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The cross over from coherent to incoherent exciton transport in disordered polymer films is studied by
computationally solving a modified form of the Redfield equation for the exciton density matrix. This theory
models quantum-mechanical �ballistic� and incoherent �diffusive� transport as limiting cases. It also reproduces
Förster transport for certain parameter regimes. Using model parameters appropriate to polymer thin films it is
shown that short-time quantum-mechanical coherence increases the exciton diffusion length. It also causes
rapid initial energy relaxation and larger linewidths in agreement with experiment. The route to equilibrium is,
however, more questionable, as the equilibrium populations of the model do not satisfy the Boltzmann distri-
butions over the site energies. The Redfield equation for the dimer is solved exactly to provide insight into the
numerical results.
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I. INTRODUCTION

Energy transport via exciton migration in disordered or-
ganic semiconducting solids has been extensively investi-
gated by theoretical and computational modeling.1–5 It is
generally assumed that the dephasing rates in these systems
are large compared to the exciton transfer rates, so that the
quantum-mechanical phase memory of the exciton is rapidly
lost, rendering the exciton motion incoherent. The effective
medium approximation was developed by Movaghar and
co-workers1,3 in the incoherent limit to investigate the role of
spatial and energetic disorder on charge and energy transport
properties. This mean-field theory agrees remarkably well
with Monte Carlo simulations at high enough temperatures,
predicting a roughly −ln�t� time dependence for the energy
relaxation. At low temperatures, however, mean-field theory
overestimates the relaxation pathways4 and thus fails to pre-
dict the “freezing-in” of the energy relaxation observed both
experimentally and in Monte Carlo simulations. For a Gauss-
ian distribution of energetic disorder the pseudoequilibrium
diffusion coefficient D�T� is found to behave as

D�T� = D0exp�− �T0/T�2� �1�

at high temperatures �where T0 is proportional to the width of
the Gaussian distribution�, while at low temperatures it is
exponentially activated.1

Conversely, it is generally assumed that dephasing rates in
biological light-harvesting complexes are generally small
enough that the exciton motion remains coherent for times
long enough for the exciton to successfully reach the reaction
center before it can radiatively recombine. Indeed, in light-
harvesting complexes the ballistic nature of exciton transport
coupled to an energy landscape that “funnels” the exciton to
the reaction center leads to particularly efficient energy
transport.6,7 In a disordered energy landscape with suffi-
ciently large energetic disorder, on the other hand, localiza-
tion occurs in the coherent regime.8

Dephasing rates in typical organic compounds are signifi-
cantly enhanced by intramolecular and intermolecular disor-
der, which scatters the exciton wave function.9 Thus, typical
dephasing times are roughly 1 ps in an ordered conjugated

polymer chain,10 compared to roughly 100 fs in a disordered
system.11 Nonetheless, the advent of ultrafast spectroscopy
allows relaxation phenomena occurring on sub-100-fs time
scales to be observed, implying that theoretical modeling of
exciton transport should also take into account quantum co-
herence effects on these time scales. Indeed, more recent
Monte Carlo simulations of exciton transport in the incoher-
ent limit fail to predict the observed very fast relaxation pro-
cesses that lead to a rapid reduction of the average energy
and a broadening of the spectral lines.5 Although this rapid
energy reduction was attributed to vibrational relaxation,5 as
will be demonstrated in this paper, another possible mecha-
nism is coherent energy transport. Rapid energy transfer was
also reported by Hill et al.12 The “anomalous” redshifted
emission also emphasizes the role of quantum coherence on
exciton dynamics, as this has been attributed to the recombi-
nation of an exciton delocalized over a pair of polymer
chains.5

As for light-harvesting complexes, the successful opera-
tion of a polymer photovoltaic device requires that a photo-
excited exciton migrate to a polymer heterojunction and then
disassociate before it can recombine. An understanding of
the role of quantum coherence and energetic disorder on ex-
citon transport is therefore essential if realistic simulations of
device properties are to be performed.

This paper presents computational studies of the cross-
over from coherent to incoherent exciton transport. The
model that we adopt assumes a localized basis whereby an
exciton initially created on a chromophore migrates to neigh-
boring chromophores. This model retains the properties of
fully coherent and fully incoherent transport as limiting
cases. In particular, for short times the quantum-mechanical
processes lead to a coherent wave packet that is delocalized
over more than one chromophore. At long times dephasing
processes destroy phase coherence and the motion becomes
“classical.” Förster-like dipole-dipole-induced exciton trans-
port is described by a limiting case of this model. We show
that short-time coherent motion leads to increased exciton
diffusion lengths and to initial rapid energy relaxation and
increased line widths.

The plan of this paper is as follows. The next section
outlines the model, while Sec. III describes the numerical
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techniques to solve it. Sec. IV describes and discusses our
results, and we conclude in Sec. V.

II. THE MODEL

Exciton transfer from chromophore m to chromophore n,
mediated by the dipole-dipole interaction, is parametrized by
the energy transfer integral Jmn� . Assuming that each chro-
mophore exists either in its ground state or a single excited
state and that the excitation energy of the mth chromophore
is �m, the Hamiltonian that describes the coherent exciton
dynamics in the absence of exciton interactions is,

H = �
m

�m�m��m� + �
mn

�Jmn� �m��n� + Jnm� �n��m�� . �2�

The basis state �m� represents an exciton localized on the mth
chromophore. In general, exciton interactions, particularly
with defects and the heat bath via the exchange of phonons,
will cause a loss of phase coherence. This behavior is con-
veniently modeled by an equation of motion for the reduced
density operator �̂, defined by

�̂ = Tr	Ŵ�t�
 , �3�

where Ŵ�t� is the full density operator and the trace is over
all the degrees of freedom of the environment.

In a localized exciton basis the matrix elements of the
reduced density operator are �mn= �m � �̂ �n�. An equation of
motion for these matrix elements may be formally derived by
performing the trace in Eq. �3�.13 In this paper, however, we
assume a semiphenomenological approach and adopt a
Redfield-like equation that describes coherent and incoherent
processes as limiting cases and in general models the cross-
over from short-time coherent behavior to long-time incoher-
ent behavior. This model is defined as follows by decompos-
ing the equation of motion for the matrix elements into its
constituent parts:

��mn�t�
�t

= L1�mn�t� + L2�mn�t� + L3�mn�t� + L4�mn�t� , �4�

where

L1�mn = − i�H,��mn = − i�mn�mn −
i

�
�

�

�Jm���n − J�n�m�� ,

�5�

L2�mn = − �mn�
�

�km��mm − k�m���� , �6�

L3�mn = − 2�̃mn�1 − �mn��mn, �7�

and

L4�mn = − �mn�mn/�m. �8�

In these equations we have defined Jmn=Jmn� /�, �mn

= ��m−�n� /� 2�̃mn=�m+�n+2�0, and �m= 1
2�m→�kml.

L1� represents the coherent, ballistic motion of the exci-
ton and describes the exciton motion in accordance with the
time-dependent Schrödinger equation

i �
d�	�t��

dt
= H�	�t�� , �9�

where H is given by Eq. �2�.
L2� represents the incoherent, diffusive motion of the ex-

citon arising from population transfer from chromophore to
chromophore. Formally, this is associated with vibrational-
induced exciton transfer via the spatial modulation of the
dipole-dipole coupling.13 With this term alone Eq. �4� is
equivalent to the Pauli master equation

�Pm�t�
�t

= − �
�

�km�Pm − k�mP�� , �10�

where Pm��mm. Energy relaxation occurs when the rate for
energy transfer to a higher-energy chromophore is smaller
than the rate for energy transfer to a lower-energy chro-
mophore. It is customary to assume that the rates satisfy

km�

k�m
= exp�− ���m/kBT� , �11�

which guarantees that the equilibrium populations satisfy the
Boltzmann distribution for Eq. �10�. As will be shown later,
however, Eq. �11� does not guarantee that the equilibrium
populations of the Redfield equation �Eq. �4�� satisfy the
Boltzmann distribution.

L3� represents the coherent �or transverse� dephasing of
the off-diagonal elements of the density matrix. In the Bloch
model the transverse dephasing time T2= �2�̃�−1.

Finally, L4� represents the population decay via exciton
recombination mechanisms. If the dominant decay is via ra-
diative recombination, then

�m = �0� �̄

�m

3

, �12�

where �̄ is the average chromophore energy.
Equation �4� has been extensively studied for translation-

ally invariant systems �see Refs. 14 and 15 or Ref. 6, for
example�. Exact results for the mean-square displacement
�r2� have been obtained by Reineker14 for a d-dimensional
cubic hyperlattice. For an exciton created at the origin at
time t=0,

�r2�t�� = a2d�2�k +
J2

�̃

t +

J2

�̃2 �exp�− 2�̃t� − 1�� , �13�

where a is the lattice parameter. For long times �t� �̃−1� this
expression reproduces the random walk result

�r2� = 2a2d�k +
J2

�̃

t + const, �14�

with an additional Förster contribution to the diffusion
�namely, the J2 / �̃ term� arising from the dipole-dipole cou-
pling. This result reflects the fact that Eq. �4� approximates to
the diffusion equation in the long-time limit.14 Thus, in this
model in the long-time limit the dipole-dipole interaction
contributes to incoherent motion in two ways. First, explic-
itly from L2�mn �where k formally is proportional to the spa-
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tial derivative of Jmn Ref. 13� and, second, implicitly from
the Förster mechanism.

For short times �t→0�, the expected ballistic result is
modified by an anomalous linear term resulting from the
assumptions in the derivation of Eq. �13� �Ref. 14�:

�r2� = 2a2d�kt + J2t2� . �15�

It is immediately apparent from Eq. �13� that for short times
�but for t
k /J2� the exciton transport is dominated by co-
herent, ballistic processes, and therefore the exciton travels
much farther than it would if only incoherent, diffusive pro-
cesses are considered.

Finally, the fully quantum-mechanical behavior of Eq. �9�
is also reproduced from Eq. �13� by setting k= �̃=0,

�r2� = 2a2dJ2t2. �16�

Appendix A describes the solution of Eq. �4� for the spe-
cial case of a dimer. For equal site energies this solution
illustrates the decay of coherence and the Förster limit when
��J, while for unequal site energies it illustrates the persis-
tence of coherence and that the equilibrium populations are
not determined by the Boltzmann distribution over the site
energies when the rates satisfy Eq. �11�. To our knowledge
no analytical results exist for the transport properties associ-
ated with Eq. �4� in a general disordered energy landscape.
The numerical techniques to solve this model are therefore
described in the next section.

III. METHODOLOGY

Equation �4� may be expressed as the set of M simulta-
neous equations

dyi�t�
dt

= �
j

Aijyj�t� , �17�

where M =Nsites
2 and Nsites is the number of sites in the lattice,

yi�t���mn�t�, and A is the coupling matrix. The formal so-
lution of Eq. �17� is,

yi�t� = �
jk

Sijexp�� jt�Sjk
−1yk�0� . �18�

Here, S is the matrix whose columns are the eigenvectors of
A, 	�
 are the eigenvalues of A, and 	y�0�
 are the initial
conditions. Assuming that the mth chromophore is excited at
t=0, we have

yi�t� = �
j

Sijexp�� jt�Sjm
−1. �19�

The evaluation of Eq. �19� requires a diagonalization of
the M �M sparse, complex, and non-hermitian transforma-
tion matrix, A. For most problems of interest this matrix is
far too large to numerically diagonalize completely. How-
ever, the real parts of the eigenvalues of A are the rates for
the decay of the eigenmodes. Consequently, for times greater
than an arbitrary cutoff, �, only eigenvalues whose real parts
satisfy Re ��i � 
�−1 need to be computed. If only this long-
time behavior is required, it is only necessary to diagonalize

A for a small subset of the entire spectrum using sparse-
matrix diagonalization techniques.21 This approach is further
described in Appendix B. The long-time behavior can then
be matched to the short-time behavior obtained by standard
numerical integration techniques, as described below.

In practice, the equation of motion for the density matrix,
Eq. �4�, may be solved more efficiently for large systems by
standard numerical time-discretization techniques. To ensure
both stability and accuracy the Crank-Nicolson scheme—an
average of implicit and explicit forward-time-centered-space
discretization methods—is employed.16,17 In order to adapt
the Crank-Nicolson scheme for Eq. �4� it is necessary to
adopt the operator splitting method18 by decomposing the
spatial differential operator on the right-hand side of Eq. �4�
into a sum of zero or one-dimensional operators.

Expectation values of operators corresponding to dynami-
cal variables are found from the density matrix in the usual
manner via

�Ô�t�� = �
mn

�mn�t�Onm. �20�

IV. RESULTS AND DISCUSSION

For an Nsite-site lattice the number of matrix elements �or
components� of Eq. �4� is Nsite

2 , rendering this a computation-
ally very expensive problem. To obtain numerical results
from time scales of 10−15–10−9 s it has therefore been neces-
sary to restrict the size and dimensionality of the lattice. In
this paper we describe results for two-dimensional square
lattices of up to 41�41 sites.

Our parametrization of the model follows closely that of
Meskers et al.5 We take nearest-neighbor interactions on a
square lattice, with k=0.000 88 eV ���5 ps�−1�, �0=300 ps,
and �0=0.0207 eV ���200 fs�−1�, while J �which models the
strength of the quantum coherence� is an independent param-
eter, varying from 0.02 eV to 0.004 14 eV ���1 ps�−1�.19

The value of J=0.004 14 eV corresponds to a Förster trans-
fer rate of J2 /�0=0.000 88 eV, so in the limit that k=0 and
long times the model maps directly onto the Mesker param-
etrization. The energetic disorder is modeled by a Gaussian
distribution function20 of mean energy �̄=3.0 eV and �
=0.07 eV. We perform averages over ensembles of five real-
izations of the disorder. The system is initially excited at the
origin at t=0 with an energy of 3.1 eV.

A. Root-mean-square distance

We first investigate the role of quantum coherence on the
root-mean-square distance, �r2�t��1/2 traveled by the exciton
at a time t. Figure 1 shows �r2�1/2 for various values of J. As
expected, larger values of J lead to greater distances traveled.
For a value of J=0.02 eV the exciton has reached the bound-
aries of the 41�41 square lattice within its mean lifetime
�0=300 ps. In contrast, in the classical limit �J=0� the exci-
ton has only traveled ca. 4 lattice units in this time.

We next discuss the role of energetic disorder on the root-
mean-square distance. As Eq. �1� indicates, in the incoherent
limit the scaled pseudoequilibrium constant D /D0 is a func-
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tion of disorder �and temperature� only. In contrast, for
purely coherent motion diffusion is related to both the exci-
ton bandwidth and the scale of the disorder, and indeed lo-
calization occurs for sufficiently large disorder.8 Equation
�13� indicates that �r2�1/2 /J is a function of � and k /J2�k�.
Thus, in the absence of disorder plots of �r2�1/2 /J versus time
for fixed values of � and k� will coincide for all values of J.
Figure 2 shows that, as expected, disorder reduces the value
of �r2�1/2. Rather unexpectedly the scaled root-mean-square
distance increases with decreasing J. This is an artifact, how-
ever, of the fact that disorder is more effective at hindering
transport when quasiequilibrium is reached, which takes
longer to achieve for smaller values of J. A full analysis of

the scaling of diffusion with disorder requires further more
extensive numerical calculations and analytical studies.

B. Energy relaxation

The expectation value of the energy as a function of time

is obtained via Eq. �20� with Ô� Ĥ, and Ĥ given by Eq. �2�.
As shown in Fig. 3, the initial rate of energy relaxation in-
creases as J increases. By 10−12 s the energy has relaxed by
0.1 eV when J=0.02 eV and by 0.05 eV in the classical limit
�J=0�. This result can be understood by the observation that
in the coherent regime the exciton initially forms a wave
packet that travels ballistically and hence rapidly samples a
wide ensemble of sites.

Notice, however, that the equilibrium value of �E� in-
creases with increasing J, and for nonzero J it obviously
does not satisfy the canonical ensemble value given by the
classical �Boltzmann� distribution over the site energies 	�m
.
This result is a consequence of the fact that for this model
with a disordered energy landscape the equilibrium values of
the coherences �i.e., the off-diagonal density matrix ele-
ments� are not identically zero. Thus, because of quantum-
mechanical delocalization, the probability for occupying a
high-energy site is higher than that predicted by the Boltz-
mann distribution. This increase in the potential energy
caused by the delocalization onto higher-energy sites is not
entirely compensated by the kinetic energy reduction arising
from the quantum-mechanical delocalization. A full treat-
ment of a dimer with unequal energies is given in Appendix
A to further illustrate this point.

Figure 4 shows the linewidth ��E�= �E2− �E�2�1/2 for vari-
ous values of J. As expected from the previous discussion
concerning the initial faster delocalization of the exciton in
the quantum-mechanical limit, the linewidth increases more
rapidly for larger values of J. The equilibrium line widths are
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also larger for larger values of J, because the measurement of
energy is with respect to the Hamiltonian, Eq. �2�, whereas
the system is not in an eigenstate of that Hamiltonian.

V. CONCLUSIONS

The successful operation of a polymer photovoltaic de-
vice requires that a photoexcited exciton travel to a polymer
heterojunction and then disassociate before it can recombine.
However, exciton transport in molecular systems is strongly
dependent on molecular order, as this both determines the
exciton dephasing times and the energy landscape through
which the exciton travels.

This paper describes numerical solutions of a modified
Redfield equation for the exciton reduced density matrix in
order to study the role of quantum-mechanical coherence and
energetic disorder both on the exciton diffusion length and its
energetic relaxation. Using model parameters appropriate to
polymer thin films, we showed that increased quantum co-
herence �achieved by increasing the exciton bandwidth�
leads to increased exciton diffusion lengths. It also leads to
initially more rapid energy relaxation and to wider line-
widths, in qualitative agreement with experiment.5 Quite
generally, increased disorder implies shorter coherence times
and energetic trapping, thereby strongly inhibiting the exci-
tons ability to migrate successfully to a polymer heterojunc-
tion.

Although the model is appropriate for the short-time
transport and energy relaxation processes, its applicability
for describing the long-time route to equilibrium is more
questionable. In particular, we showed that the particular as-
sumption of Eq. �11� for the rates for population transfer do
not in equilibrium reproduce the Boltzmann distribution over
the site energies of Eq. �2�. �This result was proved for the
special case of the dimer.� The cause of this discrepancy is
the choice of basis for the exciton transport. As described in
Ref. 13 taking as a basis the exciton eigenstates of Eq. �2�
would give equilibrium described by the Boltzmann distribu-

tion over these eigenstates. Unfortunately, however, this pre-
scription does not correspond to the physically intuitive pic-
ture of local exciton transfer from site to site �and
consequently does not reproduce Förster transfer as a limit-
ing case�.

Further work will include simulations over larger lattices
in three dimensions and the possible development of a mean-
field theory in order to understand the relations between dis-
order and quasiequilibrium diffusion.
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APPENDIX A: EXACT SOLUTION OF THE REDFIELD
EQUATION FOR THE DIMER

The exact solution of the Redfield equation of motion of
the density matrix for the dimer illustrates a number of im-
portant results. For equal site energies it illustrates the decay
of coherence and the Förster limit when ��J. For unequal
site energies it illustrates the persistence of coherence and
that the equilibrium populations are not determined by the
Boltzmann distribution over the site energies when the rates
satisfy expression, �11�.

The equation of motion of the matrix elements for the
dimer in the absence of population loss are

��11

�t
= − iJ��21 − �12� − k12�11 + k21�22, �A1�

��12

�t
= − i��12 − iJ��22 − �11� − 2�0�12, �A2�

��22

�t
= iJ��21 − �12� + k12�11 − k21�22, �A3�

and

��21

�t
= i��21 + iJ��22 − �11� − 2�0�12, �A4�

where �= ��1−�2� /� and we have set �̃��0. The initial con-
ditions are taken as �11�0�=1 and �22�0�=�12�0�=�21�0�=0.

When the site energies are equal k12=k21�k, �=0, and
the equations are easily solved by Laplace transforms to give

P1�t� � �11�t�

=
1

2
�1 + �cos��t� + ��0 − k

�

sin��t��

�exp�− �k + �0�t�� , �A5�

P2�t� � �22�t� = 1 − P1, �A6�

Re��12�t�� � Re��21�t�� = 0, �A7�

and
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FIG. 4. The mean standard deviation of the energy, ��E�, versus
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�solid curves�, J=0.01 eV �dotted curves�, J=0.00414 eV �short-
dashed curves�, and J=0 �long-dashed curves�.
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Im��12�t�� � − Im��21�t�� =
2J

�
sin��t�exp�− �k + �0�t� ,

�A8�

where

� = �4J2 − �k − �0�2�1/2. �A9�

Notice that the real components of the coherences are iden-
tically zero. Also, for underdamped systems the populations
decay to their classical values of 1 /2 and the imaginary com-
ponents of the coherences decay to zero on a time scale of
�k+�0�−1.

The Förster limit is derived for the case that k=0 and
�0�J. Then,

P1�t� →
1

2
�1 + exp�− 2k̃t�� + O�J/�0�2, �A10�

where k̃, the Förster rate, is k̃=J2 /�0 and P1 is a solution of

the Pauli master equation �10�, with k�m replaced by k̃.
When the site energies are unequal the transfer rates are

no longer symmetric and the resulting solutions are consid-
erably more complicated. Defining k12=k, k21=ke−�, and �
= ��1−�2� /kBT, we obtain

P1�t� =
1

2�
i

3

�
j,k�j�k�i�

3
ri�ri

2 + Ari + B� + C

ri�ri − rj��ri − rk�
exp�rit� −

C

r1r2r3
,

�A11�

P2�t� = 1 − P1�t� , �A12�

Im��12�t�� = −
1

4J
�

i

3

�
j,k�j�k�i�

3
ri�ri

2 + Ari + B� + C

�ri − rj��ri − rk�

�exp�rit� −
�

2J
P1 +

ke−�

2J
, �A13�

and

Re��12�t�� =
1

4J�
�

i

3

�
j,k�j�k�i�

3
�ri + ���ri�ri

2 + Ari + B� + C�
�ri − rj��ri − rk�

�exp�rit� −
2�0

�
Im��12� −

J

�
�1 − 2P1� �A14�

where,

r1 =
1

6
�− 2a +

24/3�a2 − 3b�
�1/3 + 22/3�1/3
 , �A15�
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FIG. 5. �11�t� �solid curve�, Re��12�t�� �dotted curve�, and
Im��12�t�� �dashed curve� versus time for the dimer with J=�0=k
=�1=kBT=1, and �2=0. Also shown is �11�t� �solid curve with
crosses� in the classical limit �J=0�.
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FIG. 6. �E�t�� �solid curves� and ��E�t�� �dashed curves� versus
time for the dimer with J=�0=k=�1=kBT=1, and �2=0. The curves
with crosses are the classical limit �J=0�. Notice that although the
energy relaxation is initially faster in the mixed regime, the equi-
librium energy exceeds the result of the classical limit. For equal
site energies ��E�t��= �J�.
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FIG. 7. Re��i� versus i for the 100 eigenvalues satisfying
Re ��i � �Re ��100�. Re��i� is offset from zero by the nonzero radia-
tive transition rate.
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r2 = r3
*

=
1

12
�− 4a +

24/3�1 + i�3��a2 − 3b�
�1/3 − 22/3�1 − i�3��1/3
 ,

�A16�

� = − 2a3 + 9ab − 27c

+ 3�3�− a2b2 + 4b3 + 4a3c − 18abc + 27dc2,

�A17�

a = 4�0 + � , �A18�

b = 4J2 + 4�0� + ���2, �A19�

c = 8J2�0 + ����2, �A20�

A = 4�0 + ke−�, �A21�

B = 4�0ke−� + 2J2 + ���2, �A22�

C = 4�0J2 + ke−����2, �A23�

� = i� − 2�0, �A24�

and

� = k�1 + e−�� . �A25�

�11�t�, Re��12�t��, and Im��12�t�� are plotted in Fig. 5 for
the parameter set J=�0=k=�1=kBT=1 and �2=0. For un-
equal site energies the equilibrium values of the classical
populations do not satisfy the Boltzmann distribution and the
coherences are not zero.

The expectation value of the energy of the dimer is

�E�t�� = �1�11�t� + �2�22�t� + 2J Re�12�t� , �A26�

and, as shown by Fig. 6, although the initial relaxation is
faster than in the classical limit the equilibrium value ex-
ceeds the classical value. Quantum-mechanical delocaliza-

tion onto the higher-energy site increases the average energy,
because P1 is larger than its Boltzmann value, thus raising
the potential energy. This increase in potential energy is par-
tially compensated by a reduction in the kinetic energy aris-
ing from the last term in Eq. �A26�. Figure 6 also shows the
effect of different site energies on ��E�t��.

APPENDIX B: SOLUTION OF THE EQUATION OF
MOTION OF THE DENSITY MATRIX BY LINEAR

ALGEBRA TECHNIQUES

As described in Sec. III, for times greater than � the dy-
namics of the density matrix is determined by eigenmodes of
A whose eigenvalues satisfy Re ��i � 
�−1. If only this long-
time behavior is required, it is only necessary to diagonalize
A for a small subset of the entire spectrum using sparse-
matrix diagonalization techniques.21 Figure 7 shows Re��i�
for a lattice of 25�25 sites for J=0.00414 eV. The first 100
eigenvalues satisfy Re ��i � 
9.53�10−4 eV, corresponding
to eigenmodes decaying over time scales of t
4.34
�10−12 s.

Since A is non-Hermitian, the inverse of S �where the
columns of S are the eigenvectors of A� is not equal to its
adjoint, and thus its inverse must be calculated explicitly.
However, if only N out of the total of M eigenvalues and
eigenfunctions have been computed S is a M �N matrix, and
the matrix equation,

S · S−1 = 1 �B1�

is overdetermined. Its solution is determined by

S−1 = V · �diag�1/�i�� · U†, �B2�

where V and U are determined by the singular-value decom-
position of S �Refs. 22 and 23�,

S = U · �diag��i�� · V†. �B3�

�Note that in practice, as Eq. �17� indicates, to compute 	��t�

only the mth column of S−1 is required.�

Figure 8 compares �r2�1/2 and �E� for 25�25 sites ob-
tained by the sparse matrix diagonalization method �using
the 100 highest eigenvalues shown in Fig. 7� and the Crank-
Nicolson method. As expected from the eigenvalue spec-
trum, the results agree for times t�10−11 s.
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FIG. 8. Comparison of �a�
�r2�1/2 and �b� �E� obtained by the
sparse-matrix diagonalization
method �solid curves� and the
Crank-Nicolson method �dotted
curves� for a 25�25 lattice with
J=0.004 14 eV.
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