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Transient magnetotransport of two-dimensional electrons with partially inverted distribution excited by an
ultrashort optical pulse is studied theoretically. The time-dependent photoconductivity is calculated for GaAs-
based quantum wells by taking into account the relaxation of the electron distribution caused by nonelastic
electron-phonon interactions and the retardation of the response due to momentum relaxation and due to a
finite capacitance of the sample. We predict large-amplitude transient oscillations of the current density and
Hall field �Hall oscillations� with frequencies corresponding to the magnetoplasmon range, which are initiated
by the instability owing to the absolute negative conductivity effect.
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I. INTRODUCTION

The transient process under an abrupt turn-on of the elec-
tric current through a conducting sample is described by a
simple exponential dependence if the applied voltage is
fixed—i.e., if the load resistance is small and the circuit ef-
fects are not essential. The characteristic temporal scale of
this process is determined by the momentum relaxation time,
which depends on the average energy of electrons and on the
mechanisms of electron scattering.1,2 Such kinds of exponen-
tial relaxation of electric current in pure bulk Ge was dem-
onstrated more than 30 years ago.3 To investigate the tran-
sient processes, one can use ultrafast photoexcitation of
carriers instead of an abrupt switching of the applied voltage.
Since this excitation creates nonequilibrium electrons inside
the conduction band, the temporal dependence of the current
contains a slow component reflecting the energy relaxation
of these electrons owing to quasielastic scattering by acous-
tic phonons. This slow energy relaxation, corresponding to
the temporal scale which is much larger than the momentum
relaxation time, takes place for the electrons in the passive
region �i.e., for the electrons whose energies � are smaller
than the optical phonon energy ��o�, because the interaction
of these electrons with optical phonons can be neglected at
small temperatures T���o. The slow temporal dependence
of the transient photocurrent in this case occurs for the same
reason as the dependence of the photocurrent on the excita-
tion energy under stationary photoexcitation.4

If the energies of excited electrons are close to ��o �see
the initial distribution B in Fig. 1�a��, absolute negative con-
ductivity �ANC� should take place, because the nonequilib-
rium distribution f� of electrons in the passive region be-
comes inverted ��f� /���0� in a certain interval of energies
near the upper boundary of this region. Though such a pos-
sibility was discussed a long time ago5 for the regime of
stationary photoexcitation in bulk samples, the ANC effect
has not been detected so far in this regime. The absence of
ANC under a stationary photoexcitation is described by the
accumulation of low-energy electrons with time �owing to
the slowness of interband recombination� so that the relative
contribution of the inverted high-energy part of the electron
distribution to the conductivity becomes nonessential. In ad-
dition, the Coulomb scattering of high-energy electrons by

low-energy ones leads to a rapid broadening of the initial
narrow distribution of photoexcited electrons in the energy
space, thereby decreasing the contribution of the inverted
part of the electron distribution. To date, ANC has been re-
alized by means of electron heating by an electric field in
many-valley semiconductors6 owing to the intervalley redis-
tribution of electrons or when acting by microwave radiation
on two-dimensional �2D� electrons in a quantizing magnetic
field.7 Recently �see Refs. 8 and 9 and Chap. 11 in Ref. 10�,
it was shown that transient ANC, which exists during a time
interval of the order of the momentum relaxation time, can
be achieved by ultrafast photoexcitation of electrons with
energies close to ��o. The theoretical description of this
effect9 has been based on the kinetic theory, taking into ac-
count the temporal nonlocality of the response on the scale
of the momentum relaxation time and involving a detailed
consideration of the inelastic scattering of high-energy elec-
trons by acoustic phonons. In this paper, we study the influ-
ence of classical magnetic fields on the transient ANC in 2D
samples with the geometry of a long Hall bar; see Fig. 1�b�.

The main feature of the transient magnetotransport under
consideration is the appearance of temporal oscillations of
the longitudinal conductivity and transverse electric field
�Hall field�, whose frequencies are of the order of the cyclo-
tron frequency �c �Hall oscillations�. Weak oscillations of
this kind should be always present in the transient response
because of the retardation of charge accumulation on the
sides of the Hall bar. The existence of transient ANC leads to
the instability which dramatically modifies the transient os-

FIG. 1. �a� Initial electron energy distribution f�
�ex� for the cases

of excitations away from the optical phonon energy �A� and near the
optical phonon energy �B�. �b� Hall bar geometry and electric cur-
rents in the presence of a magnetic field H directed perpendicular to
the two dimensional plane.
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cillations. In the initial moments of time, when the longitu-
dinal current flows in the direction opposite to the applied
field, the Hall field increases in the direction opposite to its
equilibrium one, because the sign of the Lorentz force is
changed in the ANC regime. For the same reason, this in-
crease is exponential: the charge accumulation on the sides
leads to further enhancement of this accumulation. In the
subsequent moments of time, when partial inversion of the
electron distribution is no longer sufficient to provide ANC,
the system starts decharging, and since the system posesses a
certain inertia, there appear large-amplitude oscillations of
the Hall field as well as of the longitudinal current �this cur-
rent is coupled to the Hall field�. Both the current and Hall
field can change their signs in the process of the oscillations.
The damping of such large-amplitude oscillations proceeds
slower, which makes them persistent on a nanosecond time
scale.

The paper is organized as follows. In Sec. II we derive
general equations for transient magnetotransport of electrons,
which describe the temporal dependence of the longitudinal
current and Hall field. Section III is devoted to a simple
model which makes it possible to solve these equations ana-
lytically and to describe the main features of the transient
response. In Sec. IV we present the results of numerical cal-
culations involving a detailed consideration of the evolution
of the electron distribution. The discussion of the assump-
tions used and concluding remarks are given in the last sec-
tion. Appendix A contains the expressions for the transition
probability and relaxation rate of 2D electrons interacting
with acoustic phonons. Appendix B contains the formalism
describing the retardation of charge accumulation at the sides
of the Hall bar.

II. TEMPORAL RESPONSE

We describe the response of photoexcited electrons to an
electric field Et by representing the distribution function fpt,
which depends on the electron momentum p and time t, in
the form fpt= f�t+�fpt, where f�t is the symmetric part of this
function and �fpt is the antisymmetric contribution induced
by the field. Under the approximation of weak electric field,
when the heating of electrons by the field is neglected, the
symmetric part, which describes the energy distribution of
nondegenerate electrons, is governed by the kinetic equation

�f�t

�t
= Jac�f t��� + Jopt�f t��� . �1�

The collision integral due to acoustic-phonon scattering, Jac,
can be written as

Jac�f t��� = �2D�
0

�

d���W���f��t − W���f�t� , �2�

where �2D=m /	�2 is the density of states of 2D electrons
with effective mass m. The scattering probabilities W���

and W��� are determined by the deformation-potential and
piezoelectric interactions of electrons with acoustic phonons
�DA and PA, respectively�; see Appendix A. These probabili-
ties satisfy the requirement of detailed balance, W���

=W��� exp����−�� /T�, where T is the phonon temperature.
The collision integral Jopt, which describes the interaction of
nondegenerate electrons with dispersionless optical phonons
at T���o, can be represented in a similar form

Jopt�f t��� = 
o� d������ − �� + ��o�f��t

− ��� − �� − ��o�f�t� , �3�

where 
o is the rate of spontaneous emission of optical
phonons by 2D electrons �see, for example, Ref. 10�.

Since the rate 
o is typically much larger than the rate of
acoustic-phonon scattering, any electron appearing in the ac-
tive region �����o� after photoexcitation or after acoustic-
phonon absorption instantaneously relaxes to a state in the
passive region, with energy �−k��o, where k is the number
of emitted optical phonons. In this approximation, the kinetic
equation �1� can be considered for the passive region only.
To carry out such a transformation, we first rewrite the term
describing the departure of electrons from the state � in Eq.
�2� as �2D�0

��od���k=0
� W���+k��o

f�t. Since the active region is
empty owing to rapid emission of optical phonons �f�t=0 at
����o�, this term is considered in the region ����o only.
For the same reason, the term corresponding to the arrival of
electrons at the state � in Eq. �2� is written as
�2D�0

��od��W���f��t. This term describes transitions of elec-
trons both to the states with ����o and to the states with
����o. As explained above, in the latter case the electrons
instantaneously relax to the states with the energies �
−k��o in the passive region. Therefore, in the presence of
rapid spontaneous emission of optical phonons the arrival
term takes the form �2D�0

��od���k=0
� W���+k��o

f��t, where �

���o. Finally, since W��� becomes exponentially small at
��−����o �see Appendix A�, one should retain only the
terms with k=0 and k=1 both in the arrival and in the de-
parture terms. As a result, Eq. �1� is reduced to the following
form:

�f�t

�t
= �2D�

0

��o

d����W��� + W���+��o
�f��t

− �W��� + W���+��o
�f�t� . �4�

The term with W���+��o
in this equation becomes essential

only if �� is close to ��o and � is close to zero. Similarly, the
term with W���+��o

becomes essential if � is close to ��o and
�� is close to zero.

Equation �4� should be solved with the initial condition
f�t=0= f�

�ex�, where f�
�ex� is determined by the excitation pulse.

If the initial ultrafast excitation creates electrons with
the distribution F�

�ex�, we have f�
�ex�=���o−���k=0

� F�+k��o

�ex� ,
where the terms with k�0 describe the electrons instanta-
neously transferred to the passive region via optical-phonon
emission. Note that Eq. �4� satisfies the density conservation
requirement implying that the electron density �2D�0

��od�f�t
does not depend on time and is equal to the excited density,
nex=�2D�0

��od�f�
�ex�.
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The weak antisymmetric part �fpt, in the presence of a
stationary magnetic field H �E�H�, is governed by the lin-
earized kinetic equation

	 �

�t
+

e

c
�v � H� ·

�

�p

�fpt + eEt ·

�f�t

�p
� − 
��fpt, �5�

where e is the electron charge, c is the velocity of light, and
v=p /m is the electron velocity. The momentum relaxation
rate on the right-hand side of Eq. �5� is the sum of the rate of
quasielastic scattering of electrons by acoustic phonons, 
�

�ac�

�see Appendix A� and the rate of spontaneous emission of
optical phonons, 
o��−��o�. The exact solution of Eq. �5�
is given by

�fpt = e�
0

t

dt�e−
��t−t��v · Ktt�	−
�f�t�

��

 ,

Ktt� � Et� cos �c�t − t�� +
��c � Et��

�c
sin �c�t − t�� , �6�

where �c= �e�H /mc is the cyclotron frequency vector.
The current density is given by the standard formula, jt

= �2/L2��pv�fpt, where L2 is the normalization square. Us-
ing Eq. �6� and performing the averaging over the angle of p,
we write jt as

jt =
e2�2D

m
�

0

t

dt�Ktt��
0

�

d��e−
��t−t��	−
�f�t�

��

 . �7�

The linear response of electron system to the electric field Et
is described by the time-dependent conductivity tensor �̂tt�
introduced according to the nonlocal relation jt
=�0

t dt��̂tt�Et�. The diagonal and nondiagonal components of
this tensor, �tt�


and �tt�

� , are

��tt�


�tt�
� � =

e2�2D

m
�cos �c�t − t��

sin �c�t − t��
�

� �
0

��o

d��e−
��t−t��	−
�f�t�

��

 . �8�

The contribution of the active region is neglected in this
equation, because this region is depleted of electrons owing
to rapid emission of optical phonons. Accordingly, the scat-
tering rate 
� standing in Eq. �8� is equal to the acoustic-
phonon scattering rate 
�

�ac� calculated in Appendix A.
Below we consider a sample of Hall bar geometry, a 2D

strip of width d with the in-plane current density jt= �jt
 , jt

��,
where  and � components of jt are referred to the coordi-
nate system associated with the geometry of the Hall bar
�Fig. 1�b��. The transverse current density jt

� is not equal to
zero and describes the transient process of charge accumula-
tion on the sides �edges� of the Hall bar. Owing to near-edge
localization of the magnetoinduced charges and current con-
tinuity, one can use the homogeneous current vector. Under
the assumption of high resistance of the photoexcited elec-
tron gas in comparison to the load resistance of the circuit,
we have Et= �E ,Et

��, where the longitudinal field E is de-

termined by the applied voltage and remains time indepen-
dent. The Hall field Et

� depends on time because of the
charge accumulation process mentioned above. The compo-
nents of the current density vector are written through the
components of the conductivity tensor �8� as follows:

jt
� = �

0

t

dt���tt�


Et�
� + �tt�

� E� , �9�

jt
 = �

0

t

dt���tt�


E − �tt�
� Et�

�� � �t
ef fE , �10�

where we have introduced the effective conductivity �t
ef f. To

obtain a closed equation for the Hall field, one should de-
scribe the charge accumulation at the sides of the Hall bar.
This leads to the approximate equation

jt
� � − C�

dEt
�

dt
, �11�

where C�=��d is the effective capacitance proportional to
the dielectric permittivity � and � is a small numerical factor.
The derivation of Eq. �11� and the estimate of � are given in
Appendix B.

In summary, to describe the linear response of the system,
one has first to solve Eq. �4� and determine the energy dis-
tribution f�t. Then, �tt�


and �tt�

� are calculated according to
Eq. �8�. Using them in Eq. �9� and applying Eq. �11�, one
finds the Hall field Et

�, which is proportional to the time-
independent longitudinal field E. Finally, the longitudinal
current is expressed through the effective conductivity from
Eq. �10�: �t

ef f =�0
t dt���tt�


−�tt�

� Et�
� /E�.

III. ANALYTICAL APPROACH

Before presenting the results of the numerical solution of
Eq. �9�, we discuss an approximation which allows one to
understand the essential features of the time-dependent re-
sponse by means of analytical considerations. First of all, we
neglect the energy dependence of the momentum relaxation
time, replacing 
� in Eq. �8� by a constant 
=
��o

. Note that
the calculated energy dependence 
� in the interval 0��
���o is not strong, except for the low-energy region �see
Fig. 2�. The integral over energy in Eq. �8� in this case is
taken by parts, with the result

��tt�


�tt�
� � =

e2nex

m
�cos �c�t − t��

sin �c�t − t��
�e−
�t−t��gt�,

gt = 	1 −
�2D��o

nex
f��ot
 . �12�

The evolution of the energy distribution enters the conduc-
tivity tensor �12� through the dimensionless function gt,
which depends on the distribution function at the boundary
of the passive region. After substituting expression �11� into
Eq. �9� with �tt�


and �tt�

� given by Eq. �12�, it is convenient
to differentiate the equation obtained over t twice. As a re-
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sult, Eq. �9� is reduced to the differential equation

d3Et
�

dt3 + 2

d2Et

�

dt2 + ��c
2 + 
2 + �2gt�

dEt
�

dt
+ �2	
gt +

dgt

dt

Et

�

+ �2�cgtE
 = 0, �13�

with the initial conditions Et
�=dEt

� /dt=d2Et
� /dt2=0 at t

=0. We have introduced a characteristic frequency

� =�e2nex

mC�

�14�

determined by the capacitance and electron density. The lon-
gitudinal current, given in integral form by Eq. �10�, can be
expressed through the derivatives of Et

� with the use of Eqs.
�9�–�12�:

jt
 = −

e2nex

m�2�c
	d2Et

�

dt2 + 

dEt

�

dt
+ �2gtEt

�
 . �15�

If the electrons are excited considerably below the
optical-phonon energy �see the initial distribution A in Fig.
1�a��, one has gt=1. In this case Eq. �13� is solved analyti-
cally. The solution shows a three-mode behavior according
to

Et
� = − E �c



�1 − c1es1t − c2es2t − c3es3t� ,

c1 =
s2s3

�s1 − s2��s1 − s3�
, c2 =

s1s3

�s2 − s1��s2 − s3�
,

c3 =
s1s2

�s3 − s1��s3 − s2�
, �16�

where s1–3 are the roots of the characteristic equation s3

+2
s2+ ��c
2+
2+�2�s+
�2=0. Under the approximation


2��c
2+�2, the solution �16� is rewritten as

Et
� � − E �c



�1 − exp	−

�2

�c
2
t


−
�2


�c
3 exp	−

�c
2 + �2/2

�c
2 
t
sin��ct�� , �17�

where �c=��c
2+�2. Expression �17� describes the increase

of the Hall field from 0 to its equilibrium value −E�c /
 with
a characteristic time ��c /��2
−1 and weak oscillations of
this field with frequency �c. The oscillations are exponen-
tially damped on the time scale of 
−1, though the damping is
suppressed at ��c /��2�1. In the case of �c��, which still
can be realized in the classical region of magnetic fields if
the excitation density is low enough, the increase of the Hall
field appears to be much slower than the damping of the
oscillations. The longitudinal current shows a similar evolu-
tion, which is obvious from the relation �15�.

If the electrons are excited close to the optical-phonon
energy �see the distribution B in Fig. 1�a��, the function gt is
not equal to unity and can be negative at the initial moments
of time, owing to the partial inversion of the electron distri-
bution. As the excited electrons relax and go away from the
boundary of the passive region, gt changes its sign from
negative to positive at some instant t= t0 and approaches 1 at
t→�. Although Eq. �13� cannot be solved analytically in the
general case, the basic features of the response can be deter-
mined by using the model steplike function

gt = �g0, t � t0,

1, t � t0,
� �18�

where g0 is a negative constant. Substituting expression �18�
into Eq. �13�, one can find that at t� t0 the solution �16� is
valid again. However, the coefficients c1–3 should be found
by means of matching this solution to the solution at t� t0,
which has the form

�Et
��t�t0

= − E �c



�1 − d1ep1t − d2ep2t − d3ep3t� , �19�

and p1–3 are the roots of the equation p3+2
p2+ ��c
2+
2

+�2g0�p+
�2g0=0. The coefficients d1–3 are expressed
through p1–3 in the same way as the coefficients c1–3 are
expressed through s1–3; see Eq. �16�. The rules of the match-
ing are derived from integration of Eq. �13� across the point
t= t0 and imply continuity of the Hall field Et

� and its first
time derivative, while the second derivative has a finite step,
�d2Et

� /dt2�t=t0−0
t=t0+0=−�1−g0�Et=t0

� �2, which provides the conti-
nuity of the current given by Eq. �15�. It is essential that at
least one of the rates p1–3 has a positive real part, which
describes the exponential increase of the Hall field in the
interval t� t0. This is a manifestation of the instability gen-
erated by the ANC effect. It is also important that the sign of
the increasing Hall field is opposite to its equilibrium sign
because of inversion of the direction of current in the ANC
interval. The strong enhancement of the Hall field at t� t0
initiates large-amplitude oscillations of this field �Hall oscil-
lations� in the region t� t0. The oscillations of the longitudi-
nal current are also dramatically enhanced.

FIG. 2. Energy dependence of the momentum relaxation rates
for a GaAs quantum well of width 10 nm for T=4.2 K and T
=20 K. The dashed and dotted lines show the partial contributions
of DA and PA scattering mechanisms, respectively.
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Figure 3 demonstrates some examples of the temporal de-
pendence of Et

� and �t
eff �expressed in units of �0

=e2nex /m
� calculated within the analytival approach de-
scribed here. We have chosen � /
=5, t0=
−1, and g0=−1.
For comparison, we also plot the corresponding temporal
dependence at gt=1, when the electrons are excited below
the optical-phonon energy. The oscillations in this case also
exist, but they are weak and superimposed on a smooth ex-
ponential relaxation dependence. On the other hand, the os-
cillations generated by the ANC instability are strong and
remain visible even at 
t�10. Estimating 
�12 ns−1 �see
Fig. 2 for 4.2 K�, one can conclude that these oscillations
persist over a nanosecond interval of time after the excita-
tion. The frequency of the oscillations increases with the
increase of the magnetic field and is estimated as �c

=��c
2+�2. According to Eq. �14� and to the estimate of C�,

the frequency � is of the order of the 2D plasmon frequency
�q at wave numbers q corresponding to the inverse width of
the Hall bar, q�1/d. For this reason, �c is identified with a
2D magnetoplasmon frequency. The appearance of the large-
amplitude Hall oscillations can therefore be considered as an
excitation of 2D magnetoplasmons owing to the ANC insta-
bility. The amplitude of the oscillations exponentially in-
creases with the increase of the frequency � and with the
increase of the absolute value of g0. We also note that the
parameters used in the calculations are physically reasonable.
Indeed, if 
�12 ns−1 �Fig. 2�, then � /
=5 corresponds, for
example, to C��0.1 cm and nex�1011 cm−2 �or C�

�0.01 cm and nex�1010 cm−2� for GaAs wells, while the

ratios �c /
=2 and �c /
=6 approximately correspond to the
classical magnetic fields of 0.01 T and 0.03 T, respectively.

IV. NUMERICAL RESULTS

The model consideration given above ignores a detailed
evolution of electron distribution after the photoexcitation.
Below we present the results of a careful consideration based
on the numerical solution of Eq. �9� with �tt�


and �tt�

� given
by Eq. �8�. We have used standard material parameters of
GaAs, which can be found, for example, in Refs. 1 and 11
�see also our paper, Ref. 9�. To find the electron distribution
f�t from Eq. �4�, we assume that the optical pulse creates
electrons with a Gaussian energy distribution F�

�ex��exp�
−��−�ex�2 /�2� of a characteristic half-width �, centered at
the excitation energy �ex. Assuming, for example, that �ex
=��o and �� /��o�2�1, we obtain the initial electron energy
distribution in the passive region in the form of two half-
peaks also shown in Fig. 1�a�:

f�
�ex� � exp�− �� − ��o�2/�2� + exp�− �2/�2�; �20�

see the discussion after Eq. �4�. The numerical solution of
Eq. �4� has been carried out by iterations in the time domain.
The evolution of the electron distribution, calculated for a
10-nm-wide GaAs quantum well at 4.2 K, is shown in Fig. 4.
This evolution is similar to that calculated for bulk samples
in Ref. 9.

Figure 5 shows the temporal dependence of the effective
conductivity �t

ef f and Hall field Et
� for a 10-nm-wide GaAs

quantum well at 4.2 K, calculated for the same parameters of
the excitation. The effective conductivity is expressed in
units of �0 defined in Sec. III. The temporal dependence of
�t

ef f at zero magnetic field is shown by a dashed line and is
similar to that calculated for bulk samples in Ref. 9. The
evolution of �t

ef f and Et
� appears to be very sensitive to the

cyclotron frequency and characteristic frequency � �see Eq.
�14�� because of the initial exponential increase of the cur-

FIG. 3. Evolution of the effective conductivity �t
ef f and Hall

field Et
� calculated within the approximation described by Eqs. �12�

and �18� at � /
=5, t0=
−1, and g0=−1 for two values of the cy-
clotron frequency, �c /
=2 and �c /
=6. The dashed lines show the
corresponding evolution for the case gt=1, when the excited elec-
trons appear considerably below the optical-phonon energy.

FIG. 4. Temporal evolution of the electron energy distribution
for the case of the initial distribution �20� with �=0.1��o, calcu-
lated for a 10-nm-wide GaAs quantum well at 4.2 K. The distribu-
tion functions are plotted with the time interval of 0.1 ns and nor-
malized by N=nex��2D��o�−1.
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rent and Hall field. We have chosen these frequencies in such
a way that the absolute values of �t

ef f and Et
� in Fig. 5 are not

too large. By varying the parameters, one can obtain a very
strong �several orders of magnitude� enhancement of �t

ef f and
Et

�, but the qualitative picture of the damped oscillations
remains the same. The increase of the magnetic field leads to
an increasing frequency of the oscillations, while the ampli-
tude of the oscillations decreases and the relaxation slows
down. The increase of the excitation density, which leads to
an increasing frequency �, exponentially increases the am-
plitude of the oscillations.12 This influence of the parameters
on the evolution is also described by the simple model in-
vestigated in the previous section.

The general features of the evolution are not modified if
the electrons are excited by a shorter optical pulse, which
results in an energy broadening of the initial distribution.
Figure 6 shows the temporal dependence of �t

ef f and Et
�

calculated for the case of the initial distribution �20� with
�=0.2��o. A comparison of this figure to Fig. 5 also dem-
onstrates the increase of the oscillation frequency and a sup-
pression of the damping as a result of the increased � �see
the discussion of Eq. �17��.

V. CONCLUSIONS

We have described the transient classical magnetotrans-
port of electrons in a long Hall bar after ultrafast interband
photoexcitation and calculated the temporal dependence of

the current and Hall field. Investigating the modification of
the response due to accumulation of the edge charges form-
ing the transverse �Hall� voltage, we have found the oscilla-
tions of both the current and Hall field. The amplitude and
duration of the oscillations are dramatically enhanced if the
energies of the excited electrons are in the vicinity of the
optical-phonon energy. This is the case when the oscillations
are triggered by the instability associated with the partial
inversion of the electron distribution �the ANC effect�. Al-
though the numerical calculations have been carried out here
for nondoped GaAs quantum wells, similar effects should be
expected for nondoped bulk samples, because the qualitative
features of the energy relaxation and nonlocal temporal re-
sponse of the electron system do not depend on dimension-
ality.

Now we discuss the assumptions used. The main approxi-
mation is the consideration of electron scattering by phonon
modes only. The elastic scattering by inhomogeneities can be
neglected in the case of nondoped quantum wells with high-
quality interfaces. In any case, it is not difficult to include
this scattering into consideration, because it does not contrib-
ute to the energy relaxation �see Eq. �4�� and can lead only to
an increase in the momentum relaxation rate standing in Eq.
�8�. However, the damping of the oscillations in this case
becomes stronger, and it is always better to avoid this addi-
tional scattering by using clean samples. A more important
restriction is the neglect of electron-electron interactions,
which should dominate the energy relaxation of photoexcited
2D electrons at the densities nex�1010 cm−2. Since the

FIG. 5. Evolution of the effective conductivity �t
ef f and Hall

field Et
� at �=50 ns−1 in the magnetic fields H=0.015 T and

0.02 T, for the case of the initial distribution �20� with �=0.1��o.
The dashed line shows �t

ef f �multiplied by 10� for zero magnetic
field.

FIG. 6. Evolution of the effective conductivity �t
ef f and Hall

field Et
� at �=80 ns−1 in the magnetic fields H=0.015 T and

0.03 T, for the case of the initial distribution �20� with �=0.2��o.
The dashed line shows �t

ef f for zero magnetic field.
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electron-electron interaction leads to a faster relaxation, it is
expected to shorten the time interval where the exponential
increase of the current and Hall field takes place. However,
this interaction cannot cancel the large-amplitude oscillations
of the current and Hall field. In this connection, we note that
these oscillations have been examined in Sec. III on the basis
of a model that is not sensitive to a detailed description of
the energy relaxation. The only essential point is the exis-
tence of partial inversion of electron distribution during a
finite interval of time after the photoexcitation, sufficient for
the realization of the ANC regime. For this reason, the posi-
tion and energy broadening of the initial electron distribu-
tion, which are determined by the parameters of the photo-
excitation pulse, appear to be more important than the actual
energy relaxation mechanisms.

Let us discuss the other approximations. The general for-
malism has been based on the classical Boltzmann equation.
This is sufficient for the subject of our study, because the
intervals of times under consideration considerably exceed
the quantum broadening times � /� and the magnetic field is
weak enough to neglect the Landau quantization. We have
ignored the existence of holes created in the valence band by
the optical pulse. This is possible because of the smallness of
the hole mobility, so the contribution of the holes to the
transport can be neglected. To describe the momentum relax-
ation by electron-phonon scattering, we have used the elastic
approximation. In quantum wells, this is suitable for a de-
scription of electrons whose energies � are much larger than
the characteristic energy �s	 /a associated with phonon mo-
mentum normal to the layer �here s is the sound velocity and
a is the well width�. For typical parameters s�5
�105 cm/s and a�10 nm, the energy �s	 /a is around
1 meV. Therefore, the assumed condition is satisfied in our
calculations for the photogenerated high-energy electrons
which give the main contribution to the conductivity. Next,
since we have neglected the transverse inhomogeneity of the
currents and fields, Eqs. �9�–�11� are not applicable for a
description of electrons in the vicinity of the Hall bar edges.
Nevertheless, these equations are valid in the main part of
the Hall bar, where the inhomogeneous corrections to the
currents and fields are small �see Appendix B�.

We also note that in the ANC regime one should consider
a possibility for the development of a spatial instability13

both along and across the Hall bar. Uncovering the condi-
tions for the existence and properties of such an instability
requires a special investigation based on the formalism of the
nonhomogeneous kinetic equation. The spatially inhomoge-
neous electron distribution owing to the ANC effect is essen-
tial in the stationary regime, and it is realized for 2D elec-
trons under microwave excitation in the quantizing magnetic
field.7 Nevertheless, since we consider the transient response,
one may expect that the results of this paper will remain
valid for the samples of small size, where the spatially inho-
mogeneous distribution is not developed during the short in-
terval of time corresponding to the exponential increase of
the current and Hall field.

Finally, we would like to point out that the Hall oscilla-
tions studied in this paper can be viewed as 2D magnetoplas-
mons with small wave numbers determined by the width of
the Hall bar. To detect them in experiment, it is necessary to

have subnanosecond temporal resolution, which is attainable
for standard all-electrical measurements. Owing to the strong
amplification of the oscillations by the ANC instability, the
excitation technique based on the ultrafast optical pump can
be applied along with the conventional techniques14 of mag-
netoplasmon excitation in 2D layers.

APPENDIX A: RELAXATION RATES

Below we present the expressions for 
�
�ac� and W��� de-

termining the momentum and energy relaxation of 2D elec-
trons under acoustic-phonon scattering. Both these quantities
can be written as the sums of partial contributions caused by
the DA and PA mechanisms of interaction. The relaxation
rate 
�

�ac� is calculated in the elastic approximation:


�
�ac� =

2	

�
� dp�

�2	��2�
−�

� dq�

2	
M�q���1 − cos ��

� ���p − �p�� �
i=DA,PA

�
�=l,t

�C�Q
�i� �2�2N�Q + 1� ,

�A1�

where �=�p= p2 /2m, Q= �q ,q�� is the phonon wave vector,
q= �p−p�� /� is the in-plane component of this vector, � is
the angle between p and p�, N�Q are the Planck occupation
numbers of the longitudinal ��= l� and transverse ��= t�
acoustic-phonon modes, and �C�Q

�i� �2 are the matrix elements
of interaction, averaged over the angle of electron momen-
tum p in the 2D plane. This averaging is essential for the PA
interaction, which is sensitive to the orientation of the vector
Q with respect to crystallographic axes.15 In explicit form,

�C�Q
�DA��2 =

�D2Q

2�s�

��,l �A2�

and

�C�Q
�PA��2 =

��eh14�2

2�s�Q
A�Q, �A3�

where s� are the sound velocities, � is the material density, D
is the deformation-potential constant, and h14 is the piezo-
electric coefficient. The polarization factors A�Q for �100�-
grown 2D layers are16

AlQ =
9

2

q�
2 q4

Q6 , AtQ = 4
q�

4 q2

Q6 +
1

2

q6

Q6 . �A4�

Finally, M�q��= ��0�eiq�z�0��2 is the squared matrix element
of a plane-wave factor. This matrix element characterizes the
interaction of 2D electrons with 3D phonons and depends on
the confinement potential determining the ground state of 2D
electrons, �0�. We apply the model of a deep square well of
width a, leading to the expression2 M�q��= �sin�x� /x�2 / �1
− �x /	�2�2, where x=q�a /2.

The introduction of the transition probability W��� enter-
ing Eqs. �2� and �4� implies averaging of the kinetic equation
over the angle of momentum p, according to �f�t /�t
= �2	�−1�0

2	d�p�p��Wp�pf��t−Wpp�f�t�, where Wpp� is the
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probability of electron scattering from the state with momen-
tum p to the state with momentum p�. As a result,

W��� =
1

�2

sgn�� − ���
1 − exp���� − ��/T�

� �
i=DA,PA

�
�=l,t

�
0

�� d�

	
M�q���C�Q

�i� �2
Q

s�q�

, �A5�

where �C�Q
�i� �2 and M�q�� are already defined above. How-

ever, the wave numbers Q, q, and q� standing in the corre-
sponding equations should be now considered as functions of
energies, phonon polarization, and scattering angle �, ac-
cording to Q= ��−��� /�s�, q=�2m��+��−2����cos �� /�,
and q�=�Q2−q2. The integral over the scattering angle in
Eq. �A5� must be calculated numerically. The upper limit
of this integration, ��, is determined from the requirement
Q2�q2, which means ��=	 at ���−����2�2ms�

2 and
��=arccos���+��− ��−���2 /2ms�

2� /2����� at ���−����2

�2ms�
2. In the case of very small energies ���+����2

�2ms�
2, the limit �� should be set at zero and the integral

gives no contribution.

APPENDIX B: EDGE-CHARGE ACCUMULATION

This appendix contains a simple formalism describing the
inhomogeneous distributions of charges, currents, and fields
in a long Hall bar for a time-dependent problem. The homo-
geneous approximation, which is valid in the central part of
the bar and leads to Eq. �11� for the transverse current de-
scribing edge-charge accumulation, follows from the general
consideration.

Consider a semiconductor structure containing a 2D Hall
bar of width d and length L �−d /2�y�d /2 and −L /2�x
�L /2� placed at a distance h below the surface of the me-
dium with dielectric permittivity �. If the retardation effects
are neglected, the electrostatic potential �t�y ,z� created by
the 2D carriers satisfies the Poisson equation

� �

�z
��z�

�

�z
+ ��z�

�2

�y2��t�y,z� = − 4	e�nt�y���z + h� ,

�B1�

where ��z�=� at z�0, ��z�=1 at z�0, �nt�y�=nt�y�− p is the
excess density of free electrons, and p is the density of holes
which is assumed to be homogeneous and time independent
�because of the low mobility of holes, this is possible in the
short time interval under consideration�. The Poisson equa-
tion is two dimensional because the bar is long, d�L, and
the electron density depends only on the transverse coordi-
nate y. If ��1, one can use Newmann’s boundary condition
��t��y ,z� /�z�z=−0=0 at the surface and rewrite Eq. �1� in the
integral form

�t�y,z� = −
e

�
�

−d/2

d/2

dy��ln��y − y��2 + �z + h�2�

+ ln��y − y��2 + �z − h�2���nt�y�� . �B2�

The other necessary equations are the continuity equation

e
��nt�y�

�t
+

�jt
��y�
�y

= 0, �B3�

which relates the density to the transverse current, and the
equation

�nt�y� = e�2D�vt�y� − �t�y�� , �B4�

where �t�y�=�t�y ,−h� is the electrostatic potential in the 2D
plane and vt�y� is the electrochemical potential. Finally, there
is a relation between the transverse current and electrochemi-
cal potential,

jt
��y� = �

0

t

dt�	− �tt�
 �

�y
vt��y� + �tt�

� E
 , �B5�

which is a generalization of Eq. �9�: Et�
� replaced by

−�vt��y� /�y in order to take into account the spatial inhomo-
geneity.

Using Eqs. �B2�–�B4�, one can exclude the electrostatic
potential and electron density, and write

−
�jt

��y�
�y

+
2e2�2D

�
�

−d/2

d/2

dy�K�y,y��
�jt

��y��
�y�

= e2�2D
�vt�y�

�t
,

�B6�

where K�y ,y��=ln�y−y��+ln ��y−y��2+ �2h�2. Equations
�B5� and �B6�, with the boundary condition jt

��±d /2�=0,
give a complete description of the spatial distribution of the
transverse current and electrochemical potential in the long
Hall bar. The spatial inhomogeneity is essential near the
edges ±d /2; this follows from the fact that the transverse
current goes to zero at y= ±d /2. On the other hand, in the
main part of the bar one should expect nearly homogeneous
currents and fields. If the bar width d is large in comparison
to the Bohr radius �2� /e2m, the main contribution to the
right-hand side of Eq. �B6� comes from the integral term,
which is written after integration by parts as
�2e2�2D /���−d/2

d/2 dy���K�y ,y�� /�y�jt
��y��. Let us search for

the solution of Eq. �B6� in the form jt
��y�= jt

�+�jt�y�, where
jt
� is the homogeneous part of the current and �jt�y� is

the inhomogeneous correction. Neglecting first �jt�y�
�zeroth-order iteration�, we obtain jt

�=��2�K�y ,−d /2�
−K�y ,d /2���−1��vt�y� /�t�, which is rewritten, under the rea-
sonable assumption d�4h, as

jt
� =

�

4 ln��d/2 + y�/�d/2 − y��
�vt�y�

�t
. �B7�

Generally speaking, this equation can be satisfied for all y if
the transverse field is inhomogeneous. In other words, vt�y�
=−Et

�y+�vt�y�, where �vt�y� is the inhomogeneous correc-
tion to the electrochemical potential. However, in the central
part of the sample, where ln��d /2+y� / �d /2−y���4y /d
+O(�y /d�3), the inhomogeneous correction �vt�y� can be ne-
glected and the electrochemical potential is expressed
through the homogeneous transverse field, vt�y��−Et

�y.
Equation �B7� in these conditions is reduced to Eq. �11� with
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the effective capacitance C�=�d /16 �so the coefficient �
introduced after Eq. �11� is equal to 1/16�, while Eq. �B5� is
reduced to Eq. �9�. Using these solutions, one can write an
equation for the inhomogeneous correction to the current

�first-order iteration�, which shows that the relative contribu-
tion of �jt�y� is small, d−1�−d/2

d/2 dy�jt�y�� jt
�; this smallness is

of numerical origin. Therefore, the homogeneous approxima-
tion described by Eqs. �9� and �11� is justified.
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