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We present numerical calculations of the effect of electron-electron interactions on the quasiparticle prop-
erties such as the effective mass and the Landé g-factor in a GaAs/AlGaAs triangular quantum well from
which the spin susceptibility is obtained. For this purpose, we consider quantum many-body effects associated
with charge- and spin-density fluctuations induced many-body vertex corrections. The approach is based on the
many-body local-field factors which are extracted from Fermi hypernetted-chain self-consistent calculation
through the fluctuation-dissipation theorem. We find the spin susceptibility in good agreement with the recent
experimental measurements and quantum Monte Carlo simulation data for such a system in the weak and
intermediate coupling limits.
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I. INTRODUCTION

Two-dimensional �2D� electron systems as realized in
semiconductor interfaces are of continuing interest1,2 both
from basic physics and technological points of view. A great
deal of activity was spawned in the last decade to under-
stand the apparent metal-insulator transition �MIT� observed
in Si-MOSFET and GaAs based structures.3 Although the
basic mechanism and the existence of a quantum phase tran-
sition is still a matter of on-going debate, experiments have
amassed a wealth of data on the transport properties of the
2D electron systems in the metallic state. The exper-
iments4–14 are performed on low-density samples where the
interaction effects are important and it is becoming clear that
to understand the observed behavior realistic modeling of the
sample geometry is very important. As the systems invari-
ably have an extension in the perpendicular direction they
are, geometrically speaking, quasi-two-dimensional �Q2D�
and it is this feature that has to be taken into account in
theoretical calculations.

It has been shown4 that the resistance of a Si-MOSFET
structure increases dramatically by increasing the strength of
an in-plane magnetic field, and saturates at a characteristic
value of several Teslas. Low-field quantum Shubnikov-de
Haas �SdH� measurements on Si-MOSFETs by Okamoto et
al.5 revealed that the saturation value is the magnetic field
that is necessary to fully polarize the electron spins. An
interpretation6,7 of the in-plane magnetoresistance in Si in-
version layers suggested a ferromagnetic instability at or
very close to the critical density for the Q2D MIT driven by
a divergence in the effective mass. Pudalov et al.8 have re-
ported direct measurements of effective mass in high-
mobility Si-MOSFETs over a wide range of carrier density
by using a novel technique based on the beating pattern of
SdH oscillations in crossed magnetic fields. These authors
measured the effective mass and spin susceptibility in the
vicinity of the Q2D MIT, finding no evidence for a divergent
behavior but only a moderate enhancement of the effective
mass by a factor of �2–2.5 over the band mass. Two groups
have also reported anomalous density dependence of the
modified Landé factor in n-doped9 and p-doped10

GaAs/AlGaAs heterojunctions that are in disagreement with
results in Si-MOSFETs. The dependence of the spin suscep-
tibility on electron density has been studied by Zhu et al.11

who used a Q2D electron gas �EG� of exceedingly high qual-
ity. More recently, Tan et al.12 performed high precision mea-
surements of the electronic effective mass in Q2D EG over a
wide range of electron density. Spin polarization for a Q2D
electron system has been studied by a combination of mea-
surements and calculations by Tutuc et al.13 Their results
revealed the importance of finite thickness of the electron
layer and the resulting deformation of the energy surface in
the presence of a parallel magnetic field induces an enhance-
ment of the effective mass and Landé g*-factor. It is worth
mentioning that Vakili et al.14 have reported measurements
of the effective mass and spin susceptibility in a dilute 2D
EG confined to a narrow AlAs quantum well �only 45 Å
wide�. The electron system investigated in Ref. 14 is quite
interesting because the electrons occupy an out-of-plane
conduction-band valley, rendering the system similar to 2D
electrons in Si-MOSFETs but with only one valley occupied.
The results of Vakili et al.14 for spin susceptibility are in
good agreement with the QMC results of Attaccalite et al.15

even though this simulation has been carried out for a strictly
disorder-free EG.

Theoretical calculations of the effective mass and spin-
susceptibility of electron systems are performed within the
framework of Landau’s Fermi liquid theory16 whose key in-
gredient is the quasiparticle concept and its interactions. As
applied to the electron gas model this entails the calculation
of effective electron-electron interactions which enter the
many-body formalism allowing the calculation of various
physical properties. A number of calculations considered dif-
ferent variants of the GW-approximation for the
self-energy17–23 from which density, spin-polarization, and
temperature dependence of effective mass are obtained. In
these calculations the on-shell approximation19,20 yields a di-
verging effective mass but the full solution of Dyson equa-
tion yields only a mild enhancement.22,23 Other ap-
proachesexploiting the similarity to neutral fluid 3He in the
vicinity of a MIT found diverging effective mass.24,25

In a recent paper De Palo et al.26 employed quantum
Monte Carlo simulation results for a 2D electron system in
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conjunction with perturbation theory using the parameters of
specific samples of Zhu et al.11 to calculate the spin suscep-
tibility and emphasized the importance of Q2D nature of the
physical systems. Dharma-wardana in a series of papers27

calculated the effective mass, Landé g*-factor, and spin-
susceptibility for Q2D electron systems within the classical-
map hypernetted chain �CHNC� approximation. He found
that the thickness effect on the spin-phase transition provides
a clear picture of the changes in the spin susceptibility en-
hancement leading to a strong increase in the g*-factor, while
the effective mass is increased from the reduction of the
Coulomb potential in thick layers.

The purpose of this paper is to study the quasiparticle
properties such as effective mass and spin-susceptibility of
Q2D electron systems in the intermediate coupling region in
view of the recent experiments of Tan et al.12 and Zhu et al.11

In a previous work23 we studied a strictly 2D electron system
and we calculated the effects of correlations and disorder in
the effective mass enhancement. More recently, we
concentrated22 on Q2D systems, but we had employed local-
field factors which were built from the quantum Monte Carlo
�QMC� data and were valid for strictly 2D systems. Local-
field factors embody correlation effects beyond the random
phase approximation and constitute a significant input to our
calculations at intermediate couplings. All the experimental
samples used in the measurement of transport properties are
Q2D in character, therefore to generalize our previous works,
we consider a theory in which the layer thickness effects
enter the local-field factors. In this direction, we use accurate
static structure factors resulting from a Fermi hypernetted-
chain self-consistent calculation28–30 �FHNC� in conjunction
with the fluctuation-dissipation theorem to extract the local-
field factors which depend on the quantum-well width. We
find that for the specific sample parameters of Tan et al.12

good agreement between the experimentally observed spin-
susceptibility and our theoretical results can be achieved up
to the intermediate coupling strength regime. Our results are
also in good agreement with the QMC simulations of De
Palo et al.26 in the same range of coupling strengths implying
the efficacy of our theoretical approach.

The rest of this paper is organized as follows. In the next
section we outline our theoretical approach to calculate the
self-energy for Q2D electron systems from which the quasi-
particle properties are obtained. The essential ingredients of
our theoretical framework are the local-field factors that de-
fine the effective electron-electron interactions. We discuss in
Sec. III how they are obtained both in the charge and spin
channels within the FHNC approximation. Our numerical re-
sults for the effective mass, modified Landé g*-factor, and
spin-susceptibility are presented in Sec. IV where we also

make detailed comparisons with experimental data and other
theoretical calculations. We conclude in Sec. V with a brief
summary of our main results.

II. THEORY

We consider a Q2D EG as a model for a system of elec-
tronic carriers with band mass m in a semiconductor hetero-
structure with dielectric constant �. We include the effect of
thickness of a GaAs heterojunction-insulated gate field-effect
transistor �HIGFET� with bare electron-electron interaction
vq=2�e2F�qd� / ��q� which is the Coulomb potential renor-
malized by the form factor given by

F�x� = �1 +
�ins

�sc
�8 + 9x + 3x2

16�1 + x�3 + �1 −
�ins

�sc
� 1

2�1 + x�6 , �1�

where d= ���sc / �48�me2n*��1/3 and n*=ndepl+11n /32. Here
the depletion layer charge density ndepl is essentially zero and
�ins=10.9 and �sc=12.9 and � is their average. At zero tem-
perature there are only two relevant parameters for a disorder
free, homogeneous Q2D EG in the absence of quantizing
magnetic fields, the usual Wigner-Seitz density parameter
rs= ��naB

2�−1/2, aB=�2� / �me2� being the Bohr radius in the
medium of interest and the second parameter is the degree of
spin polarization �= �n↑−n↓� /n. Here n� is the average den-
sity of particles with spin �= ↑ ,↓ and n=n↑+n↓ is the total
average density.

The aim of this section is to provide the theoretical model
to calculate the quasiparticle properties of Q2D EG by evalu-
ating the retarded quasiparticle �QP� self-energy �ret�k ,�� of
a paramagnetic Q2D EG and applying the Fermi liquid
theory. We emphasize that thickness of a quantum well
would be important to consider in a theoretical many-body
treatment, since the experiments are performed on samples
with varying thickness or specific quantum well geometry.
Therefore we will present a self-consistent approach to cal-
culate the spin-symmetric and spin-antisymmetric local-field
factors incorporating the quantum well thickness effect.

A. General formulas

We will employ in our theory the following decomposi-
tion for the retarded QP self-energy �ret�k ,��:

�ret�k,�� = �X�k� + �line�k,�� + �res�k,�� . �2�

Here the first term is the Hartree-Fock self-energy. For a 2D
EG we have31

�X�k� =	− 2e2kFE�k̄2�/� �k̄ � 1� ,

− 2e2kFk̄�E�1/k̄2� − �1 − 1/k̄2�K�1/k̄2��/� �k̄	1� ,

 �3�
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where k̄=k /kF and K�x�, E�x� are complete elliptic integrals
of the first and second kind, respectively. The second term in
Eq. �2�, which is purely real, is given by

�line�k,�� = −� d2q

�2��2vq�
−



 d�

2�

�� 1


�q,i��
− 1
 1

� + i� − �k+q/�
. �4�

Finally, the third term is the so-called “residue” contribution,

�res�k,�� =� d2q

�2��2vq� 1


�q,� − �k+q/��
− 1


����� − �k+q/�� − ��− �k+q/��� . �5�

Here ��x� is the step function and �k=
k−
F where 
k
=�2k2 / �2m� is the single-particle energy with 
F

=�2kF
2 / �2m� and kF= �2�n2D�1/2=�2/ �rsaB�, respectively, be-

ing the Fermi energy and wave number.
In Eqs. �4� and �5� 
�q ,�� is a screening dielectric func-

tion originating from the effective Kukkonen-Overhauser
interaction,18,32

1


�q,��
= 1 + vq�1 − G+�q,���2�C�q,��

+ 3vqG−
2�q,���S�q,�� . �6�

In this expression �C�q ,�� and �S�q ,�� represent the
charge-charge and spin-spin response functions, which in
turn define and are determined by the spin-symmetric and
spin-antisymmetric local-field factors G+�q ,�� and G−�q ,��
via the relations

�C�q,�� =
�0�q,��

1 − vq�1 − G+�q,����0�q,��
, �7�

and

�S�q,�� =
�0�q,��

1 + vqG−�q,���0�q,��
, �8�

where �0�q ,�� is the Lindhard response function of a non-
interacting 2D EG.33 In the paramagnetic electron liquid
G±�q ,��= �G↑↑�q ,��±G↑↓�q ,��� /2, where G����q ,�� are
the spin-resolved local-field factors. It is evident from the
above equations setting G±�q ,��=0 we recover the standard
random phase approximation �RPA�. Although there has
been some recent progress in developing wave vector and
frequency dependent local-field factors34,35 in most applica-
tions to date the frequency independent, static local field fac-
tors are used. In what follows, we shall make the common
approximation of neglecting their frequency dependence.

Quite generally, once the QP self-energy is known, the QP
excitation energy �EQP�k�, which is the QP energy measured
from the chemical potential � of the interacting EG, can be
calculated by solving self-consistently the Dyson equation

�EQP�k� = �k + �Re �ret
R �k,����=�EQP�k�/�, �9�

where Re �ret
R �k ,��=Re �ret�k ,��−�ret�kF ,0�. For later pur-

poses we introduce at this point the so-called on-shell ap-
proximation �OSA�. This amounts to approximating the QP
excitation energy by calculating Re �ret

R �k ,�� in Eq. �9� at
the frequency �=�k /� corresponding to the single-particle
energy, that is

�EQP�k� � �k + �Re �ret
R �k,����=�k/�. �10�

Once the QP excitation energy is known, the effective
mass m*�k� can be calculated by means of the relationship

1

m*�k�
=

1

�2k

d�EQP�k�
dk

. �11�

Evaluating the m*�k� at k=kF, one gets the QP effective mass
at the Fermi surface. We remark that the QP excitation en-
ergy may be calculated either by solving self-consistently the
Dyson equation �Eq. �9�� or using the OSA in Eq. �10�. In
what follows the identity

d Re �ret
R �k,��k��
dk

= ��k Re �ret
R �k,����=��k�

+ ��� Re �ret
R �k,����=��k�

d��k�
dk

�12�

will be used, ��k� being an arbitrary function of k. Using
Eqs. �11� and �12� with ��k�=�EQP�k� /� we find that the QP
effective mass mD

* calculated within the Dyson scheme is
given by

mD
*

m
=

Z−1

1 + �m/�2kF���k Re �ret
R �k,���k=kF,�=0

. �13�

The renormalization constant Z that measures the discontinu-
ity of the momentum distribution at k=kF is given by

Z =
1

1 − �−1��� Re �ret
R �k,���k=kF,�=0

. �14�

The normal Fermi-liquid assumption, 0�Z�1, implies that
��� Re �ret

R �k ,���k=kF,�=0�0. Thus we see that the effective
mass mD

* can diverge at a finite value of rs by one of two
mechanisms:22 �i� the partial derivative of �ret

R with respect to
�, ��� Re �ret

R �k ,���k=kF,�=0 going to minus infinity at some
finite value of rs; and �ii� the partial derivative of �ret

R with
respect to k, ��k Re �ret

R �k ,���k=kF,�=0 going to −�2kF /m at
some finite value of rs. On the other hand, using Eqs. �11�
and �12� with ��k�=�k /� we find that the QP effective mass
mOSA

* within the OSA is given by
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mOSA
*

m
=

1

1 + �m/�2kF���k Re �ret
R �k,���k=kF,�=0 + �−1��� Re �ret

R �k,���k=kF,�=0
. �15�

Evidently, Eq. �15� is a valid expression for the QP effective
mass only in the weak coupling limit.22

B. Landau Fermi liquid theory of the various physical
properties

Among the theoretical methods designed to deal with the
intermediate density regime, of particular interest for its
physical appeal and elegance is Landau’s phenomenological
theory16 dealing with low-lying excitations in a Fermi-liquid.
Landau called such single-particle excitations quasiparticles
�QPs� and postulated a one-to-one correspondence between
them and the excited states of a noninteracting Fermi gas. He
wrote the excitation energy of the Fermi liquid in terms of
the energies of the QPs and of their effective interactions.
The QP-QP interaction function can in turn be used to obtain
various physical properties of the system and can be param-
etrized in terms of experimentally measurable data. Starting
with the quasiparticle energy and its relation to the Landau
interaction function, one can drive the following relation18

for a modified Landé g*-factor

g*

g
=

1

1 − g1 + g2
, �16�

where

g1 = m*�
0

2� d�

�2��2v�k − p��1 + v�k − p��„1 − G+�k − p�…2

��C�k − p,0� − G−
2�k − p��S�k − p,0��� , �17�

and

g2 =
2m*m

�3 �
0




dz�
0




duv�q�2� �1 − G+�q��G−�q�
Q−�q,i��Q+�q,i��

P+�z,u�

+
G−

2�q�
Q−

2�q,i��
P−�z,u�
 . �18�

Here �k�= �P�=kF and � is the angle between them, q=2zkF
and �=2kF

2uz /mb. Furthermore, Q±�q , i��
=�0�q , i�� /�C,S�q , i�� and the function

P±�z,u� =
��z2 − u2 − 1�2 + �2zu�2�1/2 ± �z2 − u2 − 1�

��z2 − u2 − 1�2 + �2zu�2�
.

�19�

Once the QP effective mass m* and modified Landé g*-factor
have been calculated the spin susceptibility is found by the
following exact relationship:

�*

�0
=

m*

m

g*

g
, �20�

where �0 is the Pauli spin susceptibility.

III. LOCAL-FIELD FACTORS

As is clear from Eqs. �6�–�8�, �17�, and �18� the local-field
factors are the fundamental quantities for an evaluation of
quasiparticle properties. In this section we introduce the
static values of these functions. Our strategy follows that of
Ref. 36 which uses accurate spin-symmetric and spin-
antisymmetric static structure factors to build the local-field
factors. In fact, the idea here is not entirely new, it has been
used by Iwamoto et al.37 in the context of 3D and by
Dharma-wardana and Perrot38 in 2D electron liquids. For this
purpose we implement the self-consistent Fermi hypernetted-
chain approach28–30 in order to calculate the spin-symmetric
and spin-antisymmetric static structure factors incorporating
the finite thickness effects in a quantum well. In what fol-
lows we first explain the FHNC approximation and then out-
line our method to obtain the static local-field factors G±�q�.

With the zero of energy taken at the chemical potential,
the formally exact differential equation for the pair-
correlation function g����r� reads

�−
�2

m
�r

2 + v�r� + vP
����r� + VEKS

��� �r�
�g����r� = 0. �21�

Here, the v�r� is the Q2D potential that it is weaker than the
Coulomb potential and its Fourier is given by vq in q-space.

The “Pauli potential” vP
����r� is defined by39

vP
����r� =

�2

m

�r
2�g���

HF �r�

�g���
HF �r�

. �22�

In Eq. �22�, g���
HF �r� are the spin-resolved pair-correlation

functions in the Hartree-Fock approximation �HF� which for
the same spin is given by

g��
HF�r� = 1 − �2J1�kF

�r�
kF

�r

2

, �23�

where J1�x� is the first-order Bessel function and kF
↑

=kF
�1+�, kF

↓ =kF
�1−�. Moreover, g��̄

HF�r�=1. Although the
expression for the Pauli potential is exact only for a weakly
coupled 2D EG,39 we shall assume in the following that it
can yield useful results in our FHNC approach in Q2D EG.

The FHNC expresses the potential VEKS
��� �r� in Eq. �21�,

which is the sum of the Hartree and of the exchange-
correlation potential, as the sum of two effective pair
interactions:28–30

VEKS
��� �r� = WB

����r� + ����We
���r� . �24�

The first term on the left-hand side of Eq. �24� descends from
the two-body correlation functions u����r� in the Jastrow-
Feenberg wave function and is therefore formally the same
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as for a binary boson mixture. The second term is instead due
to the antisymmetry of the fermion many-body wave func-
tion.

As shown by Chakraborty40 in treating a binary fermion
mixture, the HNC closure yields for u����r� the expression

u����r� = ln g����r� − �g����r� − 1� + c����r� , �25�

where c����r� are the direct correlation functions, which are
related to g����r� by the Ornstein-Zernike relations.41 We
introduce at this point the partial structure factors S����q� of
the binary mixture, which in essence are the Fourier trans-
forms of g����r�:

S����q� = ���� + �n�n��� dr�g����r� − 1�exp�− iq · r� .

�26�

We also introduce the Fourier transform of WB
����r�

�WB
����q�, say�. Minimization of the ground state energy

against arbitrary variations of g����r� yields with the help of
Eq. �25� the expression

WB
����q� = −


q

�n�n��

�S����q� − ����� − V����q� , �27�

where 
q=�2q2 / �2m� are the single-particle kinetic energies
and the functions V����q� that is the Fourier transform of
“particle-hole” interaction, V����r� are given by

V����r� = g����r��v�r� + We
����r� + vP

����r��

+ �g����r� − 1�WB
����r� +

�2

m
���g����r��2,

�28�

and in general

S���q� =�A�̄�̄�2 −
A��̄

2 �3

2 + �A�� + A�̄�̄��
,

S��̄�q� =
A��̄�3/2

�2 + �A�� + A�̄�̄��
, �29�

where A����q�=����+2 sgn������n�n��V����q� /
q and
��q�= �A↑↑A↓↓−A↑↓

2 �−1/2.
Turning to the second term on the left-hand side of Eq.

�24�, the effective pair potential We
���r� has a very compli-

cated expression within the FHNC.28–30 However, in dealing
with a one-component electron fluid Kallio and Piilo42 have
proposed a simple and effective way to account for this con-
sequence of the antisymmetry of the fermion wave function.
Their argument is immediately generalized to our two-
component Fermi fluid, and leads to the requirement that in
Fourier transform this term should cancel the effective
bosonlike interaction WB

���q� for parallel-spin electrons at
low coupling. That is

We
���q� = − lim

rs→0
WB

���q� =

q

2n�

�1 + 2S��
HF�q���S��

HF�q� − 1

S��
HF�q� 
2

.

�30�

Here, S��
HF�q� is the Hartree-Fock structure factor, which is

given by

S��
HF�q� =

2

�
�sin−1� q

2kF
�� +

q

2kF
��1 − � q

2kF
��2
��2kF

� − k�

+ ��2kF
� − k� . �31�

It is evident that using Eqs. �26�–�29� requires a self-
consistent calculation of the spin-resolved static structure
factors.

Fluctuation-dissipation theorem

The fluctuation-dissipation theorem which is of para-
mount importance for systems in equilibrium relates the dy-
namic susceptibilities defined above to the static structure
factors

S±�q� = −
1

n�
�

0




d� Im��C,S�q,��� , �32�

where S±�q�= �S↑↑±S↑↓� /2. As �C�q ,�� and �S�q ,�� depend
on G+�q� and G−�q�, respectively, the above integral expres-
sion allows one to determine the local-field factors once the
static structure factors are calculated by the FHNC approach.
The same approach of obtaining the local-field factors has
previously been employed by Iwamoto37 and Dharma-
wardana and Perrot.38 We note that the use of fluctuation-
dissipation theorem to extract static local-field factors is ap-
proximate in nature as it neglects the frequency dependence
of G±�q ,�� from the outset. However, the apparent success
of previous implementations37,38 encourages us to use it also
in the present context.

As an additional simplification to the above procedure,
one can further approximate the full �0�q ,�� by the mean-
spherical approximation �MSA�, viz.

�0
MSA�q,�� =

�n�2q2/m�

�2 − � �2q2

2mSHF�q�
2 , �33�

in which SHF�q� is the Hartree-Fock static structure factor.
With this approximation, the fluctuation-dissipation integral
can be performed analytically to yield

G+�q� = 1 −
�2

4rs
� q

kF
�3 1

F�qd�� 1

S+�q�2 −
1

SHF�q�2
 , �34�

and

G−�q� = −
�2

4rs
� q

kF
�3 1

F�qd�� 1

S−�q�2 −
1

SHF�q�2
 . �35�

Expressions similar to the above have been used in the con-
text of charged boson fluids43 with the replacement of SHF�q�
by unity. The MSA is essentially a plasmon-pole type ap-
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proximation, where the particle-hole excitations are replaced
by a single collective mode. We have found that it works
quite well when the frequency integral in the fluctuation-
dissipation theorem is performed. The efficacy of MSA com-
pared to using the full �C�q ,�� and �S�q ,�� in the
fluctuation-dissipation integral is discussed in detail in our
previous work.36

IV. NUMERICAL RESULTS

We turn to the presentation of our numerical results,
which are based on the local-field factors incorporating the
quantum well finite thickness. We have numerically solved
the FHNC set of equations, Eqs. �26�–�29�, by repeating until
self-consistency is achieved. We have calculated in this way
the spin-resolved static structure factors of a Q2D EG. By
implementing the static structure factors coming from the
FHNC calculation in the fluctuation-dissipation theorem,36

we obtain the local-field factors.
To assess the validity of our procedure, we first show the

calculated pair-correlation function g�r� at two representative
values of rs=3 and rs=6 in Fig. 1. For the strictly 2D system
we compare our g�r� with that obtained by Gori-Giorgi et
al.44 from QMC simulations. For these intermediate densities
we find very good agreement and the omission of bridge
diagrams within the FHNC is justified a posteriori. Figure 1
also shows our results for a Q2D EG. The effect of finite
thickness on g�r� is more appreciable for small values of r.
Pair-correlation function g�r� for a Q2D EG has also been
calculated by Dharma-wardana27 within the CHNC approach
which includes the bridge diagrams. We note that there are
qualitative differences at small distances and in particular the
on-top value g�0�. It is not clear at this point whether these

differences are because of the neglect of bridge functions in
our implementation of the FHNC calculation or not. QMC
simulations for Q2D EG would help establish the correct
behavior of g�r� for finite thickness samples.

We next display the local-field factors G+�q� and G−�q�
calculated within the present approach in comparison to
those constructed by Davoudi et al.45 using the QMC data
and known sum-rules. Our local-field factors typically start
at zero in the long-wavelength limit and go to a constant for
large values of q as shown in Fig. 2. The main qualitative
difference between our G+�q� and G−�q� and the Davoudi et

FIG. 1. Pair-correlation function g�r� for rs=3 �lower curves�
and rs=6 �upper curves have been shifted upwards by 0.4�. Sym-
bols are QMC results of Gori-Giorgi et al. �Ref. 44� for a strictly 2D
electron gas, dashed and solid lines are those calculated within the
present approach for 2D and Q2D EG, respectively.

FIG. 2. Top: The local-field factors G+�q� as a function of q /kF

for rs=3 and rs=6. Note that G+�q→
� tends to a larger constant
value with increasing rs. Bottom: The local-field factors G−�q� as a
function of q /kF for rs=3 and rs=6. In both figures, dashed lines
are analytical expression of QMC results of Davoudi et al. �Ref. 45�
for a strictly 2D electron gas, dotted and solid lines are those cal-
culated within the present approach for 2D and Q2D EG, respec-
tively. Note that G−�q→
� tends to a smaller constant value with
increasing rs.
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al.45 construction is in the large q behavior. In particular, a
peak structure both in G+�q� and G−�q� occurring around q
�3kF and q�2kF, respectively, is quite well reproduced.
Our local-field factors satisfy the fluctuation-dissipation
theorem but not the compressibility sum-rule, whereas those
of Davoudi et al.45 satisfy the compressibility sum-rule but
not the fluctuation dissipation theorem. In fact, it is known
that frequency dependent �dynamical� local-field factors are
needed to fulfill both requirements.

We use thus obtained local-field factors to calculate the
effective mass, modified Landé g*-factor, and the spin-
susceptibility of a Q2D EG. Comparison of the local-field
factors for 2D and Q2D systems in the previous figures re-
veals the fact that there are quantitative differences due to the
finite thickness effect.

In Fig. 3 we show our numerical results of the QP effec-
tive mass both in OSA and Dyson approximations. The QP
effective mass enhancement is substantially smaller in the
Dyson equation calculation than in the OSA, the reason be-
ing that a large cancellation occurs between the numerator
and the denominator in Eq. �13�. To clarify the effect of
charge- and spin-density fluctuations we have also included
the RPA results which do not take the spin fluctuations into
account. Comparing the results of Fig. 3 with the experimen-
tal measurements of Tan et al.12 we can draw the following
conclusions: �i� The RPA and present results are rather simi-
lar in the weak coupling limit �rs�1�, and �ii� theoretical
calculations in the strong coupling region are not so close to
experimental data. There is an essential point which we
should stress here that experimental data were collected at
weak magnetic fields and mostly in high Landau levels, how-
ever, our numerical calculations have been performed in the
absence of a magnetic field.

In Fig. 4 we show the finite thickness effect of Q2D EG
compared to a 2D EG. As it is clear from the figure the QP
effective mass in both OSA and Dyson calculations, the ef-

fect of finite thickness of the quantum well reduces the QP
effective mass from the strictly 2D results. The reason for
this is understandable because the strength of bare quasi-2D
potential is reduced by the form factor in Q2D EG. For com-
parison we have also included in this figure the variational
QMC results of Kwon et al.46 for a 2D EG. Our correspond-
ing calculations �for a 2D EG� within the Dyson approxima-
tion are not in agreement with QMC results. However, the
reader should bear in mind that the effective mass is not a
ground-state property and thus its evaluation by the QMC
technique is quite delicate, as it involves the construction of
excited states.

It has been noted in the literature19,20 that there is a diver-
gence in the QP effective mass near rs�5 in 2D EG within
the OSA and this divergence occurs at rs�15.5 when the
self-energy is evaluated in the RPA/OSA. We find similar
divergent behavior in m* for Q2D when OSA is used. The
unphysical nature of this divergence has been discussed in
detail in Ref. 22. Briefly, Eq. �15� is a valid approximation to
the effective mass in the weak coupling limit, as can be seen
by expanding Eq. �13� for small values of �ret

R : however, its
application becomes problematic at large values of rs. In par-
ticular, we see that because −�� Re �ret

R �kF ,0� increases
monotonically with increasing rs, there must necessarily be a
critical value of rs for which the denominator of Eq. �15�
vanishes and mOSA

* diverges. In our view, however, this must
be considered an artifact of Eq. �15�. Its unphysical character
is revealed by the fact that the divergence is driven by a
negative but finite value of �� Re �ret

R �kF ,0�, whereas we
know, from the general analysis, that a genuine divergence
would have to be driven either by an infinite �� Re �ret

R �kF ,0�
or by a negative �k Re �ret

R �kF ,0� becoming equal to
−�2kF /m. We conclude that there is no evidence, within the
present theory, for a divergence of the effective mass.

We have computed the QP excitation energy using Eq.
�10� and present our results in Fig. 5. In this figure we show

FIG. 3. Many-body effective mass as a function of rs for
0�rs�8 for a quasi-2D EG confined in a GaAs/AlGaAs triangular
quantum well of the type used in Ref. 12.

FIG. 4. Many-body effective mass as a function of rs for
0�rs�8 for quasi-2D EG in comparison to 2D EG. Symbols are
QMC results of Kwon et al. �Ref. 46� for a strictly 2D electron gas.
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the real part of retarded self-energy plus �k evaluated at the
single-particle frequency ��k�=�k /� at rs=5. Note the pres-
ence of a strong dip at a particular value of k �kc, for in-
stance� which depends on rs, finite size effect, and on the
functional form of the charge-charge local-field factor. This
is the plasmon dip, which is also present in three
dimensions47 and originates from the fact that at each rs there
is a sufficiently high value of k for the decay of an electron-
hole pair into a plasmon with conservation of momentum
and energy. Another important issue here is the flatness of
the real part of retarded self-energy for a 2D EG at k=kF.
This structure implies a divergent behavior in m*�k� at
k=kF. It is interesting to note in Fig. 5 that when finite thick-

ness effects are included the flatness in the real part of self-
energy at k=kF is lifted.

To gain further insight on the density dependence of the
effective mass we have also calculated the on-shell effective
mass as a function of particle momentum k using Eq. �11�
evaluated at ��k�=�k /� at rs=5. The results are shown in
Fig. 6. The m*�k� is essentially very weakly momentum de-
pendent for k�kF for a Q2D EG. There is a substantial can-
cellation between the residue and the exchange plus line self-
energy contribution in this regime for these cases which
make the real part of retarded self-energy approximately lin-
ear with respect to k. As we mentioned above, the presence
of a divergence in the effective mass at a value of kc which
depends on rs, finite size effect, and on the functional form of
the charge-charge local field factor is due to the plasmon dip.
However, in the 2D EG case there is a peak at k=kF which is
below the plasmon threshold as also noted by Ng and
Singwi.47 Similar calculations within the RPA have recently
been reported by Zhang et al.21 where they have studied in
detail the divergence in m*�k�. We find that such a divergent
peaked structure disappears when finite thickness effects are
included.

In Fig. 7 we show our numerical calculations for the
renormalization constant Z as a function of rs. The effects of
charge- and spin-fluctuations make the Z values bigger than
the results when these effects are not included. Furthermore,
the finite size quantum well also makes the Z values bigger
than the results of 2D EG as well. That the renormalization
constant displays a smooth behavior as a function of rs may
be taken as an indication of the Fermi liquid picture being
preserved for this density regime.

Figure 8 depicts our results for the ratio g* /g as a function
of rs for 0�rs�6. g* /g is calculated from Eq. �16� and
embodies the charge and spin fluctuation effects through G+
and G−. We included the value of experimental �*m /�0m*

which is extracted from the �* /�0 empirical formula given
by Tan et al.11 divided by the experimental data of m* /m of

FIG. 5. The real part of retarded self-energy plus �k evaluated at
�=�k /� as a function of k /kF for rs=5.

FIG. 6. Many-body on-shell effective mass as a function of k /kF

at rs=5 for Q2D EG with the combined effect of charge and spin
fluctuations in comparison to 2D EG.

FIG. 7. Renormalization constant Z as a function of rs for
0�rs�8.
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Tan et al.12 We observe that there is an enhancement in g*

beyond rs�5 within the present method using either OSA or
the Dyson approaches compared to the experimental data
and the RPA calculation. In particular, it is surprising that
RPA yields a reasonable agreement with experiment in a re-
gion of rs values where it is not expected to be very reliable.

To understand the enhancement in g*, we show in Fig. 9
the behavior of the two terms in the denominator of Eq. �16�
as functions of rs. This figure clearly illustrates how a diver-
gence can arise in g* both in OSA and Dyson approxima-
tions. For instance, within the OSA the denominator in Eq.

�16� has a zero around rs�7 and rs�8 within the Dyson
approximation.

In Fig. 10 we show the spin susceptibility as a function of
rs compared to RPA, recent experimental data of Zhu et al.,11

and quantum Monte Carlo calculation.26 As it is clear from
this figure �* /� starts at unity when rs tends to zero and
increases with increasing rs values. Our numerical calcula-
tions within both OSA and Dyson approximations are in
good agreement with the experimental measurements in the
weak and intermediate coupling limits. To see more clearly
the effect of finite thickness of a quantum well, we have
shown the spin susceptibility both in Q2D EG and 2D EG in

FIG. 8. Plot of the ratio g* /g as a function of rs for 0�rs�6.
The experimental data �*m /�0m* is from the �* /�0 of empirical
formula given by Tan et al. �Ref. 11� divided by the m* /m of Tan et
al. experimental data �Ref. 12�.

FIG. 9. Illustrating the divergence of the modified Landé
g*-factor within the OSA and Dyson approximations. The two
curves starting from unity at rs=0 refer to the quantity 1+g2 and the
other two curves to g1.

FIG. 10. Many-body spin susceptibility as a function of rs for
0�rs�10 for a Q2D EG confined in a GaAs/AlGaAs triangular
quantum well of the type used in Ref. 11 compared with quantum
Monte Carlo results �Ref. 26�.

FIG. 11. Many-body spin susceptibility as a function of rs for
0�rs�10 for both Q2D EG and 2D EG which are compared with
quantum Monte Carlo results �Refs. 26 and 15�.
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comparison to the QMC data of Refs. 26 and 15 in Fig. 11.
Our numerical calculations are in better agreement with the
QMC compared to the 2D EG case.

The above results for the spin susceptibility basically re-
flect the present status of the perturbation theory based cal-
culations despite the fact that a lot of effort has been ex-
panded to improve the quasiparticle interactions. The poor
agreement with experimental data beyond rs�4 appears to
be associated with the shortcomings of the formalism. Our
calculations indicate that finite thickness effects alone cannot
account for the discrepancy. It would be important to im-
prove upon this outstanding theoretical problem. The recent
QMC calculation by De Palo et al.26 which represents the
experiments quite well, on the other hand, is based on the
accurate evaluation of the ground-state energy and therefore
is of a different nature than our approach. It is of theoretical
interest to bring the level of agreement between different
approaches closer.

V. SUMMARY

We have presented a study of the effect of many-body
charge- and spin-fluctuations in a quasi-two-dimensional
electron liquid using the Fermi hypernetted chain approach
to build the local-field factors incorporating the finite thick-
ness of the quantum well. In particular, we used the sample
parameters of the structure used in the experiments of Zhu et
al.11 and Tan et al.12 We have carried out extensive calcula-
tions of the retarded quasiparticle self-energy which use the
finite thickness dependent local-field factors as input. We

have presented our results of the quasiparticle effective mass,
many-body renormalization constant, modified Landé
g*-factor, and spin susceptibility in a GaAs/AlGaAs triangu-
lar quantum well over a wide range of the coupling strengths.
The comparison with the experimental data of Refs. 12 and
11 shows that the simultaneous inclusion of charge- and
spin-density fluctuations beyond the random phase approxi-
mation and essentially including the finite size quantum well
effect is important to obtain reasonable agreement for rs
�4 between the experimental and theoretical quasiparticle
transport properties. For larger values of rs the agreement
with experiments is rather poor due to the approximate na-
ture of the perturbation theory, and it remains a challenge to
improve the quality of quasiparticle properties. There are
several aspects by which the theoretical calculations may be
improved quantitatively for a better agreement with experi-
mental measurements. �1� Experimental data for the effective
mass were collected in small magnetic fields, hence one
needs to generalize our theory to take into account a mag-
netic field. �2� It is clear that the FHNC approximation works
well for small and intermediate coupling strengths in 2D
EG43 and one needs to go beyond the simple FHNC approxi-
mation by incorporating the bridge functions and triplet cor-
relation functions.48
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