	10−4 ML, and then introduce a ten-fold increase in island
density via �statistical� nucleation before reaching the maxi-
mum density for �D1 /F�=106, 2.5	10−3ML.

With the repulsive potential, the maximum density is
higher, so the nucleation pattern can be followed even fur-
ther; however, computing time increases linearly with
�D1 /F�, since the time step �D1�t� has to remain small, and
if F is too small, not much changes in a time step. But it
should be emphasized that we are not introducing all the
parameters at once, so here we say nothing about nucleation
per se, which depends on a lateral binding energy Eb that is
not in the problem as studied here. For example, if i�1, due
to finite �Eb /kT�, then nx is smaller than the above i=1
case,1,2 and so there is no inconsistency in studying the

TABLE I. Capture numbers �
� and aspect ratios �A� for islands
of different shapes. �See Fig. 4 for overview. The values given are
approximate, as read off graphs similar to Fig. 4�a�; to quote higher
accuracy from the plotted data would be spurious, as the exact value
would then depend on exact times t and the value of �t.�

Initial size 
x�t=0,10� 
y�t=0,10� A�t=0,10� A−1 at �t=0,10�

5	15 26, 6 8, 3 3.0, 2.25

5	11 19, 6 8, 3 2.2, 1.8

5	7 12, 4.5 8, 3 1.4, 1.35

7	5 8.5, 4.0 11, 3.3 0.71, 0.95 1.4, 1.05

11	5 8.5, 4.0 17.5, 4.0 0.45, 0.70 2.2, 1.40

15	5 8.5, 4.5 24, 4.5 0.33, 0.55 3.0, 1.75

TABLE II. Domain sizes and corresponding nucleation densi-
ties. �Last column is for the atomic density of Si�001�, 6.78
	1014 cm−2.�

Domain Size �N	M�
Nucleation density

�ML�
Nucleation density

�cm−2�

16	16 3.91	10−3 2.65	1012

32	32 9.77	10−4 6.62	1011

64	64 2.44	10−4 1.66	1011

128	128 6.10	10−5 4.14	1010

256	256 1.53	10−5 1.03	1010
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growth of a single island at lower than the maximum density.
This has the additional advantage that the field concentration
c�r� is higher than in the �i=1� case, and the growth rate is
faster with other parameters constant.

B. Deposition and direct impingement

The equation to be solved on the grid is the analog of the
MED Eq. �9� with additional flux terms for the field ci, and
corresponding direct impingement terms for the island

�ci/�t = �
j

�Wj→icj − Wi→jci� + F , �12�

where it is understood that the flux F is masked onto the field
or the island as appropriate. The island mask in this example

is also split as in previous examples, to apportion the flux to
the x and y edges. Thus we are not concerned here with
second layer growth, Ehrlich-Shwoebel barriers, or any such
well-known elaborations; the particles are added to the near-
est edge of the 2D island.

For Fig. 5, we solved Eq. �12� with a small constant initial
field concentration, starting from a 1 ML height 5	11 is-
land with the weaker potential of the two shown in Fig. 2,
and investigated the relative importance of direct impinge-
ment to diffusion capture. Direct impingement can often be
neglected in the early stages of growth,1,2 since it contributes
in proportion to the relative island area Z, whereas the field
contribution is proportional to �1−Z�. But it has been in-
cluded in recent papers on nucleation and growth,7,13 because
it must become more important at higher coverage �.

In Fig. 5�a� �Dy /F�=104, deposition starts at time zero
onto a substrate containing the island and a uniform concen-
tration field c=0.02 ML. We plot the direct impingement ra-
tio �, which is just the ratio of growth increments from direct
impingement and diffusion capture in each time step; the
island size is incremented line by line �see Fig. 9�b� �, so this
leads to the steps in Z, which serve as event markers; the
total coverage �, however, increases linearly. The capture
numbers 
x and 
y are also shown; both stay low for much
of the deposition time shown, as the potential becomes more
strongly repulsive as the island size increases. The upward
going spikes in the capture numbers correspond to incre-
menting the island size, and these spikes are mirrored in the
ratio �, since diffusion capture is the denominator of this
ratio. The value of � rises fairly linearly to �0.2, when �
�0.25 ML, but then levels off, not reaching much more than
0.25 at ��0.5 ML; over the same time range, 
x starts to
rise sharply, while 
y stays low, and even decreases.

This behavior is against our expectations but the reason is
not hard to discern from other �2D� figures produced at the
same time; one of these is shown in Fig. 5�b�. The concen-
tration along the y direction is strongly suppressed by two
factors, the larger value of Dy =2Dx, and the close overlap
between the potential fields along this direction; this yields a
diffusion current towards the pockets between islands in the
x direction. The concentration field builds up here strongly,
to very high levels, �0.6 ML in the case illustrated in Fig.
5�b� for a total deposit of �0.45 ML.

Because nucleation is excluded in the present numerical
examples, only capture by diffusion in the x direction can
limit the concentration. Of course, if nucleation were in-
cluded, these are exactly the locations where subsequent is-
lands would �statistically� form and then grow, as seen in
Ref. 24. Note, however, that the island shape of Fig. 5 is
much squarer than the initial island shape: the 5	11 island
becomes 29	37 at t=400 and 43	47 at t=500. Thus the
approximate aspect ratio decreases from 2.2 through 1.28 at
t=400 to 1.15 at t=500. This is primarily because the poten-
tial strength used increases substantially as the island size
increases.

C. Anisotropic repulsive potentials and the growth of
nanowires

The growth of nanowires is of considerable current
interest.26–28 Thus we are interested in the conditions under

FIG. 5. �Color online� �a� Ratios as indicated and capture num-
bers during deposition for a rectangular potential with initial maxi-
mum �Vm=1.87 at the edge of the 5	11 island. The direct im-
pingement ratio � �black line�, total coverage � �dashed line, green
online�, and relative island area Z �stepped curve, purple online� are
plotted as a function of deposition time, with values of capture
numbers 
x �upper line, red online� and 
y �lowest line, blue on-
line�. �b� Contour plot of field concentration at t=500, showing the
island with Z�0.45 ML, and high field regions between islands
along the x axis. See text for discussion.
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which these wires may grow. It is clear from the current
study that diffusion by itself goes in the opposite direction,
even with no corner rounding, via the coupled diffusion
fields around the x and y sides, as shown during annealing in
Fig. 4; a strong potential surrounding all sides also does not
produce wires in deposition, as demonstrated in Fig. 5. We
can, however, show using Fig. 6 that a very anisotropic po-
tential can produce wires, or at least a strongly increasing
rather than decreasing aspect ratio. For this test, we note that
the repulsive potential we are using consists of separate por-
tions for the x and y sides; here, we simply remove the po-
tential on one of these sides. For the 5	11 island, the most
favorable strategy is to keep the potential hindering attach-

ment to the longer side that leads to 
x, and remove the
potential responsible for the short side 
y.

As illustrated in Fig. 6�a� up to t=200, there are now
many more “spikes” in 
y, even though the absolute value is
still much smaller than 
x. We can count these spikes to track
the changes in island size and shape, noting that the 5	11
island becomes 9	25 by t=100 and 13	41 by t=200, with
approximate aspect ratios of 2.2, 2.78, and 3.15. However,
even in this extremely anisotropic case, with an increasingly
repulsive potential Vx, growth is not completely suppressed
on the longer side, as the concentration remains high there,
yielding a relatively high value of 
x. This concentration
distribution can be seen in the plan view concentration field
contours shown in Fig. 6�b�, where the island size and shape
is such that neighboring islands strongly influence the con-
centration; fast diffusion �Dy =2Dx� to the short �
y� sides
drain the field efficiently, but the repulsive Vx fields from the
neighbors cut off the supply, and almost all the remaining
field concentration is in lines along the y axis between the
“wires.” As deposition continues, 
y decreases, and the com-
plex overlapping diagonal patterns in Fig. 6�b� grow in rela-
tive strength, due to the relatively strong long range potential
used.29 Similar concentration fields, without the diagonal
patterns, are observed for short range, barrierlike, potentials
which are calculated to be realistic for monolayer height Ge
islands on Si�001�, as described in the following section.

VI. DISCUSSION: CASE STUDIES WITH Ge/Si„001…
PARAMETERS

Since the methods described in the present work are quite
general, we have not so far discussed the specific values
needed for comparison with any one material system. As a
case study, we now consider potentials which are calculated
to be reasonably realistic for Ge/Si�001�. It is well known
from other work30–32 that the potential in the Ge/Si�001�
case is steeper than that of Fig. 2�a�, and is almost similar to
a � function edge barrier. The barrier height is thought to be
in the range 0.35–0.55 eV for Ge on Ge/Si�001�; the diffu-
sion energy Ed can also vary with strain.33,34 These absolute
values mean that we need to discuss temperature in order to
obtain the value of �Vm, corresponding to the maxima
around the island edge. For example, if T=450 °C �723 K�,
and Vm=0.35 eV, then �Vm is �5.6, so that we can expect a
large reduction in capture numbers during annealing at this
temperature, as shown here by Figs. 2 and 3.

This feature is readily demonstrated using the techniques
described in this paper for any chosen potential, and realistic
potentials have been developed for monolayer height Ge is-
lands on Si�001�. A range of cases have been considered
where the repulsive potential is caused by strain energy,
based on force monopoles at the edge of the islands within
anisotropic elasticity.35 This work yields explicit expressions
for �xx, �xy, and �yy for rectangular islands, and hence the
potential, which scales as �2; this potential has realistic maxi-
mum values Vm�0.3–0.4 eV; as evaluated here for 450 °C,
�Vm�3 initially and increases to a maximum �6 as the
islands grow.

FIG. 6. �Color online� �a� Ratios as indicated and capture num-
bers during deposition for a highly anisotropic rectangular potential
Vx, with only the x side included at the edge of the 5	11 island
�Vy =0�. Otherwise all quantities calculated are as Fig. 5�a�, but with
finer time steps �t=0.025. �b� Plan-view plot of field concentra-
tion at t=200, showing the elongated rectangular island with
Z�0.18 ML, and high field channeled regions between islands
along the y axis, which are modified by repulsive fields from neigh-
boring islands �diagonal edges in the contours�. The island gray
level has been lightened for clarity; see text for discussion.
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The symmetric case for Ge/Si�001� has mismatch strain
�x0=�y0�0.04, but one can also investigate cases appropri-
ate in general to many silicide wires, where the potential is
anisotropic, by relaxing the strain in one dimension. The case
where �x0=0.04, �y0=0 is illustrated here, one of six cases
presented elsewhere.35 The other parameters Dy =2Dx=10
and �Dy /F�=104, are kept the same as for previous figures,
notably Fig. 6�b�. In Fig. 7�a�, we illustrate this case, and see
that wirelike geometry results after deposition to t=200. The
effect is stronger than in Fig. 6�b� because, although the po-
tential does increase somewhat if the x width increases, the

potential does not vary much with the y length of the wire.
Thus the pinch-off effects seen in Fig. 7�a� are much less
marked, and the following calculations were done without
the “ring of eight” potentials; see Fig. 8�a� in Appendix B for
clarification.

The combined effects of deposition and annealing can
also be studied with any potential on any size mesh, and
these variables can be used to explore the effects of nucle-
ation density and the disposition of neighboring crystals.
Here we show that alternate periods of deposition and an-
nealing can lead to more pronounced wirelike shapes, as
shown in Fig. 7�b� and Table III. Figure 7�b� shows the effect
of a four-cycle deposition-anneal sequence to t=400, while
Table III follows the shapes of the island for several different
deposit-anneal sequences to t=400 �the same total dose as
Fig. 6�, and varying the mesh size and shape. Two different
initial island sizes are considered in this table, the 5	11 as
illustrated in Fig. 7, and the ultranarrow 1	3 starting size,
which results in the most wirelike aspect ratios ��8�. This
last case is at the limit of applicability of the MED method,
since the initial island width is the same as the grid size.

These phenomena can be understood by the following
considerations. During deposition, the concentration builds
up in pockets parallel to the wire axis, as shown in Fig. 7�b�,
to the point that diffusive capture by the long sides is pos-
sible, even though the “easy” path is diffusion to the short
�nonstrained� sides; this causes modest growth in the x direc-
tion, in part due to direct impingement. However, during the
annealing period, this high concentration in the pockets
drains away to the short side, causing further diffusive cap-
ture in the y direction and no growth in the x direction, since
there is no direct impingement contribution. On resuming
deposition, the pockets are re-established, but by a suitable
choice of on/off ratio �the two-, four-, and eight-cycle an-
neals given in Table III, or any other anneal sequence�, the
field maxima may be controlled, and growth in the y direc-
tion may be manipulated. Note that these deposit-anneal se-
quences can also produce “better” wires than simply depos-
iting at half the flux, although the effects of the neighbors are
stronger in the cases studied so far.

The effects of the neighboring crystals can also be seen
via Table III. For the deposit-anneal sequences shown, the
aspect ratio of the wires saturates and then slowly reduces
once the wire length approaches the mesh size, as the neigh-
boring wires approach each other, and 
y declines. If the
neighbors are arranged on a narrow mesh with the same area,
where wire growth is parallel to the long axis of the mesh,
growth starts out the same, but continues unimpeded by the
neighbors, faster and for longer; the low value of the final
field maximum is actually in a band perpendicular to the
wires, because of the different mesh shape. Similar effects
can be obtained by working at twice the area �half the nucle-
ation density�, where for longer times there is a larger num-
ber of adparticles to drain from the field, also resulting in
longer wires with comparable width. There are many more
cases that could be studied with this program and param-
eters; but these results already show that interrupted deposi-
tion, on a suitably shaped array of nucleation centers, may be
an interesting approach to creating nanowires, provided that
the temperature is low enough that the island shape cannot

FIG. 7. Contour plots of wire growth with anisotropic Ge/Si
ML potential with strain components �x0=0.04, �y0=0, the cross-
hatched region representing the island, which had initial size 5
	11. The other parameters Dy =2Dx=10 and �Dy /F�=104 are the
same as in previous figures. �a� Continuous deposition to t=200,
such that the diffusion distance is 77.5; the contours are at concen-
tration intervals �c=0.016 ML. �b� Deposition plus annealing in
four-time cycles of 100 to t=400, with contours at �c=0.008 ML.
The diffusion distance is therefore �110 overall and �55 in each
deposition or anneal period. Other data for the same conditions are
in Table III cases �a� and �c�; see this table for other cases and the
text for discussion.
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equilibrate via corner rounding edge diffusion.
For further detailed results specific to the Ge/Si system,

one may need to model in addition the marked diffusion
anisotropy, whose principal axes are at 45° to the edges of
the hut clusters, taking account the fluctuating state of the
wetting layer, and incorporate for example, the physical
mechanism of the hut to dome transition.36 We can attempt to
model such effects on the island �on average� by resetting the
concentration at the end of each time step to the equilibrium
adparticle concentration at that temperature, rather than to
zero as done here. We can apply 2D nucleation models based
on the concentrations that are present, both during deposition
and annealing, and subsequently follow the time dependence
in the presence of new nuclei. It is clear that such work has
to concentrate on one of these features at a time, not all at
once, as the time scales involved vary over a huge range.

VII. CONCLUSIONS

In conclusion, we have set out the differential equations
needed to solve for time-dependent capture numbers and
other growth quantities in the presence of general �two-
dimensional� potential fields. The analytic theory is de-
scribed in Sec. II and Appendix A. Numerical methods and
experimentally relevant examples are given in the remainder
of the paper. An FFT method, published previously,9 has
been shown to be efficient in the case of zero potential, as
detailed in Appendix B. The main body of the paper is based

on the recent master equation discretization �MED�
algorithm,11 which incorporates the underlying dynamics ex-
actly as explained in Sec. III. An accurate hybrid-FFT
scheme is also introduced which may have speed advantages
for small potential fields and long times, as discussed in Ap-
pendixes B and C.

The results obtained with the MED and hybrid-FFT
schemes have been demonstrated in rectangular geometry.
These schemes have been used to illustrate the reduced cap-
ture numbers obtained when there are repulsive potentials
between adparticles and clusters. The case of “no corner
rounding” has been explored in detail, where quantitative
capture numbers, island aspect and direct impingement ratios
have been obtained, during annealing in Sec. IV and during
deposition in Sec. V. All results can be produced as movies,
where one frame is produced at most every �t. Some of the
time constraints are discussed in Appendix D. The present
methods are fast: for example the data for Figs. 5 and 6 were
produced by two separate single calculations taking about
70 s each. This contrasts with several competing methods
described elsewhere,8 which typically require long times on
supercomputers or large PC clusters.

For physical systems, we have concentrated on
Ge/Si�001� and metal silicides, and shown that these MED
methods are applicable, as detailed in Sec. VI. We have dem-
onstrated in Secs. IV B and V B that calculations approxi-
mating to Ge/Si hut clusters, where the adparticle-cluster
repulsive interaction increases initially with particle size,

TABLE III. Deposition and annealing: Wire sizes, aspect ratios, and field maxima for ML islands with
Ge/Si parameters. All table entries are in the order: integral island size, aspect ratio �bold�, and maximum
field concentration; the upper and lower rows are for initial �1	3� and �5	11� islands, respectively. Aspect
ratios result from including the display pixels, as in Fig. 9�c�; the integral size is incremented as in Fig. 9�b�.
Conditions: 64	64 mesh; �a� deposition to t=200, then anneal to 400; �b� deposition to t=100, anneal 200,
and then repeat; �c� deposition to t=50, anneal to 100, repeat three more times; �d� all deposition but half the
flux; �e� as �b�, but 32	128 mesh; �f� as �b� but 64	128 mesh. All other conditions as in Fig. 7, see text for
discussion.

Initial size
�1	3/5	11� t=100 t=200 t=300 t=400

�a� 2-cycle 3	27, 7.13, 0.109 7	55, 7.23, 0.158 9	61, 6.02, 0.095 11	63, 5.53, 0.061b

anneala 5	25, 4.03, 0.106 9	49, 5.08, 0.153 11	59, 4.91, 0.087 13	61, 4.64, 0.052

�b� 4-cycle 3	27, 7.13, 0.109 5	45, 7.66, 0.070 7	59, 6.82, 0.127 9	61, 5.89, 0.079

anneal 5	25, 4.03, 0.106 7	41, 5.02, 0.065 9	53, 5.05, 0.122 11	59, 4.77, 0.071

�c� 8-cycle 3	23, 7.13, 0.060 5	41, 7.55, 0.079 7	55, 7.17, 0.084 9	61, 6.07, 0.090

anneal 5	23, 3.72, 0.057 7	37, 4.83, 0.075 9	51, 5.14, 0.080 11	59, 4.84, 0.083

�d� deposit, 1	21, 7.70, 0.064 5	39, 7.45, 0.087 7	53, 7.26, 0.095 9	61, 6.27, 0.101

flux/2 5	19, 3.40, 0.061 7	35, 4.61, 0.084 9	49, 5.09, 0.091 11	57, 4.90, 0.095

�e� narrow mesh, 3	27, 7.17, 0.115 5	47, 8.24, 0.078 7	69, 8.47, 0.119 9	83, 8.77, 0.034c

4-cycle 5	25, 4.03, 0.111 7	43, 5.37, 0.073 9	61, 6.01, 0.116 11	75, 6.52, 0.037c

�f� twice area, 3	27, 7.17, 0.118 5	51, 8.17, 0.098 9	79, 8.17, 0.162 11	99, 8.23, 0.104

4-cycle 5	27, 4.12, 0.116 7	47, 5.54, 0.095 11	71, 6.05, 0.159 13	91, 6.43, 0.100

aDeposition only values correspond to the first two columns of the two-cycle anneal.
bThe wire spans the mesh and does not quite reach t=400 before coalescing into an infinite wire, due to the
periodic boundary.
cThe low value of the maximum in this case corresponds to a different location in the mesh, in a band
perpendicular to the wire direction.

TIME-DEPENDENT ANNEALING AND DEPOSITION ON... PHYSICAL REVIEW B 74, 075412 �2006�

075412-11



leads to a growth slow-down that is substantial at moderate
to low growth temperatures �400–500 °C, in line with
many experimental observations.35 In these conditions, dif-
fusive capture over the repulsive barrier is reduced, and di-
rect impingement is an important component of the growth
flux. During annealing, such structures are highly metastable
over long times as is experimentally observed. We briefly
discuss nucleation and growth on facets on hut clusters in
terms of a 2D nucleation and growth mechanism.36

The second material system considered consists of a range
of silicide nanowires. What we have shown here in Secs.
V C and VI is that strongly anisotropic repulsive potential
fields can be one factor contributing to wire growth. We also
emphasized that interrupted deposition can be effective in
promoting wire growth. However, the details certainly de-
pend on the magnitude and form of the potential, and the
relative disposition of neighboring islands. There are of
course other possibilities for creating strongly anisotropic
wires, that are not directly due to repulsive fields per se, but
due to anisotropic attachment, and including growth into,
rather than on, the substrate.26 In that case, we cannot con-
sider the island and the island edge to be a perfect sink as we
have done here, but must consider partial sinks at the edge of
the island, and diffusion over, and imperfect incorporation
into the island.37 For a full 2D or 3D exploration of such
effects, we may well have to include all such effects: aniso-
tropic potentials and attachment, diffusion over the islands,
and partial sinks, plus strongly nonlinear effects such as
nucleation.

All the work described here uses deterministic partial dif-
ferential equations applied to linear-scaling situations. There
is potential for using the same basic continuum approach,
coupled with statistical interactions and fluctuations,24 to
problems in which nucleation, growth and annealing are
combined in ways that illustrate real experimental materials
processes.
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APPENDIX A

There are no analytic solutions for the general form of Eq.
�5�, even in radial geometry. But, in the general case, we can
expand the last two terms to obtain

�c�r�/�t = G − c�r�/� + D�2c�r� + A · �c�r� + B · ���V�r�� .

�A1�

The first four terms of Eq. �A1� are the same as those derived
from Eq. �1� in the absence of a potential field. The magni-
tude of these two terms are controlled by gradient vector
operators A and B, in the scalar product form

A · = ��D + D*���V�r��� ·;

B · = �c�r��D* + c�r�D*�� · . �A2�

The combination of Eqs. �A1� and �A2� represent the
most general equation we wish to consider. There are several
simplifications to Eq. �A1� that may be appropriate. Perhaps
the most obvious is to separate out the effects of concentra-
tion on diffusion coefficients, by writing �D /D*�= f t�c�,
where f t�c� is the thermodynamic factor. For low concentra-
tion, f t�c�=1, and hence there is only one diffusion coeffi-
cient, notionally the tracer diffusion coefficient, which we
write as D*=D1 to avoid confusion. However, D1 can still be
a function of position.

In the more restrictive limit that D1 is constant, the terms
�D and �D* in Eq. �A2� will disappear, leaving the extra
terms in Eq. �A1� of the form

A · �c�r� + B · ���V�r�� = D*���V�r�� · �c�r�

+ �c�r�D*�2��V�r���;
�A3a�

this equation can be rearranged as

A · �c�r� + B · ���V�r�� = D1��c�r� · ���V�r��� ,

�A3b�

as in Eq. �6�. If D*�D the remaining terms, the difference
between the last two terms of Eq. �A2� and those in Eq. �A3�,
are cross-terms involving the gradients of the diffusion coef-
ficients, namely,

C = �D · �c�r� + c�r��D* · ���V�r�� . �A4�

We can see that C may well be small, based on the following
argument. If the potential effects are large, then c�r� will be
dominated by equilibrium effects, such that c�r�	c0exp�
−�V�r��, where c0 is a constant. Thus �c�r�	
−c�r����V�r��, and Eq. �A4� can be written

C 	 − c�r���D − �D*� · ���V�r�� . �A5�

Thus C vanishes at low concentration, where D*=D, and
corresponds approximately to an extra contribution to the
loss term −c�r� /� in Eq. �5� in the general case. This means
that we do not need to consider equation �A5� separately, and
we will neglect it in this paper.

APPENDIX B

The numerical methods used in this work have been pub-
lished in some detail in a previous conference paper.9 The
topics discussed there include a demonstration of the FFT
method of solving the time-dependent diffusion, by checking
against the known solution for an array of point sources on a
lattice. The sources consisted of a central point source, sur-
rounded by one or more rings of extra sources, which ensure
periodic boundary conditions; the first “ring” contains eight
extra sources, as shown in Fig. 8�a�. These sources were
needed once the diffusion field from the central mesh of
points spreads into neighboring areas. The FFT method itself
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is a 2D pbc solution, and so needs to be compared with the
2D-analytic solution for a source array, as in Fig. 8�b�. We
showed that this FFT method could be expressed very con-
cisely in MATLAB®6.5 and was essentially exact except at very
short times, when discontinuities in concentration are
present.9

In the present work, we use the same “ring of 8” approach
to make sure that the potential function corresponds ad-
equately to periodic boundary conditions. In addition to the
central function, which is all that is needed for small islands
near the center of the mesh, the tails of the surrounding �8�
potential functions are added once the potential starts to
overlap into the surrounding mesh, i.e., when the potential
fields from neighboring islands overlap. This ensures that the
adparticle concentration has a zero gradient on the boundary
of the mesh; failure of this condition means that not enough
potential functions have been included.

The second numerical method9 is the use of logical masks
to delineate the island, field, and island edge regions �matri-
ces B1, B2, and B3� on the mesh, and matrices B4 and vari-

ous sub-matrices on the island. Growth of the island is ef-
fected by allowing diffusion to occur during each time step
�t, such that an adparticle concentration builds up in this
time over the matrix B4. The total integrated concentration
then corresponds to the growth increment �grinc�, and cap-
ture numbers can be deduced directly from this value and the
area and height of the island. After �t the island concentra-
tion is reset to zero, and these adparticles are added to the
island.

For the case we consider in detail, restricted corner diffu-
sion, we also use submatrices of B4, B4x, B4y, and an edge
matrix B4e, to apportion the growth increment to the x and y
edges, �grincx and grincy� and hence to calculate capture
numbers 
x and 
y for each edge; these are clearly not the
same for anisotropic diffusion into rectangular islands. The
comparison of this case with rapid diffusion around the cor-
ners, in which only the overall growth increment is impor-
tant, leads to different island shapes; any intermediate value
for corner diffusion would lead to intermediate shapes, so
these two extremes bracket the real situation, subject to dif-
fusion being rapid enough along the edges in both cases.

Updating the island size and shape is a matter of counting
how many particles have joined which part of the island, and
then updating the size and shape accordingly. There are, of
course further choices to be made at this stage, and we have
concentrated on one such choice; the adparticles that join a
particular edge are considered to congregate at the corners,
since that is where the concentration gradient of the field is
highest. One can see that such choices can branch out of
control quite easily: for example, this may not be a realistic
assumption with a large repulsive potential field, because the
potential field may also be highest at the island corners. The
point is, however, that these methods are good for introduc-
ing new processes one by one, and for making these pro-
cesses explicit. A new process can be introduced and the
effects explored if there is reason to expect that it may be
interesting.

We have demonstrated two separate ways of updating the
island size, line by line and pixel by pixel as illustrated in
Fig. 9. Here we see the island size �the 5	11 matrix B4� in
panel �a� being updated in panel �b� by first incrementing the

FIG. 8. �Color online� �a� Schematic diagram of a 2D array of
point sources, consisting of a central source and a ring of nearest
neighbors. �b� Comparison of the FFT central x-axis solution �full
line, blue online� with single point source �dash line, red online�,
and 2D array �black triangles�, after annealing for t=6.4 with Dx

=5, Dy =10, on a 64	64 grid with grid size a=0.5 �after Ref. 9�.
See text for discussion.

FIG. 9. �Color online� Updating island size and shape. In the
examples shown here, a 5	11 island �a� grows by adding ad par-
ticles to the surrounding ring. The calculation is incremented line by
line �b�, first by incrementing the length in the y direction �dark
shading, blue online� and then the x direction �light shading, red
online�. In most examples, the display is incremented pixel by
pixel, as in �c� �after Ref. 9�. See text for discussion.
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y axis, and then the x axis, to produce a new B4 island of
size 7	13. This updating can also be done pixel by pixel as
illustrated in panel �c�, but the computational cost is that
either all the logical matrices are updated, or that computa-
tions are performed on the island edges, much more fre-
quently. A compromise is to update the display pixel by
pixel, to produce smooth pictures and movies as in Fig.
10�a�, but to increment the diffusion field line by line. This
introduces steps or “spikes” in the capture number curves
shown in Fig. 10�b�, and in text Figs. 1, 2, 5, and 6; these are
useful for pedagogical purposes, since one can identify
which spike comes from incrementing x and y edges, and
interpret the rise and subsequent relaxation of the curves ac-
cordingly.

Pixel by pixel updated capture number curves are
smoother, but still contain larger or smaller spikes, depend-
ing on exactly how growth is attributed to x or y edges, and
how that changes when full lines are completed, and when
the island corners are filled in. This method is the subject of
further work; an example is shown here in Fig. 4. Depending
on the time increment used, these remaining discontinuities
may or may not correspond to real physics; for example,
small time steps lead to sharp spikes, but the amount incre-
mented may correspond to less than one atom added to the
growing crystal. At that point, we have “empty magnifica-
tion” by using a continuum description of an atomistic pro-
cess.

APPENDIX C

This appendix compares three numerical methods that
have been used in this work to solve Eq. �8� for the field
concentration c�r� in the presence of a known potential V�r�.
We are particularly interested in accuracy, speed, and conve-
nience within the MATLAB®6.5 environment, though many
points are more general. Some points that follow were made
in a conference paper,10 but this discussion has been cor-
rected, and is more complete, involving further numerical
tests and discussions amongst the present authors.

The calculations are based on the general MED procedure
published previously.11 In the form of Eq. �9� this procedure
can be readily carried out by inserting the specific values of
the transition probabilities Wi→j from Eq. �10�. Here we have
generalized to anisotropic diffusion on a rectangular lattice
by using diffusion coefficients Dx, Dy, and jump distances a,
b as appropriate. For 2D diffusion there are eight terms in
Eq. �9�, four each for the x and y directions. The exponentials
in Eq. �10� are readily implemented in matrix form using the
MATLAB® circular shift operator, circshift��V , �ny ,nx��, where
the shift numbers �ny ,nx� are the appropriate eight combina-
tions of �0, ±1�.

The problem to be solved is implemented on a physical
periodic domain of size �Ma	Nb�. The mesh grid for the
calculation can be �M 	N� or integral multiples of this size,
assuming that we restrict ourselves initially to uniform grids
that are compatible with the student edition of MATLAB®6.5.
The standard approach to integration of continuum PDEs
�e.g., Eq. �8�� is to reduce the step lengths �a and b, called h
in the PDE literature11,38� and increase the number of grid
points M and N proportionately so that the physical domain
size stays constant. That way, the convergence properties are
checked and an optimum choice of h made. The computing
time for this procedure scales with h−2 for the space part, and
by a further h−2 for the time integration in simple explicit
Euler schemes. Thus greater accuracy is bought at the cost of
computing time that scales as h−4, or equivalently �MN�2.

This scaling is normally improved by using implicit time
integration schemes. For stable implicit schemes it is desir-
able to keep the time step size in proportion to the mesh size,
i.e., �t�h, thus keeping spatial and temporal errors compa-
rable. This results in the time scaling as Ch−1. The comput-
ing time with respect to space for implicit schemes is depen-
dent upon how efficiently we can solve a linear system of

FIG. 10. �Color online� �a� Contour plots of the concentration
field and �b� capture numbers for the growth of the island, after
annealing for t=90 �900 steps, �t=0.1� with Dx=5, Dy =10, on a
64	64 grid with step size a=b=1. Initial concentration=1, island
height h=5; there is no repulsive potential in this example. The
ledge growth of the island can be seen in �a� where the display is
incremented as in Fig. 9�c�. The jumps in the capture numbers
correspond to incrementing the island size in the calculation line by
line, as indicated in Fig. 9�b�, as discussed in the text �Ref. 9�.
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equations of size �h−2. An optimal solver will achieve com-
puting times that scale �h−2. For example, Multigrid39 is
capable of achieving this scaling, but is not considered here.
This would lead to an optimal scaling for implicit schemes of
Ch−3, but where the multiplicative constant C could be large.
Hence, implicit schemes give better stability, but this does
not necessarily mean a faster algorithm for a prescribed ac-
curacy.

At this point we have to backtrack, and address the con-
cern that the continuum PDE solution is to be used as a
means to an end, not as an end itself. The underlying prob-
lem is atomistic, provided that we are interested primarily in
nanoscale islands, and we are representing island growth by
finite increments of atomic rows or individual pixels as in
Fig. 9. Here we are using the atomic row width as one mesh
point, and this is also serving as the computational mesh for
most examples. From the PDE viewpoint, increasing the size
of the domain, as in Table I, results in a new problem with a
different solution; since the mesh size is fixed by the atomic
constraint, the scaling with h does not apply; it would only
apply if the number of mesh points were further increased to
improve the accuracy of the continuum solution. But this
approach rapidly runs into computing time problems: it feels
unsatisfactory to simulate a single adatom by say 16 mesh
points, taking anything from 64 to 256 times as long, when a
single point will illustrate all the points of interest in a semi-
quantitative manner.

The three methods used are illustrated here, using the po-
tential of Fig. 2�a� on a 64	32 mesh, as a function of the
time step �t, with Dx=5 and Dy =10 and a=b=1, for an
initially 5	11 island as previously. Decreasing �t from 0.2
to 0.02 spans the range of diffusion distances in the time step
(rd= �2�Dx+Dy��t�0.5) from 2.45 to 0.77. Figure 11�a� shows
the simple five-step explicit method, namely, five integration
steps during �t, after which the boundary conditions are re-
applied. The final t=90 corresponds to 450 time steps and
2250 integration steps for �t=0.2 and ten times more for
�t=0.02. The former time step is too long for all but illus-
trative work, and the latter is around the practical limit,
where we are into diminishing returns.

Similar sets of capture number plots have been obtained
for the other two methods. Figure 11�b� compares the hybrid-
FFT and implicit methods with the above explicit MED cal-
culation for �t=0.05. To be clear about the hybrid-FFT
method, we give a 1D description corresponding to Eqs. �9�
and �10� in which the eight terms reduce to three, such that

�ci/�t = � �Wi+1→ici+1 + Wi−1→ici−1 − �Wi→i+1 + Wi→i−1�ci� .

�C1�

Now we separate out terms due to the constant diffusion
coefficient �D1 /a2� to obtain

�ci/�t = �D1/a2��ci+1 + ci−1 − 2ci� + �
j

�Wj→i
* cj − Wi→j

* ci� .

�C2�

Here the first term in square brackets is just the constant
diffusion coefficient equation that is efficiently solved by the
FFT method, as in Appendix B. By comparing equations

�C1� and �C2� with Eq. �10�, we can see that the modified
transition probabilities in the second square bracket Wi→j

* are
all given by

Wi→j
* = �D1/a2��exp���Vi − Vj�� − 1�; �C3�

these terms are typically much smaller than the original tran-
sition probabilities, and vanish linearly as the potential flat-
tens out away from the islands. In the hybrid-FFT method

FIG. 11. �Color online� Capture numbers 
x �upper curves, red
online� and 
y �lower curves, blue online� for the growth of the 5
	11 island, after annealing for t=90 with Dx=5, Dy =10, on a 64
	32 grid with step size a=b=1. Initial concentration=1, island
height h=5, and repulsive potential as in Fig. 2�a� with the initial
value of �Vm=0.96. The jumps in the capture numbers correspond
to incrementing the island size in the calculation line by line, shown
in Fig. 9�b�; earlier, larger “spikes” correspond to more accurate
solutions, which take more computing time, as discussed in the text:
�a� time step �t as parameter in the explicit integration scheme; �b�
time step �t=0.05, comparing integration methods. See text for
discussion.
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these different terms �C3� were added in real space explicitly,
either in four-steps or one-step per �t.

The implicit scheme developed is a sparse matrix inver-
sion method using a conjugate gradient scheme, constructed
with MATLAB®6.5 student edition library routines �pcg and
sparse�. This method required extra matrix-vector-matrix
conversions here; in optimized schemes, e.g., in PDELAB®, all
variables are described by vectors, and so these steps are not
needed. But implicit schemes do not yield any gain unless
we are interested in improving scaling with h as discussed
above. As seen in Fig. 11�b� for �t=0.05, all three methods
yield similar results �and even more so for �t=0.02�. The
most accurate results are the five-step explicit, then the one-
step hybrid-FFT �the four-step version is only very slightly
better� and then the implicit method. The more accurate the
method, the more the “spike” occurs at an earlier time, and
the greater the maximum amplitude. But in practical terms,
any of these methods is good enough for present purposes,
provided �t is small enough.

APPENDIX D

Computing times have been tabulated on a 2 GHz por-
table computer �Dell Inspiron 600m�, and can easily be
dominated by the screen printing time needed to follow the
evolution of the field and capture number solutions, and by
hard disk transfers. Thus large cache memory and fast graph-
ics card are advisable for real-time �movie� presentation of
such results. For no graphics in the main program loop, com-
puting times for Fig. 11�a� with �t=0.05 were �50 s for the
one-step hybrid-FFT, and �120 s for the implicit method.
Thus this procedure allows us to reduce the time step to �t
=0.02, with computing times �150 s for the hybrid-FFT,
and �350 s for the implicit method. These timings are of

course approximate and can be decreased by simplifying the
file output further.

The explicit timings so far are a bit larger than the hybrid-
FFT, and the latter method is much more stable if similar
time steps are compared, for potentials that are not too
strong. In the case shown in Fig. 11, the maximum of the
initial potential �Vm=0.96 and this rises to 2.6 as the island
size increases. The important measure of the potential is
given by the maximum Peclet number,11 which should nor-
mally be 
1 for good convergence. In the cases illustrated in
Figs. 1 and 2 the Peclet number stays below 0.61 at all an-
nealing times, but this is just under 5 times higher for Fig. 3.
In these latter cases both methods are stable up to a Peclet
number of �3, but the values obtained are slightly different.
In particular it appears that the two methods approach the
same answer from opposite directions, so that they effec-
tively bracket the correct answer for all reasonable time steps
�t, as discussed in the text and Fig. 3.

The MATLAB®6.5 programs developed here have very short
code, organized into a few �1–10� subroutines of typical size
1–10 kB. But the 2D moving picture file size can, depending
on the mesh size and the number of frames kept, be any-
where upwards of 5 MB, and that is just for short presenta-
tions of typically 150 frames. So our current strategy is to
keep only the programs, and not the 2D results, except in the
immediate run-up to such presentations. This approach is
possible because the calculations themselves take such a
short time to run. No individual program result presented in
this paper has taken more than 350 s, and most results have
taken between 20 and 100 s, after optimizing the program
specifically for that particular output. This contrasts with the
major supercomputer calculations which are otherwise the
norm in this field.
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