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We provide a systematic quantitative description of the structure of edge states and magnetosubband evo-
lution in hard-wall quantum wires in the integer quantum Hall regime. Our calculations are based on the
self-consistent Green’s function technique where the electron and spin interactions are included within the
density functional theory in the local spin density approximation. We analyze the evolution of the magneto-
subband structure as magnetic field varies and show that it exhibits different features as compared to the case
of a smooth confinement. In particular, in the hard-wall wire a deep and narrow triangular potential well �of the
width of the magnetic length lB� is formed in the vicinity of the wire boundary. The wave functions are strongly
localized in this well, which leads to an increase of the electron density near the edges. Because of the presence
of this well, the subbands start to depopulate from the central region of the wire and remain pinned in the well
region until they are eventually pushed up by increasing magnetic field. We also demonstrate that the spin
polarization of electron density as a function of magnetic field shows a pronounced double-loop pattern that
can be related to the successive depopulation of the magnetosubbands. In contrast to the case of a smooth
confinement, in hard-wall wires compressible strips do not form in the vicinity of wire boundaries and spatial
spin separation between spin-up and spin-down states near edges is absent.
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I. INTRODUCTION

Recent advances in fabrication of low-dimensional struc-
tures allow one to create quantum wires with a hard-wall
potential confinement. The available technologies include
implantation-enhanced interdiffusion technique1 developed
more than 20 years ago. Using this technique Prins et al.2

demonstrated a potential jump at a heterointerface GaAs-
AlGaAs over only 8 nm distance. The molecular beam epi-
taxy double-growth technique3 �often referred to as a
cleaved-edge overgrowth� since the early 1990s has become
one of the most widely used techniques for fabrication of
quantum wires4–6 and two-dimensional electron gases7

�2DEGs� with an essentially hard-wall confinement with
atomic precision. Quantum wires with a steep confinement
can also be fabricated by overgrowth on patterned
GaAs�001� substrates using molecular beam epitaxy.8

For theoretical description of the quantum Hall effect in
quantum wires, the concept of edge states is widely used.9 In
a naive one-electron picture the positions of the edge states
are determined by the intersection of the Landau levels �bent
by the bare potential� with the Fermi energy, and their width
is given by a spatial extension of the wave function, which is
of the order of the magnetic length lB=� �

eB . For a smooth
electrostatic confinement that varies monotonically through-
out the cross section of a wire, Chklovskii et al.10 have
shown that electrostatic screening strongly modifies the
structure of the edge states giving rise to interchanging com-
pressible and incompressible strips. The electrons populating
the compressible strips screen the electric field, which leads
to a metallic behavior when the electron density is redistrib-
uted �compressed� to keep the potential constant. The neigh-
boring compressible strips are separated from each other by
insulatorlike incompressible strips corresponding to fully
filled Landau levels with a constant electron density.

A number of studies of quantum wires with a smooth
confinement have been reported during the recent decade11–22

addressing the problem of electron-electron interaction be-
yond Chklovskii et al.10 electrostatic treatment. Particular at-
tention has been paid to spin polarization effects in the edge
states.11,13,16,17,19,23,24 It has been demonstrated that the ex-
change and correlation interactions dramatically affect the
edge state structure in quantum wires, bringing about quali-
tatively new features in comparison to a widely used model
of spinless electrons. These include spatial spin polarization
of the edge states,13,24 pronounced 1/B-periodic spin polar-
ization of the electron density,23 modification, and even sup-
pression of the compressible strips,24 and others. It should be
stressed that all the above-mentioned studies addressed the
case of a soft confinement corresponding to, e.g., a gate-
induced depletion when the Bohr radius is much smaller that
the depletion length. In fact, Huber et al.7 have recently pre-
sented experimental evidence that the widely used concept of
compressible and incompressible strips10 does not apply to
the case of a sharp-edged 2DEG. At the same time a rigorous
theory for edge state structure in hard-wall quantum wires
accounting for electron-electron interaction and spin effects
has not been reported yet. Such a theory is obviously re-
quired for a detailed analysis of recent experiments on
cleaved-edged overgrown sharp-edged wires and 2DEGs.2–8

Motivated by the above-mentioned experimental studies,
in this paper we present a detailed theory of magnetosubband
and edge state structure in quantum wires with a hard-wall
confinement taking into account electron-electron interaction
including exchange and correlation effects. We employ an
efficient numerical tool based on the Green’s function tech-
nique for self-consistent solution of the Schrödinger equation
in the framework of the density functional theory �DFT� in
the local spin density approximation �LSDA�.25 The choice
of DFT+LSDA for description of many-electron effects is
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motivated, on one hand, by its efficiency in practical imple-
mentation within a standard Kohn-Sham formalism,26 and,
on the other hand, by an excellent agreement between the
DFT+LSDA and the exact diagonalization27 and variational
Monte Carlo calculations28,29 performed for few-electron
quantum dots. We will demonstrate below that edge state
structure of the hard-wall quantum wire is qualitatively dif-
ferent from that of the soft-wall wire. We will discuss how
the spin-resolved subband structure, the current densities, the
confining potentials, and the spin polarization in the hard-
wall quantum wire evolve when an applied magnetic field
varies.

The paper is organized as follow. In Sec. II we present a
formulation of the problem, where we define the geometry of
the system at hand and outline the self-consistent Kohn-
Sham scheme within the DFT+LSDA approximation. In
Sec. III we present our results for a hard-wall quantum wire
calculated within Hartree and DFT+LSDA approximations,
where we distinguish cases of wide and narrow wires. Sec-
tion IV contains our conclusions.

II. MODEL

We consider a quantum wire that is infinitely long in the x
direction and is confined by a hard-wall potential in the y
direction �see Fig. 1�.

The magnetic field is applied perpendicular to the xy
plane. We set the Fermi energy EF=0. The bottom of the
confining potential is flat and situated at E=V0. We limit
ourselves to a typical case when only one subband is occu-
pied in the transverse z direction7 such that electron motion
is confined to the xy plane. The Hamiltonian of the wire
reads H=��H�,

H� = H0 + V0 + Vef f
� �y� + g�bB� , �1�

where H0 is the kinetic energy in the Landau gauge,

H0 = −
�2

2m*�� �

�x
−

eiBy

�
�2

+
�2

�y2� , �2�

where �= ± 1
2 describes spin-up and spin-down states ↑, ↓,

and m*=0.067me is the GaAs effective mass. The last term in
Eq. �1� accounts for the Zeeman energy where �b= e�

2me
is the

Bohr magneton, and the bulk g factor of GaAs is g=−0.44.
The effective potential, Vef f�y� within the framework of the
Kohn-Sham density functional theory reads26

Vef f
� �y� = VH�y� + Vex

� �y� , �3�

where VH�y� is the Hartree potential due to the electron den-
sity n�y�=��n��y� �including the mirror charges�,23

VH�y� = −
e2

4��0�r
	 dy�n�y��ln

�y − y��2

�y − y��2 + 4b2 , �4�

with 2b being the distance from the electron gas to the mirror
charges �we choose b=60 nm�. For the exchange and corre-
lation potential Vxc�y� we utilize the widely used parameter-
ization of Tanatar and Ceperley30 
see Ref. 23 for explicit
expressions for Vxc�y��. This parametrization is valid for
magnetic fields corresponding to the filling factor ��1,
which sets the limit of applicability of our results. The spin-
resolved electron density reads

n��y� = −
1

�
Im 	 dE G��y,y,E�fFD�E − EF� , �5�

where G��y ,y ,E� is the retarded Green’s function corre-
sponding to the Hamiltonian �1� and fFD�E−EF� is the
Fermi-Dirac distribution function. The Green’s function of
the wire, the electron and current densities are calculated
self-consistently using the technique described in detail in
Ref. 23.

The current density for a mode 	 is calculated as23

J	
��y� =

e2

h
V	 dE

j	
��y,E�

v	
� �−

�f�E − EF�
�E

� , �6�

with v	
� and j	

��y ,E� being respectively the group velocity
and the quantum-mechanical particle current density for the
state 	 at the energy E, and V being the applied voltage.

We also calculate a thermodynamical density of states
�TDOS� defined according to31,32

D� =	 dE 
��E��−
�fFD�E − EF�

�E
� , �7�

where the spin-resolved density of states 
��E� is given by
the Green’s function33


��E� = −
1

�
Im 	 dy G��y,y,E� . �8�

The TDOS reflects the structure of the magnetosubbands
near the Fermi energy and it can be accessible via
magnetocapacitance34 or magnetoresistance35 measurements.
Indeed, a compressible strip corresponds to a flat �dispersion-
less� subband pinned at EF. In this case 
��E� is high at E
�EF and so the subband strongly contributes to the TDOS.

FIG. 1. �a� Schematic illustration of a cleaved-edge overgrown
quantum wire and �b� a corresponding hard-wall confinement
potential.
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In contrast, in an incompressible strip, subbands are far away
from EF and do not contribute to the TDOS. Thus the TDOS
is proportional to the area of the compressible strips. This
area is maximal when the strip is formed in the middle of a
quantum wire. In this case the backscattering between oppo-
site propagating states is maximal, which corresponds to
peaks in the longitudinal resistance Rxx �seen as the
Shubnikov–de Haas oscillations�.35–37 In magnetocapaci-
tance experiments34,37 the compressible strips are viewed as
capacitor plates and therefore the measured magnetocapaci-
tance is related to the width of these strips. Thus the peaks in
the TDOS are manifest in both Rxx and capacitance peaks.

III. RESULTS AND DISCUSSION

In what follows we shall distinguish between cases of a
wide quantum wire whose half-width w /2 exceeds the mag-
netic length lB, and a narrow wire with a width w /2� lB.

A. Wide hard-wall quantum wire w /2� lB

Let us consider a hard-wall quantum wire of width w
=300 nm and V0=−0.1 eV. With these parameters the wire
has N20 spin-resolved occupied subbands at zero mag-
netic field, and the sheet electron density in its center is
n2D�1.5�1015 m−2 �as calculated self-consistently in both
Hartree and DFT approximations�.

1. Hartree approximation

We start our analysis of the edge state and magnetosub-
band structure from the case of the Hartree approximation
�when the exchange and correlation interactions are not in-
cluded in the effective potential�. The Hartree approximation
gives the structure of the compressible and incompressible
strips which serves as a basis for understanding of the effect
of the exchange and correlation within the DFT
approximation.23,24

Figure 2�a� shows the 1D electron density n1D
�

=�n��y�dy for the spin-up and spin-down electrons in the
quantum wire. The pronounced feature of this dependence is
a characteristic loop pattern of the charge density polariza-
tion Pn= �n1D

↑ −n1D
↓ � / �n1D

↑ +n1D
↓ � 
see Fig. 2�c��. Figure 2 also

indicates a number of magnetosubbands N populated at a
given B. The number of subbands is always even such that
spin-up and spin-down subbands depopulate practically si-
multaneously. This is because the spin polarization within
the Hartree approximation is driven by Zeeman splitting
only, which is small in the field interval under consideration.
A comparison of Figs. 2�a�, 2�c�, and 2�e� demonstrates that
the spin polarization as well as the TDOS are directly related
to the magnetosubband structure. Note that a similar looplike
behavior of the spin polarization is also characteristic for a
split-gate wire with a smooth confinement.23 For the latter
case the polarization calculated in the Hartree approximation
drops practically to zero when the subbands depopulate �see
Fig. 4 in Ref. 23�. In contrast, in the case of the hard-wall
confinement, the polarization loops exhibit more complicated
pattern: the polarization does not drop to zero when the sub-
bands depopulate, and, in addition, the polarization curves

show a double looplike pattern with an additional minimum

e.g., at B�1.5 T, 3 T in Figs. 2�a� and 2�c��. In order to
understand the origin of this behavior let us analyze the evo-
lution of the subband structure as the applied magnetic field
varies. Let us concentrate at the field interval 1.65�B
�3.5 T when the subband number N=4.

Figure 3�b� shows the spatially resolved difference in the
electron density n↑�y�−n↓�y� as a function of B. The electron
density is mostly polarized in the inner region of the quan-
tum wire. For certain ranges of magnetic fields the electron
density shows a strong polarization in the boundary regions,
which are separated from the polarized inner region by wide
unpolarized strips �e.g., for 3�B�3.5 T�. We will show be-
low that this feature reflects the peculiarities of the magne-
tosubband structure for the case of the hard wall confine-
ment. Figure 3�c� shows the electron density profiles �local
filling factors� ��y�=n�y� /nB�nB=eB /h�, the current densi-
ties J��y�, and the magnetosubband structure for the mag-
netic field B=1.8 T. At this field a wide compressible strip
due to electrons belonging to the subbands N=3,4 is formed
in the middle of the wire. 
Following Suzuki and Ando20 we
define the width of the compressible strips within the energy
window �E−EF�2�kT corresponding to the partial occupa-
tion of the subbands when fFD1; this energy window is
indicated in Fig. 3�c��. Partial subband occupation combined
with Zeeman splitting of energy levels results in different
populations for spin-up and spin-down electrons �i.e., in the
spin polarization of the electron density�.

FIG. 2. �Color online� �a�, �b� One-dimensional charge densities
for the spin-up and spin-down electrons, n1D

↑ , n1D
↓ ; �c�, �d� the spin

polarization of the charge density, Pn= �n1D
↑ −n1D

↓ � / �n1D
↑ +n1D

↓ �, �e�,
�f� the TDOS for spin-up and spin-down electrons and the total
TDOS within the Hartree approximation and the DFT approxima-
tion �first and second columns, respectively�. The number of sub-
bands is indicated in �a�, �b�. Arrows in �c� and �d� indicate the
magnetic field corresponding to the magnetosubband structure
shown in Figs. 3 and 4 below. The width of the wire is w
=300 nm and the depth is V0=−0.1 eV. Temperature T=1 K.
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Close to the wire edges the total potential exhibits a nar-
row and deep triangular well. The formation of the triangular
well is also reflected in the structure of the magnetosubbands
that show triangular wells near the wire edges. The presence
of these triangular wells is a distinctive feature of the hard-
wall confinement �it is absent for the case of a smooth con-
finement in the split-gate wires12,20,23,24�. The wave functions
for all subbands are strongly localized in these wells, with
the extension of the wave functions being of the order of the
magnetic length lB. Because of the steepness of the potential
walls, the wave functions are not able to screen the confining
potential, and compressible strips cannot form near the wire
boundary. This is in a stark contrast to the case of a split-gate
wire where the compressible strips near edges are formed for
a sufficiently smooth confinement.10,20,23,24 The electron den-
sity near the wire boundaries does not show any spin polar-
ization. This is because the bottom of the potential well lies
far below the Fermi energy. As a result, both spin-up and
spin-down states localized in the quantum well are com-
pletely filled �fFD=1� and the spin polarization is absent.

When a magnetic field increases the compressible strip in
the middle of the wire widens. This is accompanied by in-
crease of both the spin polarization and the TDOS as shown
in Figs. 2�c� and 2�e�. At B=2.3 T the polarization reaches
maximum Pn=3% which corresponds to the maximum width
of the compressible strip in the central part of the wire 
see
Fig. 3�d��. With further increase of the magnetic field the
third and fourth subbands in the central part of the wire are
pushed up 
see Fig. 3�e��. Their population decreases accord-
ing to the Fermi-Dirac distribution and, consequently, the
spin polarization diminishes. At the same time, fully occu-
pied parts of third and fourth subbands �forming a triangular
well near the wire boundaries� are pushed up and got pinned

at the Fermi energy. This is accompanied by a formation of a
potential barrier at the distance of the wave function extent
lB from the wire edges 
see Fig. 3�e��. The whole area
occupied by subbands 3 and 4 becomes divided by nonpopu-
lated region within the barrier where the subbands lie above
EF �i. e., fFD=0�.

When the magnetic field slightly increases from B
=2.8 to 3.0 T the magnetosubband structure undergoes sig-
nificant changes. The middle part of the third and fourth
subbands is abruptly pushed up in energy. The incompress-
ible strip emerges here due to first and second fully occupied
subbands lying well below EF 
Fig. 3�f��. As a result the spin
polarization decreases and the first polarization loop closes
down at B�3 T 
see Fig. 3�a��. Note that Pn does not drop
to zero because of a finite polarization at the boundaries
where the third and fourth subband bottoms are still pinned
at the Fermi energy 
see Figs. 3�b� and 3�f��. As the magnetic
field increases the second polarization loop starts to form at
B�3 T due to the first and second subbands that get pinned
to EF in the middle of the wire 
Fig. 3�g��. In addition, the
third and fourth subbands that are pinned to EF near the wire
boundaries also contribute to spin polarization. These sub-
bands become completely depopulated at B=3.5 T. Further
increase of the magnetic field causes the compressible strip
in the middle to widen. The spin polarization Pn grows lin-
early until the second subband becomes depopulated.

Note that the above scenario of the subband depopulation
in quantum wires with a hard-wall confinement is qualita-
tively different from that of the smooth confinement. In the
former case, because of the presence of the deep triangular
well near the wire boundaries, the subbands start to depopu-
late from the central region of the wire and remain pinned in
the well region until they are eventually pushed up by the

FIG. 3. �Color online� �a� Spin polarization of the charge density as a function of B calculated within the Hartree approximation 
the same
as Fig. 2�c��. �b� Spatially resolved difference in the electron density n↑�y�−n↓�y�. �c�–�g� The subband structure for magnetic fields indicated
by arrows in �a�. Top panel: electron density profiles �local filling factors� ��y�=n�y� /nB for spin-up and spin-down electrons; middle panel:
the current density distribution for spin-up and spin-down electrons; bottom panel: magnetosubband structure for spin-up and spin-down
electrons. Fat solid and dashed lines indicate the total confining potential for, respectively, spin-up and spin-down electrons. The width of the
wire is a=300 nm and depth is V0=−0.1 eV. Temperature T=1 K.
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magnetic field. In contrast, in the case of a smooth confine-
ment, the subbands always depopulate from the edges, such
that a compressible strip in the middle of the wire gradually
decreases until it completely disappears when the whole sub-
band is pushed up above the Fermi energy.23,24

The spatial current distribution stays practically the same
throughout the magnetosubband evolution; see the central
panels in Figs. 3�c�–3�g�. This is due to a strong localization
of electrons in the triangular potential well. The spatial spin
separation between spin-up and spin-down states is always
equal to zero, which is also the case for a split-gate wire in
the Hartree approximation.23,24

Finally, within the Hartree approximation the TDOS
shows a behavior similar to the spin polarization of the elec-
tron density Pn 
compare Figs. 2�e� and 2�c��. This is be-
cause the spin polarization is primarily caused by electrons
in the compressible strips, and the TDOS, as discussed in the
previous section, is proportional to the width of these strips.

2. DFT approximation

The exchange and correlation interactions bring qualita-
tively new features to the magnetosubband structure in com-
parison to the Hartree approximation. Figures 2�b�, 2�d�, and
2�f� show the 1D electron density, the number of subbands,
the spin polarization, and the TDOS calculated within the
DFT approximation. There are several major differences in
comparison to the Hartree case. First, the spin polarization of
the electron density also shows a pronounced loop pattern.
However, for a given magnetic field the spin polarization in
the quantum wire calculated on the basis of the DFT approxi-
mation is much higher in comparison to the Hartree approxi-
mation �by a factor of 5–10�. Second, the exchange interac-

tion lifts subband degeneration, such that the subbands
depopulate one by one. Third, the TDOS reveals peaks that
are attributed to different spin species.

Before we proceed to analysis of the magnetosubband
structure within the DFT approximation, it is instrumental to
outline the effect of the exchange interaction on the subband
spin splitting. Within the Hartree approximation the sub-
bands are practicably degenerate because the Zeeman split-
ting is very small in the magnetic field interval under inves-
tigation. In contrast, the exchange interaction included within
the DFT approximation causes separation of the subbands
whose magnitude can be comparable to the Landau level
spacing ��c. Indeed, the exchange potential for spin-up elec-
trons depends on the density of spin-down electrons, and
vice versa.23,25,30 In the compressible region the subbands are
only partially filled �because fFD1 in the the window �E
−EF��2�kT�, and, therefore, the population of the spin-up
and spin-down subbands can be different. In the DFT calcu-
lation, this population difference �triggered by Zeeman split-
ting� is strongly enhanced by the exchange interaction lead-
ing to different effective potentials for spin-up and spin-
down electrons and eventually to the subband spin splitting.

In order to understand the effect of the exchange-
correlation interactions on evolution of the magnetosubband
structure, let us concentrate on the same field interval as
discussed in the case of the Hartree approximation, 1.8�B
�3.7 T. A comparison between Fig. 4 and Fig. 3 demon-
strates that evolution of the magnetosubband structure calcu-
lated within the DFT approximation follows the same gen-
eral pattern as for the case of the Hartree approximation. In
particular, a deep triangular well near the wire boundary de-
velops in the total confining potential for both spin-up and
spin-down electrons. The wave functions are strongly local-

FIG. 4. �Color online� �a� Spin polarization of the charge density as a function of B calculated within the DFT approximation 
similar to
Fig. 2�d��. �b� Spatially resolved difference in the electron density n↑�y�−n↓�y�. �c�–�g� The subband structure for magnetic fields indicated
by arrows in �a�. Top panel: electron density profiles �local filling factors� ��y�=n�y� /nB for spin-up and spin-down electrons; middle panel:
the current density distribution for spin-up and spin-down electrons; bottom panel: magnetosubband structure for spin-up and spin-down
electrons. Fat solid and dashed lines indicate the total confining potential for, respectively, spin-up and spin-down electrons. The width of the
wire is a=300 nm and depth is V0=−0.1 eV. Temperature T=1 K.
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ized in this well. As a result, similarly to the Hartree case, the
depopulation of the subbands starts from the central region
of the wire. The subbands remain pinned in the well region
until they are eventually pushed up by magnetic field. The
major difference from the Hartree case is that Hartree sub-
bands are practically degenerated and depopulate together,
whereas this degeneracy is lifted by the exchange interaction
such that DFT subbands depopulate one by one. Indeed,
Figs. 4�c� and 4�d� showing consecutive depopulation of the
subbands 4 and 3 in the central region of the wire can be
compared with the corresponding evolution of the Hartree
subbands in Figs. 3�c� and 3�d�. When the magnetic field
increases further, the third subband bends upward in the vi-
cinity of the triangular well, compare Figs. 4�e� and 3�e�.
When the magnetic field reaches B�2.7 T, the fourth spin-
down subband becomes completely depopulated and the
third spin-up subband is occupied mostly in the region of the
triangular well near the wire boundary 
see Fig. 3�f��. This
leads to a strong spin polarization near the boundary which
manifests itself in an additional loop of the polarization 
see
Fig. 2�b�, 2.7�B�3.2 T�. Note that this loop is absent in
the Hartree calculations because both third and fourth sub-
bands are occupied in the well region, such that the spin
splitting between them is small 
see Fig. 3�f��. Finally, the
third subband becomes fully depopulated in the central re-
gion, and a compressible strip starts to form there due to the
second subband that is pushed upward; compare Figs. 4�g�
and Fig. 3�g�.

Note that, similarly to the case of the Hartree approxima-
tion, the evolution of the magnetosubband structure within
the DFT approximation described above qualitatively holds
for all other polarization loops.

We also stress that in contrast to the case of a smooth
confinement,23,24 in hard-wall wires the compressible strips
do not form in the vicinity of wire boundaries and a spatial
spin separation between spin-up and spin-down states near
edges is absent.

The oscillations of the TDOS calculated within the DFT
approximation show that neighboring peaks belong to differ-
ent spin species 
Fig. 2�f��. In contrast, the Hartree approxi-
mation shows that each single peak includes equal contribu-

tions from both species 
Fig. 2�e��. It is interesting to note
that the oscillations of the TDOS do not exactly correspond
to the subband depopulation. Instead, they reflect formation
of the compressible strip in the middle of the wire due to
spin-up and spin-down electrons which is not directly related
to the subband depopulation �which takes place in the region
of the triangular well near the wire edge�.

To conclude this section we note that we analyzed the
magnetosubband structure for a representative sharp-edged
quantum wire of 300 nm width. It is important to stress that
all the conclusions presented above �i.e., the scenario of
magnetosubband depopulation and the structure of the edge
states near the wire boundary� hold for an arbitrary sharp-
edged quantum wire provided its length is sufficiently larger
than the magnetic length lB. In particular, our results can be
applied to analysis of an epitaxially overgrown cleaved-edge
semi-infinite structure similar to the one studied in Ref. 7.

B. Narrow hard-wall quantum wire w /2›lB

Let us now concentrate on the case of a narrow wire
whose half-width is comparable to the magnetic length. For
our analysis we choose the wire of the width w=50 nm and
V0=−0.2 eV. With these parameters the electron density at
the center of the wire is n2D�6�1015 m−2 and the number
of spin-resolved subbands is N=6 for B=0 T.

Figures 5�a� and 5�b� show, respectively, the 1D charge
density and the polarization for spin-up and spin-down elec-
trons calculated within the DFT approximation. Let us con-
centrate on the field interval 7�B�12 T, when a number of
subbands 3�N�4. In this interval the spin polarization
shows a pronounced single-loop pattern. This is in contrast to
the case of a wide wire that exhibits a double-loop pattern

see Figs. 2�a� and 2�b��, where the first loop corresponds to
the subband depopulation in the middle of the wire, whereas
the second loop corresponds to the subband depopulation in
the deep triangular well near the boundary. Note that the
width of this well is of the order of the extension of the wave
function given by the magnetic length lB. This explains the
single-loop structure of the polarization curve for the case of
a narrow wire w /2� lB. Indeed, in this case the extension of

FIG. 5. �Color online� 1D charge density for
spin-up and spin-down electrons �a�, the charge
spin polarization �b�, the TDOS for spin-up and
spin-down electrons and total TDOS �c� as a
function of B calculated within the DFT approxi-
mation for a narrow wire. �d�–�f� The subband
structure for magnetic fields indicated in �b�. Top
panel: electron density profiles �local filling fac-
tors� ��y�=n�y� /nB; middle panel: the current
density distribution; bottom panel: magnetosub-
band structure for spin-up and spin-down elec-
trons. Fat solid and dashed lines indicate the total
confining potential for, respectively, spin-up and
spin-down electrons. The width of the wire is a
=50 nm and depth is V0=−0.2 eV. Temperature
T=1 K.
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the triangular well is comparable to the half-width of the
wire, such that the well extends in the middle region and
there is no separate depopulation for the inner and outer re-
gions of the wire.

The above features of the narrow wire can be clearly
traced in the evolution of the magnetosubbands �see Fig. 5�.
When 6.5�B�8.5 T the third and fourth subbands in the
middle of the wire are located beneath EF−2�kT and are
thus fully occupied. This corresponds to the formation of the
incompressible strip in the middle of the wire such that the
charge densities of spin-up and spin-down electrons are
equal �i.e., the spin polarization is zero�. At B=8.5 T the
fourth subband reaches EF−2�kT and thus becomes partially
occupied. As a result, the exchange interactions generate spin
splitting, and the compressible strip due to spin-down elec-
trons belonging to the fourth subband starts to form in the
middle of the wire. Spin polarization grows rapidly until it
reaches its maximum Pn=22%. At this moment the fourth
subband depopulates and the corresponding compressible
strip disappears. When magnetic field is increased only
slightly, the third subband is raised to EF−2�kT and a com-
pressible strip due to spin-up electrons forms in the middle
of the wire. Note that formation and disappearance of com-
pressible strips due to spin-up and spin-down electrons is
clearly reflected in the TDOS; see Fig. 5�c� which shows
peaks belonging to different spin species. With further in-
crease of B the spin polarization decreases linearly until it
vanishes when the third subband fully depopulates.

The magnetosubband evolution calculated within the Har-
tree approximation �not shown� qualitatively resembles evo-
lution for the DFT case. In particular, the spin density polar-
ization follows the same behavior reaching the maximum
value Pn=10 in the interval 3�N�4. The similarity be-
tween the Hartree and DFT approximations is because of a
large Zeeman term for magnetic field intervals under consid-
eration which causes a relatively strong Zeeman splitting in
the Hartree approximation.

IV. CONCLUSION

We provide a systematic quantitative description of the
structure of the edge states and magnetosubband evolution in
hard-wall quantum wires in the integer quantum Hall regime.
Our calculations are based on the self-consistent Green’s
function technique23 where the electron and spin interactions
are included within the density functional theory in the local
spin density approximation. Our main findings can be sum-
marized as follows.

�1� The magnetosubband structure and the density distri-
bution in the hard-wall quantum wire is qualitatively differ-
ent from that with a smooth electrostatic confinement. In
particular in the hard-wall wire a deep triangular potential
well of width lB is formed in the vicinity of the wire
boundary. The wave functions are strongly localized in this
well, which leads to an increase of the electron density near
the edges.

�2� Because of the presence of the deep triangular well
near the wire boundaries, the subbands start to depopulate
from the central region of the wire and remain pinned in the
well region until they are eventually pushed up by an in-
creasing magnetic field. This is in contrast to the case of a
smooth confinement where depopulation of the subbands
starts from the edges and extends toward the wire center as
the magnetic field increases.

�3� The spin polarization of electron density as a function
of magnetic field shows a pronounced double-loop pattern
that can be related to the successive depopulation of the
magnetosubbands.

�4� In contrast to the case of a smooth confinement, in the
hard-wall wires compressible strips do not form in the vicin-
ity of wire boundaries and a spatial spin separation between
spin-up and spin-down states near the edges is absent.
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