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We show that 1 / f noise in the variable-range hopping regime is related to transitions of many-electrons
clusters �fluctuators� between two almost-degenerate states. Giant fluctuation times necessary for 1 / f noise are
provided by a slow rate of simultaneous tunneling of many localized electrons and by large activation barriers
for their consecutive rearrangements. The Hooge constant steeply grows with decreasing temperature because
it is easier to find a slow fluctuator at lower temperatures. Our conclusions qualitatively agree with the
low-temperature observations of 1 / f noise in p-type silicon and GaAs.
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I. INTRODUCTION

At low temperatures the variable-range-hopping conduc-
tivity of doped semiconductors with strongly localized elec-
trons obeys the Efros-Shklovskii �ES� law1–3

�ES = �0 exp�− �TES

T
�1/2� , �1�

where the temperature TES is defined by the electron-electron
interaction at the localization radius a of electronic states, �
denotes the conductivity of the system, and

TES =
Ce2

kB�a
. �2�

Here C�2.7, e is the electron charge, kB is the Boltzmann
constant, and � is the dielectric constant of the semiconduc-
tor. The conductivity behavior �Eq. �1�	 is used, for example,
in ion-implanted silicon �Si:P:B� bolometers working as de-
tectors for high-resolution astronomical x-ray spectros-
copy.4,5 Absorption of an x ray increases the temperature of
the semiconductor and this increase is detected by the change
in its conductivity. The performance of some bolometers is
limited by a 1/ f noise, which obeys the Hooge’s law6,7

���
2

�2 =
�H��,T�

�ND
, �3�

where ND is the total number of donors,

���
2 
 �

−�

+�

dtei�t����t����0�, ���t� 
 ��t� − ���t� ,

and �¯ denotes ensemble average. The dimensionless
Hooge factor �H�� ,T� measured for different doping levels
grows by six orders of magnitude with the decreasing tem-
perature following approximate power law4,5,8

�H � T−6. �4�

Reference 8 gives strong evidence that the noise is caused by
the electron localization. This work investigates the bulk

Si:P:B semiconductor in the range of dopant concentrations
on both sides of the metal-insulator transition. The increase
of the noise strength by several orders of magnitude, when
crossing the metal-insulator transition from metal-like
samples to insulating samples, was observed. The noise in-
tensity continues to increase with decreasing electron local-
ization radius a, which proves the primal significance of the
electron localization in the noise formation. A similar behav-
ior of the normalized 1/ f-noise power has been recently re-
ported in the low-density hole system of a GaAs quantum
well.9 Thus, these and other experiments10–13 show that 1 / f
noise is one of the manifestations of the complex correlated
electronic state �Coulomb glass� formed by localized elec-
trons coupled by the long-range Coulomb interaction.

The mechanism of 1/ f noise in hopping conductivity has
been investigated by several theoretical groups.14–17 It was
first suggested14 that the 1/ f noise in the nearest-neighbor-
hopping transport is associated with electronic traps, in a
way similar to McWorter’s idea of 1 / f noise in metal-oxide-
semiconductor field-effect transistors �MOSFETs�.18 Each
trap consists of an isolated donor within a spherical pore of
the large radius r. Such rare configurations form fluctuators,
which have two possible states �empty or occupied� switch-
ing back and forth with the very slow rate defined by the
tunneling rate of electron out or into the pore

	�r� = 	0 exp�− 2r/a� , �5�

where 	0�1012 s−1 is the hopping rate determined by the
electron-phonon interaction. When a fluctuator is occupied
the host electron cannot participate in the transport and thus
the transitions of fluctuators change the effective number of
“charge carriers” leading to a noise in a conductivity. The
exponential sensitivity of the tunneling rate to the size r of
the trap �Eq. �5�	 makes the statistics of trap blinking close to
the logarithmically uniform one leading to ���

2 �1/�.
The idea of a single-electron fluctuator has been extended

to the regime of the variable-range hopping in later
works.16,17 These theories require that each fluctuator char-
acterized by the slow relaxation rate 	 has no neighboring
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donors, which belong to the energy band around the Fermi
level of the width E	=kBT ln�	0 /	� in the sphere of the ra-
dius R	= �a /2�ln�	0 /	� �here and everywhere below we
choose the chemical potential as a reference point of energy�.
According to Ref. 17, the Hooge parameter is defined by the
probability of such a “pore” in four-dimensional energy-
coordinate space, which has the form

− ln �H��,T� � � T

TES
�3

ln6 	0

�
= � ln�	0/��

ln�	0/	ES��6

, �6�

where 	ES=	0e−�TES/ T�1/2
is the rate of typical hops contribut-

ing to Eq. �1�. At small � this Hooge parameter decreases
very fast with decreasing �. As a result, 1 / f noise is limited
to a relatively narrow frequency interval �TES/T�1/2


 ln�	0 /��
 �TES/T�3/5, where the dependence of �H��� is
still weaker than 1/�. Observation of 1 / f noise in a wider
range of frequencies ��	ES still remains a challenge for the
theory.

In this work we suggest the model of many-electron fluc-
tuators, which possess small relaxation rates 	 with much
larger probability than single-electron traps. A new fluctuator
is made of N occupied �neutral� and N empty �positively
charged� donor sites quasiordered into the quasicubic lattice
with the period R. They include only donors with energies
within a band with the width

UR 

e2

�R
, �7�

which are required to have somewhat diminished disorder
energies �see below�. We assume that the cluster �Fig. 1� has
two energy minima with an energy difference of the order of
kBT realized by two disordered chessboard configurations
�Fig. 1�. Optimizing the “lattice constant” R and the number
of electrons N, we show below that a 1 / f noise associated
with such clusters behaves as

− ln �H��,T� � � T

TES
�3/5

ln6/5 	0

	
= � ln�	0/��

ln�	0/	ES��6/5

. �8�

At small frequencies the absolute value of the exponent in
Eq. �8� is apparently much smaller than that for the single-
electron trap �Eq. �6�	. As a result, 1 / f noise exists in the
much broader range of frequencies,

�TES/T�1/2 � ln�	0/�� � �TES/T�3.

At low temperatures, where �TES/T�1/2�6 �see Eq. �26� and
the discussion afterwards for details	, this range is practically
unlimited.

Our approach is similar to the previous analysis of clus-
ters of many local two-level defects19–21 suggested to inter-
pret the universal behavior of amorphous solids. Long relax-
ation times have been achieved in Ref. 19 due to the
exponential increase in the relaxation time with the number
of defects belonging to a single cluster �note that the results
of Ref. 19 cannot be directly applied to our system because
they are obtained in the zero-temperature limit, i.e., ignoring
thermally activated cluster transitions�. The importance of
strong electron-electron correlations and the many-electron
nature of fluctuators determining 1/ f noise was anticipated
in Ref. 22.

The manuscript is organized as follows. In Sec. II we
introduce the model of interacting localized electrons in a
lightly doped semiconductor. In Sec. III we describe chess-
board clusters and their statistics with respect to energies and
relaxation rates. In Sec. IV we consider the noise in the
variable-range-hopping conduction, induced by chessboard
clusters. In Sec. V we report the generalization of our results
to two-dimensional �2D� systems and amorphous semicon-
ductors, where the variable-range-hopping conductivity may
obey the Mott law.

II. MODEL OF A LIGHTLY DOPED SEMICONDUCTOR

Let us consider an n-type lightly doped semiconductor
with the concentration nd of donors and the concentration
na
nd of acceptors. At low temperatures all acceptors are
charged negatively, na donors are positively charged, while
nd-na are occupied and neutral. The set of filling factors of
donors ni=0, 1 is determined by the energy minimum of the
Hamiltonian of the classical impurity band2

Ĥ = �
i
�ini +

1

2

e2

�
�
k�i

�1 − ni��1 − nk�
�ri − rk�

� , �9�

where i= �e2 /��� j�ri−r j�−1 is the random potential created
on the donor i by all acceptors �enumerated by j�. In the
ground state, energies of donor states are

�i = i −
e2

�
�
k�i

1 − nk

�ri − rk�
. �10�

It is known1,2 that the density of states g��� of such a
system has a double-peak structure with the soft Coulomb
gap

R

FIG. 1. A chessboard cluster of donors, responsible for a 1/ f
noise. The dark circles indicate occupied �neutral� donors, while the
open circles indicate empty donors. All donors are in the energy
band of the width 2e2 /�R around the chemical potential �E=0�.
Arrows show the direction of the electron transition between two
energy minima corresponding to two possible ways to occupy clus-
ter sublattices. The length R stands for the size of the cluster cell.
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g��� =
3

�

�2�3

e6 �11�

in the middle. At na�nd /2 the width of the Coulomb gap in
the density of states is comparable with the total width of the
peak of the density of donor states. It is the Coulomb gap
which leads to the ES law �Eq. �2�	. A characteristic length of
hops leading to Eq. �1� is RES= �a /2��TES/T�1/2 and a char-
acteristic width of the band of energies of states contributing
to Eq. �1� is EES= �TEST�1/2 �see Refs. 1–3�.

III. LONG-LIVING CHESSBOARD CLUSTERS

A. Chessboard cluster and its probability

Chessboard clusters �see Fig. 1� are formed by the rare
fluctuations in positions and energies of donors. We require
the following conditions to be satisfied for the cluster. First,
all occupied and empty donors i belonging to the cluster are
placed approximately near the sites Ri of a cubic lattice with
the period R. This requires

�ri − Ri� 
 �RR, �R � 1/2, �12�

where �R�1 is the parameter restricting the deviations of
electrons and holes belonging to the cluster from the cell
centers.

In addition, all donor sites i of the cluster interact with the
environment. This interaction includes the disorder energy i
produced by acceptors and the Coulomb interaction with
“external” empty donors, which do not belong to the cluster
because they either have energies larger than UR or spatially
are away from the cluster

�i = i −
e2

�
�

k
�
1 − nk

rik
, �13�

where �� indicates that the sum is taken over the “external”
donors only. For all donors of the cluster disorder energy �i
is required to be smaller than the characteristic energy UR
�Eq. �7�	 of the Coulomb interaction within the cluster

�i 
 �EUR, �E 
 1. �14�

This second requirement involves the energy-constraint pa-
rameter �E, which should be sufficiently small to keep the
two minimal-energy states chessboardlike �Fig. 1�.

First, we evaluate the probability ps for each chessboard
cell to have the donor located nearby its center with the
diminished disorder energy. This probability is given by the
product of the density of electronic states within the domain
of the allowed energy �0

�EURg�E�dE �see Eq. �14�	 and the
allowed volume 4��R

3R3 /3 �see Eq. �12�	. Then, using the
definition �Eq. �11�	 of the density of states within the Cou-
lomb gap we get

ps = 4�R
3�E

3/3. �15�

As discussed previously, �E
1 and �R
1/2 in order to
have some ordering of the structure. These two constraints
make the probability ps substantially smaller than 1. It is
convenient to express the probability ps in the exponential

form as ps=exp�−� /2�. The probability to satisfy constraints
�Eqs. �12� and �14�	 for all 2N sites is given by the product of
all 2N probabilities ps,

ptot = ps
2N � exp�− �N� . �16�

Thus the probability to form the chessboard cluster with two
energy minima separated by the large potential barrier de-
creases exponentially with the number of electrons within
the cluster. It is important that within the Coulomb gap the
parameter � is the number of order of unity.

To characterize 1/ f-conductivity noise induced by clus-
ters, one has to define the cluster unit-volume probability
density P�N ,� ,R� of a transition energy �, a cell size R,
and a number of donors N. By definition, the product
P�N ,� ,R�dN dRd� characterizes the number of clusters in
the unit volume with the cell size in the domain �R ,R+dR�,
energy in the range �� ,�+d��, and the number of donors in
the range �N ,N+dN�. The main dependence of the cluster
density on the number of donors N is given by the exponent
�Eq. �16�	. Next, we should define the preexponential factor.
We will see that since the probability rapidly decreases with
increasing N, the characteristic N is not very large and there-
fore, calculating the preexponential factor we can approxi-
mately ignore its sensitivity to N. We ignore the weak loga-
rithmic dependence of cluster density on the energy � due to
the dipole gap. Then, the probability density of clusters
P�� ,R ,N� does not depend on � and can be expressed in the
following way:

P�N,�,R� �
e−�N

R4UR
=

�e−�N

e2R3 . �17�

Indeed, the density distribution of the parameters N, �, and R
is given by the probability of finding a chessboard cluster
having N donors, ptot�e−�N, divided by the cluster’s volume,
NR3, and the typical energy bandwidth of these donors,
UR

�N. The probability density of clusters is then

P�N,�,R� �
�

�R

ptot

N3/2R3UR
.

Below, we will keep track of the cluster size N only in the
exponent because the power-law dependence on N in the
preexponential factor is much weaker than the main expo-
nential dependence. In this way we arrive at Eq. �17�. This
expression can be written starting just from the dimensional-
ity requirement. The function P�N ,� ,R� cannot depend on
other system parameters because of the universality of exci-
tations within the Coulomb gap.1,2

B. Transition rate

Transition between two states A and C of a chessboard
cluster �Fig. 2� can be made via a consecutive transition of
single electrons. In the beginning this leads to a monotonous
growth of energy until a proper saddle point is reached. Thus
the rate of a thermally activated transition between the two
states of fluctuator can be estimated using the minimum-
activation energy barrier EA separating two configurations.
For the “chessboard” structure in Fig. 2 a minimum potential
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barrier �saddle point� is defined by the energy of the
“domain-wall” formation. One has to move all electrons in
the one �leftmost� column of the cluster A �see Fig. 2� to the
next positions B to the right side. The activation energy of
that move reads EA�N2/3UR because the number of elec-
trons belonging to a domain wall is �N1/3�2=N2/3. Then, this
domain wall can move in the system without acquiring or
releasing a significant energy. When the domain wall reaches
the right side the transition is completed. The rate of this
process can be estimated using the standard Arrhenius law
with the activation energy EA;

	A = 	0e−N2/3UR/kBT. �18�

An alternative process of transition between energy
minima A and C �Fig. 2�, is simultaneous tunneling of all
electrons of the cluster. This transition of all N electrons
takes place in the Nth order of the perturbation theory in the
weak tunneling amplitude of an electron t�e−R/a, so it can be
approximately described by the exponential law

	tun � 	0e−2NR/a. �19�

The overall cluster-relaxation rate 	 can be approximately
expressed as the sum of the thermally activated and tunnel-
ing rates �Eqs. �18� and �19�	

	 = 	0�exp�− N2/3 UR

kBT
� + exp�− 2N

R

a
�� . �20�

C. Distribution of clusters over their relaxation rates

The distribution function of “chessboard” clusters over
their relaxation rates 	 �inverse relaxation times� can be cal-
culated using Eqs. �17� and �20�. To calculate this distribu-
tion function it is convenient to invert the function 	�N ,R�
given by Eq. �20� to obtain N�	 ,R�. The function N�	 ,R�
crosses over from Nac�	 ,R�= �kBT /UR�3/2 ln3/2�	0 /	� to
Ntun�	 ,R�= �a /2R�ln�	0 /	� at

Rc � a�TES

T
�3/5

ln−1/5 	0

	
,

Nc � �TES

T
�−3/5

ln6/5 	0

	
. �21�

These values correspond to the case when the thermal-
activation and tunneling-transition rates in Eq. �20� are equal

to each other. Indeed, at small R tunneling is more frequent
than a thermally activated motion. Then, according to Eq.
�20�, at a given 	 we have N�R−1. Since the cluster prob-
ability density P�N ,� ,R� decreases with N �Eq. �17�	, it
grows with R. This increase takes place until the crossover
point Rc, where the thermal activation becomes comparable
with the tunneling. A further increase of R will reduce the
cluster probability, because for thermally activated processes
the number of cluster sites grows as N�R3/2. Therefore, the
quantities Rc and Nc are the optimum parameters, which are
defined by the crossover between thermal activation and tun-
neling regimes

	/	0 = e−2NcRc/a = e−Nc
2/3e2/�RckBT. �22�

The cluster probability density f�	 ,�� can be found using
the previously defined probability density P�N ,� ,R� �Eq.
�17�	 as

f�	,�� = �
0

�

dR�
N=1

�

P�N,R,��

� ��	 − 	0�e−N2/3UR/kBT + e−2NR/a�	

�
1

	RES
3 kBTES

e−�Nc

=
1

	RES
3 kBTES

exp�− �� T

TES
�3/5

ln6/5 	0

	
� . �23�

The above equation is valid only if Nc�1, which means
	�	ES and R
RES. At 	�	ES we arrive at R=RES and
Nc=1, and clusters instead of slow modulating of ES hop-
ping conductivity become a part of the conducting network
of the ES variable-range hopping. As discussed previously,
we ignore the dependence of the preexponential factor on
N�Nc, which yields Rc�RES, where RES=a�TES/T�1/2 is ES
hopping length.

One can approximate Eq. �23� by the power law

f�	,�� �
1

	
� 	

	0
��

, �24�

with

� = −
d ln f

d ln 	
+ 1 =

6�

5
� T

TES
�3/5

ln1/5 	0

	
. �25�

Obviously, the statistics 1 /	 is applicable if the exponent
��1. According to Eq. �24�, this takes place at frequencies
	�	min, where

	min � 	0 exp�− �5/6��5�TES/T�3	 . �26�

In this region the exponential term in Eq. �23� depends on 	
only weakly, so the main dependence is defined by the 1/	
distribution. As we mentioned in the Introduction, 	min can-
not be distinguished clearly from zero at low temperature.
Our estimate of the unknown constant ��2.2 �see Sec. VI
and Fig. 3� based on the comparison of the theory and the
experiment leads to the approximate constraint �TES/T�1/2

�6 required to have the small deviations from 1/ f-noise
behavior �not to exceed 1/2 in accordance with Eq. �25�	 in

FIG. 2. �Color online� Thermally activated transition of the
“chessboard” cluster between two energy minima A and C along the
route A→B→C. The activation energy is proportional to the num-
ber of electrons N2/3 in the domain wall shown in panel �B� by
dashed lines.
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the range of frequences 	�1 Hz. Measurements of 1 / f noise
in hopping conductivity4,5 have been performed at tempera-
tures satisfying the above constraint.

Note that the realistic variable-range-hopping measure-
ments are done typically close to metal-insulator transition,
where nda3�1. In this case, the inequality 	�	min always
means that R�nd

−1/3 and UR does not exceed the width of the
Coulomb gap. However, if in the lightly doped limit nda3

�1, strictly speaking, the distribution Eq. �23� is applicable
within the Coulomb gap only, when R�nd

−1/3. It can be
shown that the case a
R
nd

−1/3, where UR exceeds the
width of the Coulomb gap, only a minor revision of our
theory is needed. Namely, the parameter � should be in-
creased by a logarithmically large factor.

IV. CONDUCTIVITY NOISE

Below we discuss how cluster transitions induce a 1/ f
noise of the electric current. The hopping conductivity �Eq.
�1�	 is provided by the critical network of resistances perco-
lation cluster.2 According to the Shklovskii–De Gennes
model of infinite percolation cluster,2 one can view this net-
work as the random lattice formed by one-dimensional links
of the approximate length RT�aTES/T. Each link is a chain
of �TES/T donor sites separated by the hopping length RES

�a�TES/T.
Following the ideas of Kozub,15 we consider the conduc-

tion noise induced by the cluster transitions affecting adja-
cent links. A link has the critical hop with the largest resis-
tance rh�e�TES/T, which is comparable with the resistance of
the whole chain. The noise is defined by the clusters located
in the vicinity of these critical sites. Assume that the critical
hop is separated from the nearest-neighbor cluster by the
distance R and this cluster makes slow transitions between its
two energy minima. The transition of the cluster changes its
characteristic dipole moment by the value ��eRN1/2

�eRES. The chessboard dipole potential leads to the energy
fluctuation of the critical hop �E�e2RES/R2. If this energy
exceeds the thermal energy T, or

R 
 Rint = a�TES/T�3/4, �27�

the resistance of the critical hop changes substantially, lead-
ing to the addition or removal of the whole link. The fluc-
tuation of the sample conductivity induced by a change of
one link can be expressed as

�� �
�ES

Nl
= �ES

RT
3

V
, �28�

where V is the system volume and the ratio Nl�V /RT
3 esti-

mates the total number of links.
Only clusters with the energy � comparable to the ther-

mal energy are able to contribute to the noise, while the
contribution of others is exponentially suppressed. Therefore,
the relevant clusters density for the noise at frequency � is
n��kBTf�� ,kBT�, where f�� ,kBT� is given by Eq. �23�. The
probability pl that the given link has the cluster located
nearby �Eq. �27�	 can be expressed through the cluster den-
sity as pl� f�� ,kBT�kBTRint

3 . Then the noise at the frequency
� is induced by N�� plNl clusters making random contribu-
tions. Using Eq. �28� one can express the noise intensity as

���
2

�ES
2 �

N�

Nl
2 =

pl

Nl
. �29�

Using the latter equation one arrives at the Hooge param-
eter

�H = nda3�TES

T
�11/4

exp�− �� T

TES
�3/5

ln6/5	0

	
� . �30�

The main exponential term of Eq. �30� apparently agrees
with Eq. �8�. According to this equation, at low temperature
the prefactor of �H is much larger than unity. This happens
because standard normalization of �H to the total number of
donors �or electrons� is not natural for the variable-range
hopping, where only a small fraction of all donors partici-
pates in transport.

It is the straightforward consequence of the cluster distri-
bution given by Eqs. �23� and �30� that for ES hopping, the
fluctuators, defined by the single electron pores17 have much
smaller density �see Eq. �6�	 and they can always be ne-
glected. Note that this is not the case for Mott variable-range
hopping as discussed in Sec. V.

In the derivations of Eqs. �23� and �30� we assumed that
EES=kB�TTES�1/2�e2nd

1/3 /�, RES= �a /2��TES/T�1/2�nd
−1/3,

and the variable-range hopping takes place. If these condi-
tions are violated and kBT�e2nd

2/3a /�, one deals with the
nearest-neighbor hopping conductivity, where the Coulomb
interaction plays a secondary role �see Ref. 2�. In this case
there is a range of not very small frequencies

1

nd
1/3a


 ln
	0

�



1

nd
1/3a

� kkBT

e2nd
2/3a

�1/3

,

where 1/ f noise is determined by single-electron pores.14 At
very small frequencies again the chessboard clusters take
over.

Returning to the variable-range hopping we can general-
ize our theory to a two-dimensional system. In this case the
density of states is proportional to ��� rather than to �2.3 In

FIG. 3. Comparison of the theory �solid line, Eq. �30�	 and the
experiment �solid line with circles, Eq. �34�	 for the case � /2�
=1 Hz and TES=11 K. We have used �=2.2 and nda3=0.0084 to
make the optimum data fit in the range of temperatures
�0.07–0.3 K� studied in the experiment.
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addition, the “domain-wall” energy is proportional to �N,
while the cluster volume is proportional to R2. Taking these
changes into account and following the previous derivation
we arrive at the expression

�H
�2d���,T� � exp�− �� T

TES
�2/3

ln4/3	0

�
� . �31�

We see that in 2D the 1/ f-noise amplitude �H is smaller than
in 3D. This happens because of the smaller activation energy
in 2D systems compared to 3D systems �see Sec. III B�.
Similarly to a 3D case, in 2D a deviation from 1/ f behavior
becomes large at very small frequencies. The criterion for
1 / f noise reads

	ES � � � �min � 	0 exp�− � 3

4�
�3�TES

T
�2� . �32�

Although the low-frequency cutoff �min exceeds that for a
3D system, it is still hardly distinguishable from zero at tem-
peratures T�TES/30.

Our theory cannot lead to an observable 1/ f noise in the
1D case because in this case the domain wall contains one
electron, its energy is small, and it is practically impossible
to construct a slow enough trap at a finite temperature.

V. MOTT VARIABLE-RANGE HOPPING

In this section we briefly discuss the case of an amor-
phous semiconductor, where the bare density of states is di-
minished by a strong compositional disorder of non-
Coulomb nature, so that the Coulomb gap is relatively
narrow and the variable-range-hopping conductivity obeys
the Mott law ln �M��TM/T�−1/�d+1�.23

For this purpose we depart from the original model �Eq.
�33�	 and consider the Efros lattice model24 characterized by
a Hamiltonian with a strong non-Coulomb disorder

Ĥ = �
i

ini +
1

2�
ij

e2

�rij
ninj . �33�

Here ni= ±1/2 stands for a hole and an electron, respec-
tively. The density of bare states i is defined as g0=n /2W,
where n is the concentration of lattice sites i and W is the
characteristic energy of disorder, i.e., random potentials i

are distributed uniformly within the domain �−W ,W�. We
assume that the dimensionless ratio A=W� /e2n1/d is much
larger than unity. In this case the Coulomb gap is much nar-
rower than the width of the density of states W.

The results of our theory are summarized in Table I. The
left half of this table characterizes the variable-range hopping
at different temperatures and dimensionalities d=2 and 3 for
both the classical impurity-band model and the Efros model.
At low temperatures the variable-range-hopping conductance
obeys the ES law �Eq. �1�	, while at higher temperatures it
obeys the Mott law.

The right half of Table I compares contributions from
chessboard clusters �H and one-electron pores �H

pore. As we
mentioned above, the pores are not important within the
range of validity of the ES law. However, they become com-
petitive in the case of the Mott law. Remarkably, in spite of
the fact the Coulomb interaction is irrelevant to the Mott
variable-range conductivity, the very-low-frequency 1/ f
noise is still determined by the chessboard clusters bound by
the Coulomb interaction. Naturally, single-electron pores
dominate at higher frequencies close to the frequency of
Mott hops. They also become more important with decreas-
ing dimensionality because in a low-dimensional system it is
easier to create a pore, but it is more difficult to create a slow
chessboard cluster. Therefore, the range of applicability of
pores is broader in the 2D case.

VI. COMPARISON OF THEORY WITH EXPERIMENT

Our analysis predicts the strong temperature increase of
the 1/ f noise at low temperatures due to the exponential
factor e−F��,T�. This expectation qualitatively agrees with the
experiments,4,5,8 where the Hooge parameter is approxi-
mately proportional to T−6.

As an example, let us discuss the results of experiments
on ion-implanted Si:P:B4,5 showing the ES temperature de-
pendence of the conductance. In this material the Hooge pa-
rameter �H has been measured as a function of temperature
for different levels of doping leading to different tempera-
tures TES varying in the wide range from 1.4 to 44 K. Ac-
cording to Ref. 4, the behavior of the Hooge parameter can
be described by the empirical law

�H = 0.034TES
2.453�T/0.153�−5.2−0.9 log10 TES. �34�

Here T and TES are measured in Kelvin. In particular, in the
material with TES�11 K the relative resistance fluctuations

TABLE I. Electronic density of states, parameters of the variable-range hopping in 2d and 3d systems, 1 / f-noise produced by chessboard
clusters, and single-pore electrons and their comparison.

d T g��� −ln � /�0 TM/ES −�1/��ln �H −ln �H
pore �H
�H

pore

2 T

TES

3

TM
2

2

�

��2

e4 �TES

T �1/2

TES�
e2

kB�a � T

TES
�2/3

ln4/3 	0

� � T

TES
�2

ln4 	0

�
n/a

2 TES
3

TM
2 
T g0 �TM

T �1/3

TM�
1

kBg0a2 � T

TES
�2/3

ln4/3 	0

�

T

TM
ln3 	0

�
ln

	0

�

 � TM

3

TTES
2 �1/5

3 T

TES

2

TM

3

�

�2�2

e4 �TES

T �1/2

TES�
e2

kB�a � T

TES
�3/5

ln6/5 	0

� � T

TES
�3

ln6 	0

�
n/a

3 TES
2

TM

T g0 �TM

T �1/4

TM�
1

kBg0a3 � T

TES
�3/5

ln6/5 	0

�

T

TM
ln4 	0

�
ln

	0

�

 � TM

5/2

TTES
3/2 �1/7
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at � /2��1 Hz increased from 10−11 to 10−7 as the tempera-
ture decreased from 0.3 to 0.008 K.

Let us compare this empirical law with Eq. �30� derived
in the previous section. Note that while deriving that equa-
tion we have neglected the powers of Nc in the preexponen-
tial factors since Nc cannot be much larger than unity be-
cause of the factor e−�Nc �see Eq. �23�	. It is still important to
take into account the temperature dependence of the mini-
mum transition rate 	0 because the cluster transitions are
induced by their interaction with phonons. For this mecha-
nism, 	0= �kBT3� /�Ec

2 where Ec is some characteristic energy
�see Ref. 25, and references therein�. This energy can be
estimated as Ec����3s5 /D, where � is the mass density of
the semiconductor while s is the sound velocity. Assuming
D�2 eV we find Ec /kB�10 K. Using this value we obtain
	0=109T3, where T is measured in Kelvin. Then for the
sample with TES=11 K one can obtain a quite reasonable fit
of the experimental data setting �=2.2 and nda3=8.4�10−3

in the domain of measurements 0.07
T�K�
0.3, as shown
in Fig. 3.

The estimate for the dimensionless constant � agrees with
the expectation � /2�1. The value of nda3 seems to be too
small for the material used in the experiments4,5 performed
in the vicinity of the metal-insulator transition. However, our
fit is not sufficiently accurate in the interpretation of preex-
ponential factors. In particular, the fitted factor nda3 can be
significantly underestimated due to the neglect of the
Nc-dependent preexponential factor. What can be even much
more important for a greater understanding of 1/ f noise in
noisy samples is the fact that the density of dopants in them
is not uniform,5 but depends on the distance from the sur-
face.

We also show the frequency dependence of the Hooge
parameter in the frequency domain 1–1000 Hz and at three
different temperatures, T=0.05, 0.1, and 0.5 K, using Eq.
�30� with its parameters defined above �see Fig. 4�. The
Hooge parameter increases with the increase in frequency. In
agreement with our expectations �Eq. �25�	, this increase is
negligibly weak at lowest temperatures 0.05 or 0.1 K while it
is more pronounced at the highest temperature T=0.5 K. We
do not perform a comparison of theoretical and experimental
frequency dependences because the theory is derived ignor-
ing the possible frequency dependence of the preexponential
factor. Also, there are no experimental data in the most in-
teresting case of T=0.5 K or higher where the deviations
from the 1/ f noise spectrum are significant. Hopefully, fu-
ture experiments will be extended to this high-temperature
domain. Then they can be used to verify the theory.

VII. CONCLUSIONS

In this manuscript we have suggested a distinct mecha-
nism of the 1/ f noise in doped semiconductors in the hop-

ping regime. This mechanism is associated with many-
electron transitions of the chessboard clusters, the rate of
which decreases exponentially with the cluster size. This ex-
ponential dependence results in the close to 1/	 distribution
of clusters over their relaxation rates 	. The slow fluctuations
of cluster states modulate the critical resistors forming the
backbone cluster leading to the 1/ f noise in the electronic
conductivity.

Our predictions regarding the magnitude and temperature
dependence of the Hooge parameter �H are at least in quali-
tative agreement with experiments in ion-implanted silicon
�Si:P:B�.4,5 In particular, both specific features—dramatic de-
crease of the noise with the temperature increase and its in-
crease with the increase of TES—are explained. Moreover,
the experimental results can be fitted quantitatively using
reasonable values of the adjustable parameters.

The low-temperature �T
0.2 K� experimental values of
the Hooge parameter exceed unity. This fact also agrees with
Eq. �30�, since at low temperatures the main temperature
dependence is given by the prefactor. Experimental results
obtained in Refs. 8 and 9 are also in qualitative agreement
with our theory.
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FIG. 4. Theoretical predictions for the frequency dependence of
the Hooge parameter �Eq. �30�	 at different temperatures for
samples with TES=11 K. All parameters are as in Fig. 3.
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