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Layer-by-layer analysis of the linear optical response of clean and hydrogenated Si(100) surfaces
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We calculate the reflectance anisotropy and the reflectance-difference spectra for a clean Si(100) surface and
two hydrogen- (H-) covered Si(100) surfaces. The clean surface is a 2 X 1 surface reconstruction, characterized
by a tilted dimer formed between the two topmost Si atoms. One of the H-covered surfaces is a monohydride
surface in which the two dangling bonds of the dimer are H saturated to give a flat dimer, and the other surface
is a dihydride surface in which the H saturates each of the two dangling bonds leading to a bulk ideally
terminated surface. The optical response is calculated with a pseudopotential framework using the local-
density-plus-scissors approximation. A “layer-by-layer” analysis of the response is implemented with the

pseudopotential calculation.
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I. INTRODUCTION

Reflectance anisotropy spectroscopy (RAS) is a versatile
surface-optical probe, providing a measure of the surface an-
isotropy of cubic crystals. The reflectance anisotropy (RA)
spectrum is the difference between the linear reflectance
spectra of two orthogonal components of nearly normally
incident light. Due to the isotropy of the bulk contribution to
the reflection, the RA spectrum originates from the lower
symmetry surface. Related to RAS is reflectance difference
spectroscopy (RDS), where one studies the difference be-
tween the near-normal incidence reflectance spectra of two
surfaces with identical bulk components. One of the surfaces
is used as a reference, and the other is usually the same
reference surface but with some modification induced by ad-
sorbed atoms or molecules; thus the reflectance difference
(RD) signal captures the difference between these two
surfaces.!

Theoretical approaches to calculating surface spectra have
evolved over the years, involving increasing levels of sophis-
tication. An early phenomenological model is the three-layer
model,? where the dielectric tensor of the crystal-vacuum
interface is modeled by three isotropic layers: a bulk, a sur-
face, and a vacuum. A more popular model is the discrete-
dipole model,*® which easily allows local field effects to be
taken into account. It represents the extreme tight-binding
limit, and its level of success varies greatly from system to
system. Moreover, the model depends on parameters that
have to be fitted to experiment or found from a more detailed
microscopic calculation. Semiempirical tight-binding models
are also used with some success.”"!? Full-band structure cal-
culations based on density functional theory (DFT) and the
scissors approximation have the benefit of being nearly ab
initio, usually requiring the experimental band gap to be
known.!3-1¢ State-of-the-art calculations, based on the GW
method, include local field and excitonic effects, but are dif-
ficult and rare.!’-1°

Recently, Castillo et al.?* introduced a method to decom-
pose the total RA signal into contributions coming from the
different microscopic layers of the surface region, and dem-
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onstrated the utility of this for the InP(100) surface. The
calculation was done within the semiempirical tight-binding
approach, and exploited the localization of the wave func-
tions in its numerical implementation. Hogan et al.'* intro-
duced a similar method using a plane-wave basis within a
pseudopotential calculation, taking a Si(100) surface as an
example to demonstrate the method’s usefulness. More re-
cently, in a study of oxygen-covered silicon surfaces, Inczé
et al.'® employed this so-called “layer-by-layer” analysis
with success. These calculations confirm that most of the RA
signal comes from the topmost layers, since they are aniso-
tropic; as one moves into the bulk the contribution to the
signal vanishes, since the symmetric environment of the cu-
bic bulk is being sampled.

In this work we study the reflectance spectra of a clean
Si(100) surface and two hydrogenated Si(100) surfaces. The
clean surface we investigate is the 2 X 1 reconstruction, char-
acterized by a tilted dimer formed between the two topmost
Si atoms. One of the hydrogenated surfaces is the monohy-
dride 2 X 1 reconstruction, in which one of the two dangling
bonds of the Si dimer is H saturated, rendering a flat dimer;
the other is a dihydride surface in which hydrogen saturates
both dangling bonds, leading to an ideally terminated surface
having a 1 X I surface unit cell. To calculate the total RA and
RD spectra we use a plane-wave pseudopotential approach
based on DFT, within the local-density- (LD-) plus-scissors
approximation. We also investigate the layer-by-layer analy-
sis method proposed by Hogan et al.,'* and we provide a
microscopic justification for the procedure which comple-
ments their phenomenological arguments.

The manuscript is organized as follows. In Sec. II we
review the definition of RA and RD signals and present the
theoretical derivation of the layer-by-layer analysis of the
surface linear-optical response. In Sec. III the details of the
calculation are explained, and in Sec. IV we discuss the re-
sults of the surface-optical response for the clean and hydro-
genated Si(100) surface. Finally, we present our conclusions
in Sec. V.
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FIG. 1. (Color online) We show the first atomic planes for the
unit cells of the slabs used for the three Si(100) surfaces. The co-
ordinates are given in Table 1. The solid (empty) circles are the Si
(H) atoms, and the solid lines denote the bonds. The dotted lines are
the layers, where the upper boundary of the topmost layer (not
shown) extends into the vacuum to the midway point between two
of the periodically repeated slabs. The dihydride slab has a 1X1
surface reconstruction with only one Si atom in each atomic plane.
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RDx,y = x,y|clean - Rx,y|covered (2)

for the incoming light polarized along x or y, and

R+ R,

R+ R,
upol = 2 4

2

RD

3)
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for unpolarized incoming light. In these equations, R ,, with
a=x or y, is the normal incidence reflectance for light lin-
early polarized in the a direction. For crystals that exhibit
isotropic linear response in the bulk (in the case of RAS), or
for surface modifications that do not extend into the bulk (in
the case of RDS), R, can be replaced by the contribution to
that reflectance from the surface region, since bulk contribu-
tions cancel in the differences Egs. (1)—(3). That replacement
is related to the calculated optical response of the slab system
according to

II. THEORY
o - D) (w)
To model the semi-infinite crystal we use a slab consisting Ry.=4(w/c)lm| ——— |, 4)
of N atomic layers inside a supercell of total height L. This Xp()

supercell includes the vacuum region required to use a re-
peated slab scheme. The area of the cell depends on the
reconstruction we are considering. The clean and monohy-
dride surfaces are 2 X1 reconstructions and the dihydride
surface is a 1 X1 reconstruction. The surface is parallel to
the x-y plane, with the surface normal in the z direction (see
Fig. 1 and Table I).
The RA spectrum RA(w) is defined as

RA(w)=R,-R,, (1)

and RD spectrum RD(w) is

where w is the angular frequency of the incident light, c is
the speed of light, D is half the slab thickness for a bulk
material with isotropic linear susceptibility yg(w), and

«(w) is the linear susceptibility for the fictitious supercell
system. The so-called slab polarizabilities aj;;(w) have di-
mensions of length and are given by

ajap(0) = DX (). (5)

We write R, in terms of the susceptibility xi<(w) instead of
in terms of the slab polarizabilities as is usually done (see
Del Sole?!), since it reflects our numerical implementation.

TABLE 1. Surface-relaxed atomic Cartesian coordinates and the first few bulk atomic coordinates for the clean, monohydride, and
dihydride Si(100) surfaces (see Fig. 1) in bohr. We used 5.43 A for the lattice constant of Si. The slab is obtained by adding more bulk planes
and constructing the back surface by using the front surface coordinates and applying centrosymmetry to the full slab.

Clean 2 X 1 Monohydride 2 X 1 Dihydride 1 X1

X y z X y z X y z

H 0 1.81394 0 H 0 1.81394 0

6.48035 1.81394 0 4.3884 1.81394 0
Si 0 1.81394 0 Si 0.987039 1.81394 -2.65852  Si 2.1942 1.81394 —-1.73952
4.09973 1.81394 1.32977 5.49331 1.81394 —2.65852 2.1942 -1.81394  -4.22966
-2.07175  -1.8139%4 -1.3743 —0.185984  -1.81394 -4.919 5.82208  -1.81394  -6.76977
4.79944 -1.81394  -1.25138 6.66633 -1.81394 -4.919 5.82208 1.81394 —9.3081
1.50771 -1.81394  —4.18081 3.24017 —-1.81394  -7.69074 2.1942 1.81394 —11.8447

8.57853 -1.81394  -3.70671 10.4959 —-1.81394 —-7.2607 2.1942 -1.8139%4 -14.41

1.33997 1.81394 —6.64272 3.24017 1.81394 —-10.1361 5.82208  -1.81394  -16.9753
8.61612 1.81394 —6.35769 10.4959 1.81394 —9.89479 5.82208 1.81394 —19.5406
—2.28341 1.81394 —-9.04406 -0.387713 1.81394 —12.5563 2.1942 1.81394 —22.1059
4.97236 1.81394 —-9.04406 6.86806 1.81394 —12.5563 2.1942 -1.81394  -24.6712
-2.28341  -1.81394  -11.6094 -0.387713  -1.81394  -15.1216 5.82208  -1.81394  -27.2365
4.97236 -1.81394  -11.6094 6.86806 -1.81394  -15.1216 5.82208 1.81394 -29.8018
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The susceptibilities in Eq. (4) can be separated into real
and imaginary parts x*“(w)=Re[x*“(w)]+i Im[x*(w)].
Within the usual independent-particle framework, the imagi-
nary part is given by the integral over the Brillouin zone
(BZ),22

tmlx"(a)
&k, o,
S | 0, 0000, 080,00~ 0,00 - ]
(6)

where Y(w)=me?/ w’h, ho, (k) is the energy eigenvalue of
state [mK), and f,,,=f,—f. With f, the Fermi factor equal to
1 if n is a valence band, and zero if n is a conduction band.
The superscripts a and b denote Cartesian components. The
velocities v,,,(K) in Eq. (6) are found from the matrix ele-
ments of the velocity operator v=(1/iA)[r,H],

an(k)5(k—k')Efd3r<mk|r>(l‘|v|nk’>~ (7)

The Hamiltonian H we use here is the ground-state density-
functional-theory Hamiltonian within the LDA, including a
scissors correction to correct for the band gap. Neglecting the
contribution of the nonlocal pseudopotential in [r,H], one
has

(elvink) = Py (r), (8)

where we write P for —iV, and ¢, (r)=(r|nk).

In a slab calculation one often wants to calculate the re-
sponse from one of the two slab surfaces. To limit the re-
sponse to one surface, Reining et al.,>> Mendoza et al.,** and
Mejfa et al.?> proposed that one should replace the differen-
tial operator P by P,

P p= é[ps@ +S@)P], )

in a slab susceptibility calculation, where S(z) is the so-
called “cut function,” which is usually taken to be zero over
one half the supercell and unity over the other half.?® The
layer-by-layer analysis of Hogan et al.'* and Castillo et al.?
is a generalization of this idea, limiting the calculated current
response to a particular layer of the slab. Explicitly, this is
done by replacing the cut function S(z) in Eq. (9) by a top-
hat cut function S,(z) that selects a given layer,

Se(2) = Oz — 20+ A O(z¢ — 2+ A)), (10)

where O is the Heaviside function. Here, A’;’b is the distance
that the €th layer extends towards the front (f) or back (b)
from its z, position. Thus N{f +A2 is the thickness of layer €.

There has been some question as to which, if not both, of
the velocity matrix elements of Eq. (6) should be modified
by the cut functions. Hogan et al.'* have shown from a phe-
nomenological description of the microscopic nonlocal di-
electric susceptibility that only one of the velocity matrix
elements should be modified, and Castillo et al.2® use a heu-
ristic argument, which distinguishes the perturbation from
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the response, to assign which of the velocities should be
replaced. Here we derive this result from a microscopic ap-
proach. From perturbation theory,?> the density matrix
cmn(K, 1) of the system with the applied optical field is

. b
—le fnmv (k) i
kf)=— [ d e Eb(w)e™ ™,
cuth = 5 [ do e
(11)
to first order in the field strength, where E(w)

=[drE(t)exp(iwt) is the Fourier transform of the applied op-
tical field, and the repeated index b is summed over. The
microscopic current density that is induced throughout the
slab is then given by

&Lk
jr,n=Q f QZ Cn(K, 1) (K5T), (12)

where () is the unit cell volume and j,,,,(k;r)S(k—K’) is the
matrix element of the microscopic current operator j,2’ given
by

j= ;[V|r><r| + )V, (13)

in a single-particle formulation, neglecting the nonlocal
terms?® that arise in a pseudopotential calculation. Integrat-
ing the microscopic current j(r,7) over the entire cell and
dividing by the cell volume gives the total macroscopic cur-
rent density, whose Fourier components J(w) are related to
the susceptibility by J%(w)=—iwx*’(—w,»)E’(w). However,
if we want the contribution from only one region of the unit
cell towards the total current, we can integrate j(r,z) over the
desired region. The contribution to the current density from
the ¢th layer of the slab is given by

5 J PrS (i,

=J(€)(t)_fﬁzc (k t)fcﬁrS (2)j,.(k;r)
= = 8773 mn\ K, A2))um\K3T),

mn

(14)

where J (e)(t) is the microscopic current in the €th slab. From
Eq. (13) we obtain

f d3rS€(Z)jnm(k;r)

= [ a2 il el + Gkl

= eVin(k), (15)

which defines the layer matrix elements of the velocity op-
erator Vflfz(k). One immediately sees that the matrix element
v,..(K) appearing in Eq. (11) should not be replaced by the
layer matrix element foi(k). Only the velocity matrix ele-
ment v,,(k) directly associated with the generated current
needs to be replaced by Vﬁ(k). Using Eq. (8) in Eq. (15), we
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can write, for any function S(z) used to identify the response
from a region of the slab, that

Vo) = — | @HSEiH Y (0 (1) + S (1)
m

X (_ ihV )'r//mk(r)}

R R R PRI

(16a)

2

=lfd3r Zk(r)lpwmk(r) = l73;1)11(1()- (16C)
m m
Here an integration by parts is performed on the first term of
the right-hand side of Eq. (16a); since the e *T4,, (r) are
periodic over the unit cell, the surface term vanishes. From
Eqgs. (16) we see that the replacement introduced in Eq. (9),
and its generalization using Eq. (10), is a natural result of the
microscopic treatment of the induced current given in Eq.
(14).

The Fourier components of the microscopic current
JO(w) can be related to a position-dependent susceptibility
as

JO() = iw)((e)“b(— w,w)E (), (17)

which from Eq. (14) we obtain for the imaginary part of the
{th layer susceptibility

4’k
T BRI VAR AT

mn

X d:wm(k) - wn(k) - w]’ (18)

where V;ffl(k) is given by Eq. (15). Using x'9(w) for the
surface susceptibility x*’(w) in the definition [Eq. (4)] of the
reflectivity allows one to calculate the contribution to a linear
optical response, such as the RA or RD spectrum, for a speci-
fied layer.

III. COMPUTATIONAL DETAILS

Our layer-by-layer analysis is done using the ABINIT
plane-wave code.? A self-consistent calculation is first made
to determine the Kohn-Sham potential for the relaxed surface
structures, and then the matrix elements are determined for
the k points used in the integration of Eq. (18). We use a
different grid of k points in the irreducible BZ for each of the
surface calculations (see below), and a grid of 3654 points
for the bulk calculations. For the bulk calculation a scissor
shift of 0.98 eV is used to adjust the theoretical bulk gap to
the experimental value of 3.5 eV at the I' point of the BZ.
For the surface calculation a scissor shift of 0.68 eV is used
in order to have the first negative peak of the RA to coincide
with the experimental results of Shioda et al.*® for the clean
surface (see the negative peak at 1.68 eV in Figs. 5 and 8
below). We take an energy cutoff of 15 Ha and adopt LDA
Troullier-Martins pseudopotentials for Si and H. We find
converged results for all the quantities of interest in this
work.
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The code provides the plane-wave coefficients C,;(G) of
the expansion

Y1) = 2 Coa(Gexpli(k + G) - r]. (19)
G

The velocities foi (k) are calculated through Eq. (15) using
the approximation of Eq. (8), so that

h .
VO (k) = 3 > C o KCeM[2k+G+G']
G,G’

X d6,.6fe(GL = G), (20)

where the reciprocal lattice vectors G are decomposed into
components parallel to the surface G, and perpendicular to
the surface G, Z, so that G=G+G, Z and

N
fe(g) = —f : o8z (21)

L z=Ay

The double summation over the G vectors can be efficiently
done by creating a pointer array to identify all the plane-
wave coefficients associated with the same G. We take z, at
the center of an atom that belongs to layer €, and thus Eq.
(18) gives the €th atomic-layer contribution to the imaginary
part of the polarizability of the slab. The procedure taken in
Eq. (20) avoids the calculation of the matrix elements of the
cut functions, as done by Castillo et al.,”® Mendoza et al.,*
and Mejfa et al.,”> and permits a faster and more direct cal-
culation of the matrix elements of V) required in Eq. (18).
Note that if we take the cut function S(z) to be unity through
the whole slab, then f(g)= 6, o and from Eq. (20) one recov-
ers the usual result for the matrix elements of vy,,.

Although the way in which the slab is partitioned into
layers is arbitrary, for both the monohydride and dihydride
surfaces we have taken the topmost layer to include the hy-
drogen atom, and for the clean surface we have taken the
topmost layer to include the dimer alone. This topmost layer
extends into the vacuum to the midway point between two of
the periodically repeated slabs (see Fig. 1). Since the atomic
planes are parallel to each other, we have chosen each layer
below the surface to include one atomic plane where all the
Si atom coordinates have the same z value. The qualitative
features that will follow depend on this choice.

The nonlocality of the pseudopotentials we use introduces
a contribution to the velocity matrix elements, which has
been discussed before, even in the context of slab
calculations.'> These contributions are demanding to com-
pute. To estimate the error in neglecting the nonlocal contri-
bution when using Eq. (8), we compare the velocity matrix
elements computed from our pseudopotential calculation, us-
ing Eq. (20) with S(z)=1, to the matrix elements from an
all-electron augmented plane-wave plus local-orbital (APW
+lo) method, which uses the full local-crystal potential.®!
The relevant parameter for the accuracy of the calculation is
RK,,.«=4.5, which is a product of the “muffin-tin” radius R
and the maximum value for the plane-waves vectors K.

The diagonal components of the velocity matrix elements
satisfy
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FIG. 2. (Color online) We show dw,(k)/dk, and v, (k) vs k,

along the I'-J line of the two-dimensional (2D) BZ of the clean
Si(100)2 X 1 surface. The thin line is the topmost valence energy
band with the scale in the right vertical axis (see text for details).

dw (k)

) 22)

1

In Fig. 2 we show dw,(k)/dk, and v;, (k) vs k,, where n
corresponds to the topmost valence band of the electronic
structure of the clean Si(100)2 X 1 surface. The pseudopoten-
tial and all-electron band structures are essentially the same,
so there is only one plot of Aw(k) and dw,(K)/dk,. We see
that the all-electron energies and velocities satisfy Eq. (22),
whereas the pseudopotential ones deviate from it. Yet the
error is rather small. We have checked that the same holds
true for other components of the velocities v,,, and other
directions through the BZ.

To judge the overall consequences of calculating v,
without the nonlocal contribution, we show in Fig. 3 the
imaginary part of the bulk dielectric function ez(w) calcu-
lated for both schemes, using a broadening of 30 meV. The
calculation of €z(w) is done using the usual extension of Eq.
(6) to the infinite crystal, with e(w)=1+4my(w). As we can
see, the spectral features are the same for both calculations;
however, our pseudopotential calculation gives a larger value
for the bulk dielectric function. Since the pseudopotential
band structure is nearly identical to the all-electron band

100 T T T
90 | A
80 | d
70 - |
60 |-
50 |-
40
30 |-
2 |
10 -
0

Im(ep)

T
all-electron

pseudopotential

3 3.5 4 4.5

5.5

photon-energy (eV)

FIG. 3. (Color online) Plot of the imaginary part of the bulk

dielectric function for both codes.
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FIG. 4. (Color online) Plot of p,,(z) vs z and band index for
k=0, i.e., the I point in the 2D BZ of a Si(100) dihydride surface
with 12 Si planes.

structure, with typical differences less than 0.1 meV, the dis-
agreement is due to the omission of the nonlocal part of the
velocity matrix elements. We find similar behavior for the
calculated slab susceptibilities for our Si(100) surfaces.
Since it is prohibitively complicated to implement a full
layer-by-layer analysis using the APW+lo basis, from now
on we use only the pseudopotential scheme, as it readily
permits the evaluation of for)l(k) through Eq. (20).

In repeated-slab calculations it is important to have a suf-
ficiently large vacuum region between the slabs. A large
vacuum region insures that the slabs are independent. It is
also important to have enough atomic planes, so that the two
surfaces of one slab do not interact. At high enough energies,
the calculated conduction-band states can always be ex-
pected to extend between slabs, and one expects the appear-
ance of ionization states as is seen in Fig. 4. For the dihy-
dride slab, we plot the planar-integrated charge density
puk(2) = [dxdy|i, (r)|* for the T'-point states as a function of
z and band index n. For this figure we have set the vacuum
region to 55a, and used 12 atomic planes of Si with a
Bohr’s radius. One can see that by n=42 the conduction-
band state extends between the surfaces of neighboring slabs.
Increasing the number of atomic planes used in the calcula-
tion increases the energy at which tunneling begins. This is
because adding more atomic planes, thus increasing the bulk
region, deepens the electrostatic potential associated with the
slab. Also, increasing the vacuum region for a fixed number
of atomic planes affects the decay into the vacuum region of
the higher-conduction states.

The details of the ionization states that arise in a calcula-
tion such as ours are obviously artifacts of using a slab to
model the behavior of a surface, and any contribution those
states make to a calculated optical response is necessarily
suspect. To investigate the effect of these ionization states on
the RA spectrum of clean Si(100), we make two calculations,
each using 16 layers of Si atoms and a vacuum equivalent to
the distance of 20 Si layers. In the first we include the first 14
conduction bands; none of these include ionization states. In
the second we use 66 conduction bands; some of the higher-
energy states here are ionization states. The results are shown
in Fig. 5; in this figure, and from now on, we use a smearing
of 300 meV to simulate the resolution typical in RAS and
RDS. The results of the two calculations agree up to about
3.5 eV; at higher energies the difference signals the onset of
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FIG. 5. (Color online) Plot of RA using two values of the total
number of conduction bands used in the sum of Eq. (18). The slab
is for a clean Si(100) surface (see the text for details).

contributions from the higher 52 bands. Nonetheless, the dif-
ferences are generally small and only quantitative up to
5 eV; the situation is similar for the dihydride and monohy-
dride Si(100) surfaces. Thus up to 5 eV the states of the
upper 52 bands, including the ionization states, make only a
small contribution to the RA spectrum. Of course, we cannot
assert with certainty that the ionization states in a true sur-
face calculation would make only a small contribution to the
RA spectrum in this energy range, since they would differ
from the ionization states in our slab calculation. Still, we
take the results shown in Fig. 5 as an indication that our
calculations of the RA and RD spectra for the surfaces stud-
ied are likely physically significant up to 5 eV, and present
them up to this photon energy.

IV. RESULTS

We calculate the optical response of a clean Si(100) sur-
face and two H-covered Si(100) surfaces. The clean surface
we consider is a 2 X 1 surface reconstruction characterized
by a tilted dimer formed between the two topmost Si atoms.
These asymmetric buckled surface dimers are along the

[011] crystallographic direction that we take as x, and thus
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the dimer rows along the surface are along the [011] or y
direction. One of the H-covered surfaces is a monohydride
surface in which the two dangling bonds of the dimer are H
saturated (rendering a flat dimer), and the other is a dihydride
surface in which the H saturates each of the two dangling
bonds, leading to a bulk ideally terminated surface which
exhibits a 1 X1 surface-unit cell. This dihydride surface is
thought to be created if enough H is added to the surface.*?
The structures that we obtain are calculated using the stan-
dard DFT-LDA molecular dynamics technique, and agree
very well with previous studies.'?

In Fig. 6 we show the imaginary part of x9*(w), with
a=x and y, for a dihydride Si(100) slab with 32 Si atomic
planes, 2 H atomic planes, and a vacuum equivalent to 10 Si
layers. The number of k points in the irreducible BZ is 196.
Since there are 34 atomic layers, we use 17 unique layers in
the upper half of the slab for the analysis. By inversion sym-
metry the 17 layers in the lower half of the slab give the
same response. We group the 17 layers into three sets. The
set containing €=1 to €=6, which we refer to as the surface
region, is seen to be highly anisotropic, with }V*(w) very
different from x'“*¥(w). We note, too, that the anisotropy of
the optical response is the largest for €=2, corresponding to
the topmost Si atomic plane; the H layer (€=1) also has a
rather large anisotropy. This is not unreasonable, since the H
atoms form chains oriented along the x direction. The next
set, containing €=7 to £=12, is anisotropic but less so, and
this region can be identified with the transition from the sur-
face to the bulk, at least as far as the linear optical response
is concerned. Finally, the last set containing €=13 to €=17 is
almost isotropic, as expected, since these layers are deep
within the bulk of the system. This behavior of x'“(w) is
physically expected, and shows how the optical response of a
semi-infinite crystal changes as we move from the surface
into the bulk of the system. Similar results for the decompo-
sition of X(e)(w) are obtained for the clean and the monohy-
dride surface, but instead of presenting them we focus on the
RA and RD signals, which could be compared with experi-
ments.

In Fig. 7 we show the RA signal, decomposed into the
same layers as those shown in Fig. 6, for the dihydride
Si(100)1 X 1 surface; we also show the total RA signal,

0.08 T T T T T T T T T
—~ 006f
/i
=0
=, o0o01f
= QD
=002t N
0 3 Y TR & 5 ar Y g Py ; 4'r g FIG. 6. (Color online) Plot of
’ ’ ’ ’ ’ ’ ’ N Im[ x'9*(w)] and Im[ }'9"(w)] vs
0.08 ' ' ' ' T ' ' ' ¢ for a dihydride Si(100) slab with
<> 006 F e / 3 32 Si atomic planes.
5 ;
=. ond
£ om ' N
0 z 1 1 1 1 1
3 35 4 45 5 3 35 4 45 5 35 4 45 5
photon-energy (eV) photon-energy (eV) photon-energy (eV)
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photon-energy (eV)

FIG. 7. (Color online) RA for the dihydride Si(100)1 X 1 surface
as a function of the layer €, where €=1 corresponds to the H. The
bottom panel shows the total RA signal with a different vertical
scale.

which equals the sum of RA({) from €=1 to €=17. In agree-
ment with the analysis of Fig. 6, we see that RA({) gets
smaller as we move into the bulk, and that the surface-related
RA gives the largest contribution to the total signal. The
different features seen in the total RA can be identified with
the particular layers. For instance, the feature between 2.6
and 4 eV has a strong contribution from the first three Si
layers; the H layer has only a small contribution, and the
bulk layers also contribute much less than the surface layers
or the transition layers. In principle, the RA of the bulk lay-
ers should be zero; deviations from this are likely due to the
still limited number of planes in the slab. We have checked
that the calculation with 28 Si layers gives similar results to
the one with 32 Si layers. However, for this particular dihy-
dride surface, it seems that 32 Si layers is the minimum size
of the slab that captures the expected behavior of the RA
signal in the bulk.

In Fig. 8 we show the RA signal for the clean Si(100)2
X1 surface, which is characterized by buckled surface
dimers. Here 16 atomic layers were used with a vacuum
equivalent to 10 Si layers, and 66 k points in the irreducible
BZ, which capture the essential physics for this surface. This
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FIG. 8. (Color online) RA for the clean Si(100)2 X 1 surface as
a function of the layer €, where €=1 corresponds to the Si dimer
layer. The bottom panel shows the total RA signal with a different
vertical scale.

was verified by repeating the calculations for 12 layers and
the same vacuum, and obtaining similar results. Indeed, we
see that all the features in the total signal are well correlated
with the first four layers of Si, and that the dimer layer (€
=1) has a sizable contribution. Before layer-by-layer analy-
ses were carried out in RA studies, it was customary to as-
sume that features at low energies are related to surface
states, since they usually lie in the bulk gap; only a decom-
position of the transitions from surface or bulk valence states
to surface or bulk conduction states was then carried out.!!
But, from Fig. 8 we can see how each layer contributes, and
it is interesting to note that the fourth layer has a rather large
contribution at low energies, meaning that the anisotropy of
this surface extends to deep layers. We also see that the con-
tribution of the layers deeper than the €=4 layer is only
marginal. The total RA signal is in agreement with the cal-
culation of Palummo et al.'> and the experimental results of
Shioda et al.’® The same qualitative features are also seen for
the monohydride Si(100)2 X 1 surface as shown in Fig. 9.
Here we see that the second Si layer mainly dominates the
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FIG. 9. (Color online) RA for the monohydride Si(100)2 X 1
surface as a function of the layer €, where {=1 is the H layer and
€=2 corresponds to the dimer. The bottom panel shows the total RA
signal with a different vertical scale (see the text for details).

RA below 3 eV, and that the dimer has a moderate contribu-
tion only above 3 eV. The H layer has a negligible contribu-
tion towards the RA; however, it is responsible for suppress-
ing the surface states seen in the clean surface below 2 eV.
For this surface we had to use a rather large number of Si
atomic planes in order to find converged results; indeed, Fig.
9 was obtained with 44 Si planes, a vacuum equivalent to 20
Si layers, and 66 k points in the irreducible BZ. Notice that
for the layers deep within the bulk of this slab, we have only
plotted a selected set of layers, with £=22 the deepest bulk-
like layer. So again, the layer-by-layer analysis shows that
the asymmetric optical response is not concentrated exclu-
sively on the topmost layer, as might have been thought, but
it extends to subsurface layers.

In Fig. 10 we show the RD spectrum of the monohydride
and dihydride surfaces, taking the clean Si(100)2 X 1 surface
as the reference. We notice that below 2.75 eV both RD sig-
nals are identical since the H surfaces are not optically ac-
tive, as can be seen from the RA displayed in Figs. 7 and 9.
Above 2.75 eV, the dihydride signal is larger than the mono-
hydride signal, and the two signals are different; there are
features seen in the dihydride surface that are absent in the
monohydride surface and vice versa. This result is in quali-
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FIG. 10. (Color online) Polarized and unpolarized RD, taken the
clean Si(100)2 X 1 surface as the clean reference, and the monohy-
dride and dihydride surfaces as the H-covered surfaces.

tative agreement with recent measurements of Borensztein et
al.,’>33 where the RD spectrum of H-covered surfaces refer-
enced to a clean Si(100) surface was investigated.

V. CONCLUSIONS

We have presented a method for calculating the layer-by-
layer contribution to the linear optical-surface response of a
semiconductor surface following the ideas presented by
Hogan et al.'* and Castillo et al.?® We have directly derived
the way in which the velocity matrix elements should be
modified in such an approach. We have shown that the non-
local contribution to the momentum-matrix elements, ne-
glected in the formalism used, is very small. We have also
investigated the important issue of how many atomic planes
and how large a vacuum region should be used for calculat-
ing the layer-by-layer response.

Experimental studies and theoretical analyses of RA and
RD signals provide insight into the anisotropy of surfaces.
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The layer-by-layer analysis of such a signal allows us to
determine the size of the surface region that contributes to
that anisotropy, at least as revealed by these optical spec-
troscopies. For the clean and hydrogenated Si(100) surfaces
studied here, five atomic layers are mainly responsible for
the RA and RD signal. Our results agree qualitatively with
available experimental results, and in particular they support
the idea that RDS could be used to optically study the pos-
sible breaking of the surface dimer due to adsorbed mol-
ecules. It would be desirable to incorporate a detailed analy-
sis of how the electronic transitions contribute to the optical
response of the layers, and to extend the present formalism to
include many-body, excitonic, and local field effects.
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