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Effective Seebeck coefficient for semiconductors
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A distinction between two common definitions of Seebeck coefficient is clarified. The effective Seebeck
coefficient, which describes the effective electric field induced by a temperature gradient, is found to be a
constant for a homogeneous doped semiconductor regardless of its doping.
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I. INTRODUCTION

The Seebeck effect, Peltier effect, and Thomson effect
were discovered more than 100 years ago. The theory of
these phenomena has been established.'> Based on these ef-
fects, solid state refrigerators have been developed.® There is
a subtlety in the definition of the Seebeck coefficient. This
subtleness lies in the inequivalent definition of two related
concepts, which we call the phenomenological Seebeck co-

efficient S and the theoretical Seebeck coefficient S. This
subtlety needs to be understood in order to get the right
coefficient for the transfer of heat in a solid state refrigerator.

The Seebeck effect is the generation of a voltage V in an
open circuit, which is shown in Fig 1. The circuit is made up
of two different materials. The junctions, which are the in-
terfaces between two different materials, are kept at different
temperatures 74, T,. The phenomenological Seebeck coeffi-
cient S is defined as
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This definition is found in standard textbooks.' The junctions
do not contribute to the voltage. The voltage difference is
due to the difference of the electrochemical potential of the
two materials. At a particular temperature, the entire junction
has the same electrochemical potential, so there is no voltage
difference across the ends of a junction. Based on this argu-
ment, we can define the phenomenological Seebeck coeffi-
cient as a property of a particular material without reference
to any other materials or junctions. In this way, the phenom-
enological Seebeck coefficient is also define by Eq. (1) with
T,, T, the temperatures at the two ends of the material and V
the voltage generated. The two definitions above are equiva-
lent.

There is another popular definition of the Seebeck
coefficient,>® which is defined as the coefficient for the ef-
fective electric field (E) generated by a temperature gradient,
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This definition is preferred by theorists. We call it the theo-
retical Seebeck coefficient. But this is not equivalent to the
phenomenal one. The difference is that the electric field £

:—€¢ is related to the scalar potential ¢ which is not the
same as the voltage V. To find the relationship between the
theoretical Seebeck coefficient and phenomenological one
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forms the motivation for this paper. It is shown in Sec. II that
the theoretical Seebeck coefficient is the effective Seebeck
coefficient defined in a previous paper.” This coefficient is a
universal constant for homogeneously doped semiconduc-
tors. This implies that, for homogeneously doped semicon-
ductors, the electric field induced by a temperature gradient
is a constant independent of material or doping.

II. SEEBECK COEFFICIENT

We start from the Boltzmann equation. In steady phenom-
ena, we neglect the time dependence of the distribution func-
tion, and have the following equations:
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where e is the particle charge, which has a negative value for
electrons and u is the chemical potential. Most of the equa-
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FIG. 1. (Color online) Setup for Seebeck effect.
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tions are the same for Fermi and Boltzmann distributions.
Concentrating on the zero-magnetic-field case, we regroup

these equations in the following way:
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where u is the electrochemical potential. Applying the relax-
ation time approximation,
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We arrived at equations for the electric current, heat current,
and energy current:
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The driving forces for the current are the potential gradient,
the temperature gradient, and the charge density gradient.
The current is dependent on these three forces:
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It is obvious from Eq. (22) that o is the electrical conductiv-
ity and S is the theoretical Seebeck coefficient defined in Sec.

I. S is also the effective Seebeck coefficient defined in Ma-
han’s paper,” which takes account of all the effects of tem-
perature gradient. The voltage across a conductor is equal to

Aple, not [ Edl. An example is the p-n junction. When the

applied voltage across the junction is zero, then [EdI is
obviously nonzero due to the electric field. The voltmeter
measures the difference of electrochemical potential. Setting
J=0in Eq. (13), we find V=Au/e=bAT. Compared with the
definition in Eq. (1), it is obvious that b is the phenomeno-
logical Seebeck coefficient S. The theoretical Seebeck coef-
ficient is a description of the effective electric field generated
by a temperature gradient. While the phenomenological See-
beck coefficient is a description of voltage generated by a
temperature gradient. They are not identical and not propor-
tional to each other. Equation (23) is the relation between
these two Seebeck coefficients.

We apply the above equations to a homogeneously doped
semiconductor using Maxwell-Boltzmann statistics. We also
assume the following dependence of the relaxation time:
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The phenomenological Seebeck coefficient (S) is the one ac-
tually measured in Eq. (1). The measurement of the Seebeck
coefficient follows the phenomenological definition.! The
phenomenological Seebeck coefficient decreases linearly
with In n, which agrees with experimental results.?

The surprising result is that S is an universal constant. For
a given temperature gradient, the electric field induced inside
a homogeneously doped semiconductor is the same for dif-
ferent materials. This makes sense because for a closed loop
made by semiconductors, the current is solely driven by tem-

075201-2



EFFECTIVE SEEBECK COEFFICIENT FOR SEMICONDUCTORS

perature gradient. The loop integral of the electric field
should be zero. This conclusion is valid even for inhomoge-
neously doped semiconductors. People are interested in in-
homogeneous doping to increase the efficiency of

refrigerators,® and S may be a useful term in such discus-

sions. S is a useful term for the calculation of the electric
field inside a material, which is required to find the modifi-
cation of the carrier density through Poisson’s equation. An
example of the use of this term is given by Mahan,” who
finds the modification of charge carrier density due to the
presence of current. But the modification is small, which
means we can use the same carrier density without current
for coefficient calculation.

A few remarks are necessary about solid state refrigera-
tors. A solid state refrigerator is made of two thermal reser-
voirs with a thermoelectric material sandwiched between
them. If we just concentrate on the thermoelectric material,
we can use Eqgs. (13)—(20) to work out the heat flow from the
cold reservoir. An equation derived from Egs. (13) and (20)
is
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Jo=STI-KV,T. (31)

We emphasize that S is the phenomenological Seebeck coef-
ficient and K is the thermal conductivity. So we can use
direct experimental values of the Seebeck coefficients for
efficiency calculations. The other details are worked out in
Mahan’s review paper.’

III. CONCLUSION

We have discussed the two expressions for the Seebeck
coefficient, which we call the phenomenological and theoret-
ical Seebeck coefficients. They are not equivalent. The phe-
nomenological Seebeck coefficient is the one usually mea-
sured, and also enters the figure of merit Z=cS?/K. The
previous results and the standards set for refrigerator materi-
als are not changed. The effective Seebeck coefficient is also
an interesting and useful term. In homogeneous semiconduc-
tors, the effective Seebeck coefficient is a universal constant,
which implies that the electric field induced by a temperature
gradient is independent of doping.
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