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The optical properties of polarons are studied in the framework of the Holstein model by applying the
dynamical mean-field theory. This approach allows one to enlighten important quantitative and qualitative
deviations from the limiting treatments of small polaron theory, that should be considered when interpreting
experimental data. In the antiadiabatic regime, accounting for the same footing for a finite phonon frequency
and a finite electron bandwidth allows one to address the evolution of the optical absorption away from the
well-understood molecular limit. It is shown that the width of the multiphonon peaks in the optical spectra
depends on the temperature and on the frequency in a way that contradicts the commonly accepted results,
most notably in the strong coupling case. In the adiabatic regime, on the other hand, the present method allows
one to identify a wide range of parameters of experimental interest, where the electron bandwidth is compa-
rable or larger than the broadening of the Franck-Condon line, leading to a strong modification of both the
position and the shape of the polaronic absorption. An analytical expression is derived in the limit of vanishing
broadening, which improves over the existing formulas and whose validity extends to any finite-dimensional
lattice. In the same adiabatic regime, at intermediate values of the interaction strength, the optical absorption
exhibits a characteristic reentrant behavior, with the emergence of sharp features upon increasing the
temperature—polaron interband transitions—which are peculiar of the polaron crossover, and for which ana-
lytical expressions are provided.

DOI: 10.1103/PhysRevB.74.075101 PACS number�s�: 71.38.Ht, 78.20.Bh

I. INTRODUCTION

The motion of electrons in solids is often coupled to
the lattice degrees of freedom. There are broad classes of
compounds where the electron-lattice interaction is such that
the carriers can form small polarons, i.e., they are accompa-
nied by a local lattice deformation that strongly modifies
their physical properties, and can lead to the self-trapping
phenomenon. This manifests in several experimentally
accessible quantities.1 First, the dc conductivity is thermally
activated in a broad temperature range, with a gap related to
the energy of the electron-lattice bound state.2,3 This is the
energy barrier that the particle has to overcome to hop from
site to site, which is proportional to the coupling strength.
Second, most of the single-particle spectral weight—a quan-
tity which is experimentally accessible through tunneling
or photoemission spectroscopy—moves to high energies,
corresponding to multiphonon excitations in the polaron
cloud.4–8 Related to this, a broad contribution emerges
in the optical conductivity, typically in the midinfrared
region, which can be ascribed to transitions inside the po-
laron potential-well.6,9–13

Besides the strength, the range and specific mechanism of
electron-phonon coupling, the phenomenon of polaron for-
mation depends on the properties of the host lattice, such as
the dimensionality, the width of the conduction band, and the
frequency of phonon vibrations. In extremely narrow band
systems, for example, the phonon energy can be of the order
or even larger than the electronic bandwidth. This leads to
the concept of antiadiabatic quasiparticles, that can move
through the lattice being accompanied by a very fast phonon

cloud, which is at the very basis of the standard small po-
laron treatments.2,14 In this framework, the small polaron op-
tical absorption is strongly reminiscent of the behavior of
electrons in a gas of independent molecules, and consists of
a series of narrow peaks at multiples of the phonon fre-
quency, whose distribution is determined by the electron-
phonon coupling strength.

However, narrow band materials exist where the phonon
frequency is appreciably smaller than the electronic band-
width, which therefore cannot be described within the antia-
diabatic approximation. In this case, one has to face the ef-
fect of the relatively large transfer integrals between
molecules, which eventually wash out the discrete nature of
the excitation spectra. Contrary to the antiadiabatic situation,
where polaron formation occurs through a smooth crossover,
in the adiabatic case a sharp transition separates the weak-
coupling regime from the polaronic regime in dimensions
greater than one.15–17 In the weak coupling limit, the optical
absorption at low temperatures consists of an asymmetric
band resulting from the excitation and absorption of a single
phonon. In the strong coupling regime, the absorption spec-
trum moves to higher energies, reflecting the localized nature
of the polaron. In this regime, provided that the free-electron
bandwidth is small compared to the broadening of the
Franck-Condon line, the optical absorption acquires a typical
Gaussian line shape.9,10 In the opposite situation, i.e., when
the electron dispersion dominates over the phonon-induced
broadening, a different absorption mechanism sets in, corre-
sponding to the photoionization of the polaron towards the
free-electron continuum.12,13 To our knowledge, there is at
present no satisfactory theory of the optical spectra in the
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regime where both mechanisms coexist, which is often the
case in real experimental systems. Another important un-
solved question, that cannot be addressed by standard meth-
ods, is how the optical absorption evolves between the weak
and the strong coupling limit, and recent calculations18,19

have shown that the spectra in the intermediate coupling re-
gime exhibit specific features that are characteristic of the
polaron crossover region.

The simplest model which describes the rich phenomenol-
ogy depicted above is the Holstein model,2 where tight-
binding electrons are coupled locally to dispersionless
bosons. The Holstein polaron problem can be solved4,7 in a
nonperturbative framework using the dynamical mean-field
theory20 �DMFT�. While this method neglects the spatial de-
pendence of the electron self-energy, it treats exactly the lo-
cal dynamics, which makes it particularly well suited to de-
scribe small polaron physics. It goes beyond the standard
analytical approaches, as it can deal on the same footing with
the low energy effective quasiparticles and the high energy
incoherent features, which is crucial to the understanding of
the polaron formation process.7 The effects of a nonvanish-
ing electron bandwidth and a nonvanishing phonon fre-
quency are naturally included, which provides a unified de-
scription of the optical properties of small polarons, with no
restrictions on the regimes of parameters. Compared to fully
numerical methods,13,19,21 which are also able to tackle the
intermediate coupling regimes, the present approach is ad-
vantageous for the calculation of the optical conductivity,
since it is free of finite size effects, and gives direct access to
the electronic excitation spectrum in real frequency. In con-
trast, finite cluster diagonalization studies suffer from the
discretization of the Hilbert space, which can be quite severe
in the polaronic regime, where many phonon states are
needed, while quantum Monte Carlo treatments usually work
in imaginary time, and rely on analytical continuation algo-
rithms for the extraction of spectral and optical properties.
Note however, that the present DMFT results, which are
based on an exact continued fraction expansion in the low
density limit,7 cannot be directly generalized to finite densi-
ties.

The aim of this work is to take advantage of the DMFT to
address the regimes of parameters not covered by the stan-
dard formulas of small polaron theory. Applying this nonper-
turbative method, we can critically examine the ranges of
validity of the usual limiting approximations, and point out
the quantitative and qualitative discrepancies arising in sev-
eral regions of the parameter space. Special emphasis is
given to the following points, which are not accessible by the
usual methods available in the literature: �i� the evolution of
the multipeaked spectra in the antiadiabatic regime, at finite
values of the free-electron bandwidth; �ii� the effects of a
finite electron dispersion on the usual Franck-Condon line
shapes, in the adiabatic polaronic regime; and �iii� the pecu-
liar features arising in the region of the adiabatic polaron
crossover. Concerning the last point, the results of our pre-
vious work, Ref. 18, where such features were first reported,
are here extended to much lower temperatures, which is
made possible by an adaptive method to deal with the frag-
mented excitation spectra characteristic of the polaron
problem.7 This procedure allows one to identify a reentrant

behavior of the optical properties in the crossover regime,
where increasing the temperature switches from a weak-
couplinglike absorption to a typical polaronic line shape.
Furthermore, a previously published formula for the T=0
absorption in the polaron crossover regime is corrected here,
and analytical expressions are derived to describe the line
shape of the polaron interband transitions reported in Ref.
18.

The paper is organized as follows: In Sec. II we introduce
the DMFT formalism and the Kubo formula for the optical
conductivity, and discuss the details of the calculations. Sec-
tions III and IV are devoted to the analysis of the absorption
spectra, respectively, in the antiadiabatic and in the adiabatic
regimes. The specific features arising at intermediate values
of the coupling strength in the adiabatic polaron crossover
region are examined in Sec. V. The main results are summa-
rized in Sec. VI.

II. MODEL AND FORMALISM

We study the Holstein Hamiltonian, where tight-binding
electrons �ci,� ,ci,�

† � with hopping amplitude t are coupled
locally to Einstein bosons �ai ,ai

†� with energy �0:

H = �0�
i

ai
+ai − g�

i,�
ci,�

+ ci,��ai
+ + ai� − t�

i,j,�
�ci,�

+ cj,� + H.c. � .

�1�

The single polaron problem can be solved in the framework
of the DMFT �Ref. 20�, which yields an analytical expres-
sion for the local self-energy ���� in the form of a continued
fraction expansion.4,7 The latter must be iterated in an appro-
priate self-consistent scheme, where the free-electron disper-
sion defined by the tight-binding term in Eq. �1� enters only
through the corresponding density of states �DOS� N���.
From the knowledge of the self-energy, one can define the
single particle spectral function,

���,�� = −
1

�
Im

1

� − ���� − �
, �2�

that carries information on the spectrum of excited states,
and its momentum integral, the spectral density N*���. The
latter can be evaluated by introducing the Hilbert transform
of the DOS, H�z�=�d�N��� / �z−�� as follows:

N*��� = − �1/�� Im H�� − ����� . �3�

The conductivity at finite frequency is related to the
current-current correlation function through the appropriate
Kubo formula. In DMFT, due to the absence of vertex
corrections,20,22 such two-particle response function can be
expressed as a functional of the fully interacting single par-
ticle spectral function ��� ,�� �or, equivalently, of the local
self-energy ��. This can be related to the single polaron so-
lution of Ref. 7 by performing an expansion in the inverse
fugacity18 z−1=exp�� /T�. �z−1→0 as the chemical potential
�→−	 in the limit of vanishing density at any given tem-
perature.� The optical conductivity turns out to be propor-
tional to the carrier concentration x, and can be expressed in
compact form as follows:
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���� =
x
�

�
�1 − e−���

D��,��
N���

, �4�

where the constant 
=e2a2 / �v carries the appropriate di-
mensions of conductivity �a being the lattice spacing, v the
volume of the unit cell� and �=1/T is the inverse tempera-
ture. We have defined

D��,�� =� d�N������ � d�e−���−E0����,�����,� + �� ,

�5�

N��� =� d�e−���−E0�N*��� , �6�

where E0 is the polaron ground state energy at T=0. The
exponential factors account for the thermal occupation of the
electronic levels �the Fermi temperature vanishes in the low
density limit, and the particles obey Maxwell-Boltzmann sta-
tistics�. The normalization factor N represents the partition
function of the interacting carrier. Unless differently speci-
fied, the density of states N��� of the unperturbed lattice,
which enters in the definition of the correlation function D, is
assumed semielliptical of half-bandwidth D,

N��� =
2

�D2
�D2 − �2, �7�

corresponding to a Bethe lattice in the limit of infinite con-
nectivity. This choice reproduces the low energy behavior of
a three-dimensional lattice, while leading to tractable analyti-
cal expressions. The function ��� is the corresponding cur-
rent vertex

��� = �D2 − �2�/3. �8�

which can be derived by enforcing a sum rule for the total
spectral weight.23,24 Compared to the more rigorous proce-
dure of Ref. 25, this has the advantage of leading to the
correct threshold behavior for the optical conductivity ex-
pected in a three-dimensional system in the weak coupling
limit,6 as well as in the adiabatic photoionization limit,11–13

as will be shown below. In the usual strong coupling
regime,9,10 on the other hand, the results become independent
of the detailed shape of both N and , and the choice of the
vertex function is not influent. Let us mention that low-
dimensional systems can also be studied with the present
method, by replacing N��� and ��� of Eqs. �7� and �8� with
the appropriate DOS and vertex function. In such cases, the
neglect of vertex corrections in the current-current correla-
tion function that is implicit in the DMFT formulation could
in principle constitute an important limitation. In practice,
however, the limiting cases of weak and strong coupling are
correctly reproduced by the DMFT even in low dimensions
�see Secs. IV A and IV C�.

With the present choice of Eqs. �7� and �8�, the Hilbert
transform K�z� of the product N������ can be expressed in
closed form, which allows the � integral in Eq. �5� to be
performed explicitly:

D =� d�e−���−E0�B�� + � − ��� + ��,� − ����� �9�

with

B�z1,z2� = −
1

2�2 Re	K�z1� − K�z2�
z2 − z1

−
K�z1

*� − K�z2�

z2 − z1
* 
 .

The remaining integral in � appearing in Eq. �9� has to be
computed numerically, which presents two main difficulties.
First of all, at temperatures T��0, the function B
� Im ���� decays exponentially at energies � below the
ground state E0. Nevertheless, such regions contribute to the
final result due to the presence of the thermal factor e−���−E0�.
As a rule of thumb, at low temperatures, the integration lim-
its must be extended down to �−E0�−2EP to account for a
proper number of excited states.26 At the bottom of the inte-
gration region, the number B is therefore multiplied by an
exponentially large factor e2EP/T which amplifies the numeri-
cal errors and, for typical values of EP /�0�10, limits the
attainable low temperature limit to T /�0�0.1. The second
difficulty is that, in the strong coupling regime, the function
B is zero almost everywhere for ��E0, being concentrated
in exponentially narrow peaks of width �e−EP/�0, corre-
sponding to multiphonon resonances at multiples of �0 �see
Fig. 6 below�. For example, taking the parameters of Fig.
3�b�, the ratio between the width of the peaks and their sepa-
ration is 10−3. Special care must be taken to manage with this
rapidly varying function. A uniform mesh discretization of
the integral appearing in Eq. �9� was used in Ref. 18, which
was appropriate for the intermediate coupling/temperature
regimes. To attain the strong coupling and low temperature
regimes, we use here an adaptive nonuniform mesh opti-
mized to account for the narrow peaks of the function
e−���−E0�Im ����.

Bearing these limitations in mind, we shall present in the
following sections the numerical results for coupling
strengths up to EP /�0�10 and temperatures down to T /�0
�0.01–0.1 �the lowest temperatures are reached in the
weak/intermediate coupling regime�. Analytical formulas
will be derived to access the limits of strong coupling and
vanishing temperatures. For simplicity, we shall drop the nu-
merical prefactor x
 in Eq. �4� and express all energies in
units of the half-bandwidth D.

III. OPTICAL CONDUCTIVITY
IN THE ANTIADIABATIC REGIME

The process of polaron formation at zero temperature is
different depending on the value of the adiabaticity ratio �
=�0 /D, which measures the relative kinetic energies of
phonons and band electrons �D is half the free-electron band-
width, proportional to the hopping amplitude t�. In the antia-
diabatic regime ���1�, the buildup of electron-lattice corre-
lations occurs through a smooth crossover controlled by the
coupling parameter �2=EP /�0 �Refs. 7 and 16�, which sets
the average number of phonons in the polaron cloud �EP
g2 /�0 is defined as the polaron binding energy on an iso-
lated molecule�. In this case the behavior of the optical ab-
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sorption at any value of the electron-phonon coupling
strength can be deduced to a good approximation from the
analysis of an isolated molecule, corresponding to the limit
D→0 �Refs. 6, 9, and 10�. It consists of a series of narrow
peaks at multiples of �0, whose distribution is determined by
the coupling parameter �2, and evolves gradually through the
polaron crossover located around �2�1 �see also Fig. 2 in
the following�. At low �2, the spectral weight is mainly lo-
cated in the Drude peak, plus a weaker absorption peak at
�=�0. Upon increasing the coupling strength, multiphonon
scattering processes become important, and several peaks
arise at multiples of �0. For �2�1, the distribution of the
peak weights eventually tends to a Gaussian centered at �
=2EP=2�2�0, with a variance ��2EP�0 �cf. Appendix A
and Eq. �12� below�.

Thermal effects lead to some redistribution of spectral
weight among the different peaks: In the weak coupling re-
gime, the thermal excitation of phonons generates additional
absorption peaks at multiples of �0. In the strong coupling
regime, increasing the temperature broadens the distribution
of peak weights: For T��0 /2, the variance tends to �4EPT
and is completely determined by the thermal fluctuations of
the phonons �cf. Appendix A�; when the temperature is in-
creased further, thermal dissociation of the polaron at T
�EP eventually washes out the absorption maximum at fi-
nite frequency, resulting in a transfer of spectral weight to-
wards �=0.

The above picture is based on the limit of vanishing elec-
tron bandwidth. A small nonvanishing transfer integral can
be expected to give the individual peaks a finite width, with-
out modifying the distribution of spectral weights.5 In the
weak coupling regime, this scenario is confirmed by the
DMFT results illustrated in Fig. 1�a� for �=4 and �2=0.25.
The absorption spectrum at T=0.2�0 consists of few peaks
of width �4D, centered at multiples of �0; Increasing the
temperature leads to a moderate transfer of spectral weight to
higher frequencies, while the individual peaks shrink as pre-
dicted by Holstein’s approximation.2 An interesting behavior
is seen at extremely low temperatures, where T�D��0 �in-
set of Fig. 1�a��. In this limit, the optical absorption is domi-
nated by transitions between “low momentum” states, i.e.,
states located near the bottom of the subbands. As a result,
the peaks become asymmetric and the absorption thresholds
move from �=n�0−2D to �=n�0 �details are given in Ap-
pendix A, Eqs. �A6� and �A7��.

The optical conductivity in the strong coupling regime
��=4 and �2=5� is shown in Fig. 1�b�. In this case, although
the overall picture deduced from the molecular limit is quali-
tatively recovered, the fine structure exhibits a behavior that
contradicts the standard results available in the liter-
ature,2,5,10,14 according to which the absorption spectra at
nonzero D consist of a series of narrow peaks of equal width,
proportional to the renormalized polaronic bandwidth �this
follows, through Eq. �5�, from the assumption that the mul-
tiphonon subbands in the single particle spectral density all
have the same width�. Instead, the multiphonon peaks in Fig.
1�b� are broader at high frequency than at low frequency,
although this is hardly visible on the scale of the figure.
More surprisingly, their width increases with temperature, as
shown in the inset of Fig. 1�b�, contrary to what could be
expected.2

This apparently anomalous behavior can be traced back to
finite bandwidth effects on the excitation spectrum, that go
beyond Holstein’s decoupling scheme, and have already
been reported in Ref. 7 as well as in Ref. 3, where they have
been shown to strongly affect the absolute value of the dc
conductivity. In fact, the broadening of molecular levels in-
duced by band overlap is not uniform over the excitation
spectrum, but rather increases as they move away from the
ground state �see, e.g., Figs. 17 and 18 in Ref. 7�: while the
width of the lowest peak, related to coherent tunneling be-
tween different molecular units, scales exponentially as
exp�−�2�, the width of the higher order peaks is much larger,
being determined by both incoherent hopping between
neighboring molecules and coherent hopping in the presence
of multiphonon excited states: for such peaks, the DMFT
results indicate a power law dependence in �2. Moreover, as

FIG. 1. �Color online� Optical conductivity in the antiadiabatic
regime, �a� for �=�0 /D=4 and �2=0.25 and �b� �2=5. �a� In the
weak coupling regime, the individual absorption peaks shrink upon
increasing the temperature above T��0 /2, as predicted by Hol-
stein’s approximation. In the inset, the low-temperature evolution of
the one-phonon absorption is shown �full red lines, from left to
right, T /�0=0.2,0.05,0.02�. The black dotted line is the weak cou-
pling result �10� at T=0. The absorption edge shifts from �=�0

−2D at T�D to �=�0 at T�D �see Appendix A�. �b� In the strong
coupling regime, the optical absorption consists of extremely nar-
row peaks, similar to the case of an isolated molecule �the peaks at
T=0.6�0 and T=2�0 have been shifted laterally by a constant offset
for clarity�. Contrary to the weak coupling limit, here the individual
peaks broaden with temperature �see inset�.
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the temperature increases, the different levels are mixed by
phonon thermal fluctuations. As a result, the width of the
subbands at low energy rapidly increases with temperature to
attain the typical broadening of the high energy subbands, as
seen in the inset of Fig. 1�b� �in the data at T=0.2�0, a fine
structure due to the superposition of at least two contribu-
tions of different widths is visible�.

Note that the discrete multipeaked structure characteristic
of the antiadiabatic regime remains at all temperatures, con-
trary to what is stated in Ref. 10: when D��0, the thermal
broadening of the peaks is not sufficient to lead to a continu-
ous absorption curve, even at T�EP, unless a sizeable pho-
non dispersion is introduced in the model �this would give
the individual peaks an intrinsic finite width, preventing the
extreme band narrowing in the limit D→0�.

IV. OPTICAL CONDUCTIVITY
IN THE ADIABATIC REGIME

In the static limit ��=0�, the carrier properties change
drastically from weakly renormalized electrons to self-
trapped polarons at a critical value of the coupling strength
�EP /D, above which a bound state emerges below the
bottom of the free-electron band. For example, in the case of
the semielliptical density of states Eq. �7�, static polaron for-
mation takes place at �c=0.843. Allowing for lattice quan-
tum fluctuation changes this localization transition into a
very sharp crossover �cf. Fig. 2� which separates weakly
renormalized electrons for ���c from polarons with very
large effective mass at ���c.

7,16

To describe this behavior, methods such as the DMFT that
do not rely on a “small” parameter are extremely valuable for
the following reasons. On one hand, there is at present no
unified analytical approach which allows one to calculate the

optical conductivity �even approximately� in the whole range
of parameters, from the weak to the strong coupling limit.
This is not surprising, since the physics is fundamentally
different in the two regimes. This situation should be con-
trasted with the antiadiabatic case, where the basic qualita-
tive features of the optical absorption can be inferred from
the solution of the model on a single molecule �cf. beginning
of Sec. III A�. In addition, even within the adiabatic strong
coupling regime, the polaronic line shape changes depending
on the ratio between the broadening s of electronic levels
induced by phonon fluctuations, and the free-electron band-
width D. Theories exist for the limits s /D→0 and s /D
→	, but their validity is questionable in the intermediate
range of experimental relevance.

In the following, we shall report on the analytical expres-
sions recovered within the present DMFT formalism, in three
limiting cases: weak coupling, strong coupling s /D→	, and
s /D→0. The first two formulas turn out to be perfectly
equivalent to the results available in the literature, showing
that at least in such limits, the neglect of vertex corrections
in the Kubo formula implicit in the DMFT approach has
negligible influence on the results. The third formula, on the
other hand, constitutes an improvement over the expressions
of Refs. 12 and 13 in the small polaron regime ��1, even
when applied to one-dimensional lattices. The DMFT results
obtained in more general cases will be presented next, point-
ing out the inadequacy of the standard descriptions in many
cases of interest.

A. Limiting cases

In the weak coupling limit ��→0�, the optical absorption
at T=0 consists of a broad band related to the excitation of a
single honon, with an edge at �=�0 followed by a power
law decay at higher frequencies, and eventually an upper
edge at �=�0+2D �cf. Eq. �A6� in Appendix A�

���� =
Ep�0�

�3 �� − D − �0�N�� − D − �0� . �10�

In a three-dimensional system, the absorption edge behaves
as ��−�0�3/2. As the temperature increases, the gap below
the threshold is rapidly filled and the absorption maximum is
washed out above T��0 /2.

In the strong coupling regime ��→ 	 �, the photoexcita-
tion of the electron is much faster than the lattice dynamics,
which is virtually frozen during the absorption process. Since
the lattice energy cannot be relaxed, the dominant optical
transition corresponds to the difference in electronic energy
between the initial and final states �Franck-Condon principle�
which, in the Holstein model, equals twice the ground state
energy 2EP. The shape of the optical absorption will depend
on the ratio between the width of the noninteracting band
�D, and the variance s of the phonon field, which controls
the broadening of electronic levels. The latter obeys �Ref.
34�

FIG. 2. �Color online� Phase diagram illustrating the regimes of
validity, at T=0, of the different limiting formulas discussed in Sec.
IV: Eq. �10�, weak coupling regime, Eq. �13�, strong coupling adia-
batic regime s�D, Eq. �12�, strong coupling adiabatic regime
s�D. The �red� shaded region delimits the antiadiabatic regime
��1 treated in Sec. III. The bold and dotted lines indicate the
location and spread of the polaron crossover obtained in Ref. 16. In
the hatched region at ��1, the optical conductivity is not acces-
sible by the strong coupling adiabatic theory, as pointed out in Sec.
IV. The hatched region is delimited by two lines representative,
respectively, of s /D�1 �s /D=0.05 bottom line� and s /D�1 �
s /D=2 upper line�. The �gray� shaded region indicates the adiabatic
intermediate regime described in Sec. V.
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s2 = EP�0 coth �0/2T �11�

�cf. Appendix A�. It is determined by the quantum fluctua-
tions of the phonons at low temperatures, and increases due
to the thermal fluctuations as T��0 /2.

When s�D, i.e., when the phonon induced broadening of
the electronic levels is much larger than the electronic dis-
persion, the absorption by localized polarons takes the form
of a skewed Gaussian peak centered at �max=2EP �Refs. 9
and 10�:

���� =
�

�

D2

4

1 − e−�/T

�4�s2
exp	−

�� − 2EP�2

4s2 
 . �12�

Following Eq. �11�, the Franck-Condon line further broadens
upon increasing the temperature above T��0 /2 and eventu-
ally moves toward �=0 at temperatures higher than the po-
laron binding energy, as the polaron thermally dissociates.
Note that the above formula also describes the envelope of
the discrete absorption spectrum of polarons in the antiadia-
batic regime, shown in the preceding section �cf. Fig. 1�b��.

To recover the standard result for a three-dimensional cu-
bic lattice,6 where the total bandwidth is 2D=12t, the above
formula has to be multiplied by a prefactor 2 /9, which cor-
rects for the larger value of the average square velocity in the
DOS Eq. �7� used in the calculations. Analogous prefactors
should be included when any of the DMFT results obtained
in this work are applied to finite-dimensional lattices, that
can be straightforwardly obtained by evaluating the second
moment of the corresponding noninteracting DOS.

In the opposite limit s�D, the line shape is dominated by
the electronic dispersion. The absorption is due to transitions
from a polaronic state whose electronic energy is �−2EP to
the continuum of free-electron states. We have �cf. Eq. �A17�
in Appendix A�

���� = �
4EP

2

�2

1 − e−�/T

�
�� − 2EP�N�� − 2EP� . �13�

We see that in this case the absorption of photons is only
possible in the interval 2EP−D���2EP+D. In three di-
mensions, the absorption vanishes as ��3/2 at the edges, as
in the weak coupling case of Eq. �10�. Taking a semielliptical
DOS as representative of a three-dimensional lattice, we also
find that the absorption maximum �max=2EP−D2 /2EP is
shifted to lower frequencies compared to the usual estimate.
This softening is entirely due to the modification of the line
shape related to finite bandwidth effects. Note that Eq. �13� is
valid at all temperatures below the polaron dissociation tem-
perature T�EP. In particular, contrary to Eq. �12�, nothing
happens here at temperatures T��0 /2, provided that the
condition s�D is not violated.

Formulas similar to Eq. �13� have been derived in Ref. 12,
in Ref. 13 for one-dimensional systems, and in Ref. 11 for
the high frequency absorption threshold of large polarons in
the Fröhlich model. As discussed in Appendix A, these deri-
vations are strictly valid only in the limit EP→	. On the
other hand, the present formula accounts for the non-
negligible dispersion of the initial state at finite values of EP,
which is reflected in the additional prefactor 4EP

2 /�2, leading

in general to a much more asymmetric line shape. Remark-
ably, if the appropriate one-dimensional �1D� DOS is used,
Eq. �13� describes much better the one-dimensional exact
diagonalization data of Ref. 13 than their own Eq. �9� �also
reported in Appendix A as Eq. �A14�� in the small polaron
regime ��1.16,27 The absorption maximum in this case is
located at �max=2EP−EP��1+6�D /EP�2−1� /2.

The regions of validity of the analytical formulas pre-
sented in this section are summarized in Fig. 2. In this figure,
to define the ratio s /D above �below� which deviations from
Eq. �12� �Eq. �13�� arise, we have chosen s /D=0.05 �s /D
=2� �see below, and Ref. 28�.

B. DMFT results

The DMFT results obtained in the adiabatic regime are
illustrated in Fig. 3. First of all, our data show that the ab-
sorption shape �10� derived in the limit of �→0 remains

FIG. 3. �Color online� Optical conductivity in the adiabatic re-
gime, �a� �=�0 /D=0.1 and �=0.7 and �b� �=1.1. �a� In the weak
coupling regime, the gap below �=�0 is rapidly filled upon in-
creasing the temperature, and the one-phonon absorption threshold
is washed out at T��0 /2. The black dotted line is the analytical
weak coupling result �10�. At higher temperatures, the low-
frequency absorption is reduced as some spectral weight is trans-
ferred to higher frequencies �see inset: from top to bottom, T /�0

=0.4, 0.6, and 1�. �b� In the polaronic regime, the absorption peak
broadens at T��0 /2 and then moves toward �=0 as T�EP. The
inset compares the low temperature spectrum with the limiting line
shapes Eq. �12� �full line� and Eq. �13� �dashed line�.
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qualitatively valid at finite values of �, up to the polaron
crossover. This is exemplified in the data reported in Fig.
3�a� at �=0.1 and �=0.7, i.e., a value of the coupling
strength is not far from the polaron crossover coupling
strength �c��=0.1��0.93 �Ref. 16� �see Fig. 2 and Sec. V
below�. Despite such relatively large �, the threshold at �0
and the overall behavior of the high frequency tail at low
temperatures �full red line� are quite close to the predictions
of the weak-coupling formula �10� �black, thin dotted line�.
The increasing importance of multiphonon processes shows
up mainly in the fine structure, with the appearance of alter-
nating peaks and dips at multiples of �0.

Figure 3�b� shows the DMFT results at �=0.1 and
�=1.1. This value of the coupling strength lies in the po-
laronic regime ���c, in a region where the electronic dis-
persion and the phononinduced broadening are comparable
�s /D=0.33�, so that none of Eqs. �12� and �13� is expected to
hold. The comparison with such limiting formulas is illus-
trated in the inset of Fig. 3�b�. While the position of the
absorption maximum seems to agree with the prediction of
Eq. �13� �dashed line�, the peak height is much reduced and
the absorption edge is completely washed out by phonon
fluctuations. On the other hand, the temperature dependence
qualitatively agrees with Eq. �12� �full line�, i.e., the peak
broadens as the temperature is raised above T��0 /2, which
can be understood because the low frequency tails are domi-
nated by the phonon fluctuations. We see that the DMFT
spectrum not only lies at lower frequencies compared to Eq.
�12�, but it is also much broader and asymmetric �the same
trend was observed in Ref. 19 in the one-dimensional case�.
All these effects can be ultimately ascribed to the finite elec-
tron bandwidth D.

Our results show that detectable deviations from Eq. �12�
arise as soon as the noninteracting bandwidth is larger
than the broadening s, a condition that is commonly realized
in real systems. For example, taking typical values
�0�0.01–0.05 eV and Ep�0.1–0.5 eV yields a zero tem-
perature broadening s�0.03–0.16 eV, in which case elec-
tron bandwidths of a few tenths of eV are already sufficient
to invalidate the standard Gaussian line shape Eq. �12�. In
the opposite limit, marked deviations from Eq. �13� appear
already at small values of the ratio s /D, roughly s /D
�0.05: as soon as a small finite broadening is considered,
exponential tails of width s arise that wash out the sharp
absorption edge of Eq. �13�, while the peak height is rapidly
reduced �this can be partly ascribed to a rigid increase of the
renormalized band dispersion, as evidenced in Ref. 34�. The
intermediate region where both Eqs. �12� and �13� fail in
describing the polaronic optical absorption is shown as a
hatched area in Fig. 2.

As was mentioned above, the ability to describe the con-
tinuous evolution of the absorption shape between the limit-
ing cases of Eq. �12� and Eq. �13� ultimately follows from
the fact that finite bandwidth effects are properly included in
the DMFT. On the other hand, accounting for a nonzero pho-
non frequency allows one to address the multiphonon fine
structure of the optical spectra, which is seen to evolve
gradually upon varying the adiabaticity ratio �. In fact, the
optical absorption of a polaron at finite values of � shares
features with both the antiadiabatic and adiabatic limits, hav-

ing a pronounced structure at low frequencies �possibly with
multiple separate narrow bands�, followed by structureless
tails at higher frequencies �cf. Fig. 3�b��. As � increases, the
fine structure progressively extends to higher frequencies,
and evolves into the discrete absorption pattern of Fig. 1�b�,
typical of the antiadiabatic limit.

C. Comparison with exact diagonalization in 1D

Here we apply the DMFT formalism to the case of one-
dimensional �1D� systems, by replacing N��� of Eq. �7� with
the appropriate 1D tight-binding DOS N���=1/ ���D2−�2�.
Note that this constitutes the most stringent test of the two
basic approximations implicit in the DMFT, i.e., the locality
of the self-energy and the absence of current vertex correc-
tions.

It has already been mentioned that in the small polaron
regime ��1,16,27 the analytical formula Eq. �13� reproduces
very accurately the 1D exact diagonalization data of Ref. 13
obtained for s /D→0.

In Fig. 4, the optical conductivity obtained within the
DMFT for �=2 and �=0.2 using the 1D DOS is compared
with the exact diagonalization �ED� results of Ref. 19. Such
a choice of parameters again corresponds to the small po-
laron regime, but now with a finite value of s /D=0.63 which
lies in the intermediate hatched region of Fig. 2. We see that
a fairly good agreement is obtained at low temperatures,
where both the ED and DMFT absorption deviate from the
strong coupling estimate Eq. �12�, which would predict a
peak located at �=2EP. As in the three-dimensional case
treated in the preceding section, the observed softening can
be ultimately ascribed to finite bandwidth corrections �i.e., to
a finite s /D�, which are correctly taken into account by the
DMFT even in the absence of current vertex corrections.

Upon increasing the temperature, however, the DMFT
predicts a line shape which gradually evolves towards the
classical limit of Eq. �12�, while the ED data show an addi-
tional peak at ��2t.19 Such a peak has been ascribed to
transitions between polaron states with different spatial
structures, and cannot be addressed by the present �local�

FIG. 4. �Color online� The DMFT results obtained using a one-
dimensional �1D� DOS for �=2 and �=0.2 �i.e., in the small po-
laron regime� at two different temperatures are compared with exact
diagonalization �ED� data of Ref. 19.
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DMFT treatment. Note that the agreement with the ED data
is spoiled as the crossover from small to large polarons is
approached at ��1.29

V. POLARON CROSSOVER IN THE ADIABATIC REGIME

The critical coupling strength for polaron formation was
identified in Ref. 16 as the value at which dE0 /dg has maxi-
mum slope, which follows approximately �c����0.84
+0.9� at small � �note that this derivative is related, through
the Hellmann-Feynman theorem, to the electron-lattice cor-
relation function�. The width of the crossover region, ob-
tained by looking at the maximum slope of ��2E0 /�g2�, is
roughly given by ���� /2 �cf. Fig. 3�b� in Ref. 16, reported
in Fig. 2 here�, and vanishes in the adiabatic limit where the
polaron formation becomes a true localization transition.

In this section, we address the specific properties of the
optical absorption in the adiabatic polaron crossover region.
The present results extend the preliminary results obtained in
Ref. 18 allowing an inspection of the very low temperature
regime, which turns out to be crucial to understand the evo-
lution of the optical properties. We show that the adiabatic
crossover region has two original signatures: The first is a
coexistence of both weak and strong coupling characters in
the optical conductivity, with a transfer of spectral weight
between the two occurring at very low temperatures. The
second is the emergence of narrow absorption features at low
frequencies �of the order of, or even below the phonon fre-
quency� with a nonmonotonic temperature dependence, cor-
responding to resonant transitions between long-lived states
in the polaron excitation spectrum. We finally provide a
semianalytical expression for the optical conductivity in the
zero temperature limit, that corrects Eq. �7� of Ref. 18.

A. Low temperature transfer of spectral weight

A typical optical conductivity spectrum in the cross-
over region is shown in Fig. 5�a�, for �=0.1 and �=0.9.
The data at the lowest temperature �red full curve� are very
similar to the �=0.7 results of Fig. 3�a�, with a marked
single-phonon edge at �=�0 as given by Eq. �10�, followed
by a multiphonon structured high frequency tail. Such
“weak-coupling” behavior is in agreement with the fact that
�=0.9 lies slightly below the critical value �c��=0.1�
�0.93. Upon increasing the temperature �green dashed
curve�, the optical absorption develops a broad maximum at
high frequency typical of the polaronic regime, comparable
to what is seen at �=1.1 in Fig. 3�b�. Remarkably, this oc-
curs at temperatures much below the phonon quantum to
thermal crossover at T��0 /2, suggesting that such transfer
of spectral weight is governed by an electronic energy scale.

To understand the origin of this phenomenon, a more de-
tailed analysis of the single-particle spectral function is
needed. As can be seen in Eq. �5�, the calculation of the
optical conductivity involves a convolution of the two quan-
tities ��� ,�+�� and e−���−E0���� ,��. Due to the exponential
weighting factor, the contributions to ��� ,�� at ��E0 are
strongly suppressed at low temperatures, and only the states
related to phonon emission processes at ��E0 will contrib-

ute. For such incoherent states, the spectral function is di-
rectly proportional to the scattering rate Im ���� �cf. Eq.
�B13� in Appendix B�. Therefore, neglecting the � depen-
dence in Eq. �5�, the optical spectrum is roughly proportional
to a convolution of the spectral density N*��+�� with the
weighted scattering rate e−���−E0�Im ����. Both of these
quantities are illustrated in Fig. 6.

With the present choice of parameters, the spectral density
at low temperature �upper panel of Fig. 6�a�� consists of a
single subband of width W��0 �the polaron band, expanded
in Fig. 6�c�� disconnected from the electron continuum at
higher energy. Scattering processes are suppressed below
E0+�0 because we are considering dispersionless optical
phonons, so that the whole polaron band represents coherent
long-lived states at low temperature. In contrast, higher en-
ergy states at ��E0+�0 are mostly incoherent, being
strongly scattered by phonons. The marked asymmetry of the
polaron band in Fig. 6�c� comes from the fact that the band
dispersion flattens in proximity of the band top where the
states have a more localized character. This coexistence of
free-electron-like states at low momenta and localized states
at high momenta17 is crucial here, and can be understood

FIG. 5. �Color online� Optical conductivity in the adiabatic re-
gime �=0.1, at an intermediate value of the coupling strength
�=0.9. �a� The absorption is “weak-coupling-like” at low tempera-
tures, with a clear threshold at �=�0, and becomes “strong-
coupling-like” at higher temperatures, causing a nonmonotonic evo-
lution of the spectral weight. �b� A detailed view of the temperature
evolution around the one-phonon threshold, where polaron inter-
band transitions appear.
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from the following argument: In the weak coupling limit, the
spectral density develops a dip at �=E0+�0 corresponding to
the threshold for one-phonon scattering. Below this value,
the band dispersion flattens due to the hybridization with the
�dispersionless� phonon states, leading to a very large density
of states. When � increases, the dip eventually becomes a
true gap and a polaron band of width W��0 emerges from
the continuum, retaining a characteristic asymmetric shape
with a maximum close to the top edge.

The excitation spectrum hardly changes when going from
T=0.03�0 to T=0.2�0, except for the appearance of few
exponentially weak replicas of the polaron band at ��E0
�see Figs. 6�a� and 6�c��. On the contrary, the weighted scat-
tering rate �lower panel of Fig. 6�a�� undergoes a drastic
change in the same temperature range. At T=0.03�0, the
latter consists of a pattern of equally spaced peaks at �=E0
−n�0, whose intensity decays as � moves away from the
ground state energy. Retaining only the �largest� peak at E0
−�0, we see that the convolution integral D roughly follows
the form of the spectral density N*��+�0−E0�, with a gap
below �=�0 and a maximum around ��EP. The behavior
changes at T=0.2�0, where the weighted scattering rate ac-
quires a Gaussian distribution centered at an energy �EP
below the ground state, so that the maximum of D moves to
��2EP. Clearly, the transfer of spectral weight seen in Fig.
5�a� when going from T=0.03�0 to T=0.2�0 must be traced
back to the change of behavior in the excitations at ��E0
described here.

A more careful look at Fig. 6�a� �expanded in Fig. 6�b��
shows that the change in the overall distribution of
Im �e−���−E0� is accompanied by a slight shift of the position
of the individual peaks. In fact, as can be shown by direct
inspection of the continued fraction expansion of Ref. 7,
each peak at ��E0 is a replica of the polaron band at E0, of
width W. At temperatures T�W, due to the exponential
weighting factor, only the low momentum states close to the
bottom edges contribute �cf. Fig. 6�b��. Such states are free-
electron-like, and give rise to an optical absorption spectrum
with a weak coupling character. As T�W, on the other hand,
more localized higher momentum states come into play, and
the polaronic behavior is recovered. We remark that this “re-
entrant” behavior is not restricted to the zero density case
treated here. It can be found also in a two site cluster35 as
well as in the Holstein model at half filling.30 The reason is
ultimately due to the different roles played by the quantum
and thermal fluctuations in the polaron crossover region.
Quantum fluctuations are known to stabilize the nonpo-
laronic phase, while incoherent fluctuations such as static
disorder or thermal fluctuations stabilize the polaron. As the
temperature increases, polarons are therefore first stabilized,
before they eventually dissociate at a higher temperature.

According to the above arguments, the transfer of spectral
weight illustrated in Fig. 5�a� is ultimately controlled by a
temperature scale set by the renormalized bandwidth W,
whose evolution with the interaction strength is shown in
Fig. 7. In the strong coupling regime, where W vanishes
exponentially, such phenomenon can hardly be observed in
practice. On the other hand, the very existence of a polaron
subband separated from the continuum of excited states re-
quires moderately large values of �, and the coexistence of
electronlike states and localized states is specific to the adia-
batic regime. The competition between all these conditions
explains why the low-temperature transfer of spectral weight
described here occurs in the vicinity of the adiabatic polaron
crossover, roughly for �c−0.5�����c+� and ��0.5
�shaded area in Fig. 2�.

A formal expression for the optical conductivity in the
limit T�W is derived in Appendix B, that we reproduce
here:

FIG. 6. �Color online� �a� Spectral density N* and weighted
scattering rate Im ����e−���−E0� at �=0.9 and �=0.1, at different
temperatures. �b� Expanded view of a generic nth peak in the
weighted scattering rate n=3, indicated by an arrow in the main
panel, whose width equals the renormalized polaron bandwidth W
�the data at T=0.03�0 have been multiplied by a factor 103�. The
weight moves from the bottom to the top of the band at T�W. �c�
Expanded view of the polaron band in the spectral density N*, sepa-
rated from the high-energy continuum by a gap.

FIG. 7. �Color online� Width of the polaron band as a function
of the interaction parameter � for different values of the adiabaticity
parameter �, at T=0.
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���� = �1 − W�0��
�

�

�

�p=1

p̄ � d�N����������,� + E0 − p�0�ūp���

�p=1

	 � d�N���ūp���
,

�14�

where W�0� is a constant between 0 and 1 depending on the
interaction parameters, and the functions ūp��� are defined in
Eq. �B26�. This formula replaces Eq. �7� of Ref. 18, which
was incorrectly identified with the zero temperature limit of
the optical absorption but is instead a preasymptotic contri-
bution as T→0.

B. Polaron interband transitions

A detailed view of the low frequency optical absorption in
the intermediate coupling regime is presented in Fig. 5�b�. As
was mentioned in the previous section, the spectrum at the
lowest temperature �full red curve� has a sharp threshold at
�=�0, followed by an absorption pattern which roughly re-
produces the shape of the single particle spectral density,
shifted by �0 �see the weak coupling formula �A6� in Ap-
pendix A, as well as its generalization Eq. �14��. For ex-
ample, the peak at ��0.17 is directly related to the maxi-
mum observed in the spectral density at the top of the
polaron band �compare Fig. 5�b� with Fig. 6�c��, and its po-
sition coincides with the expected value �=�0+W=0.173.
Upon increasing the temperature, the most striking effect in
this low-frequency region is the emergence of a sharp asym-
metric peak within the gap, whose intensity follows a puz-
zling nonmonotonic temperature dependence. Such reso-
nance has already been reported in Ref. 18, where it was
termed polaron interband transition �PIT�, and suggested as a
possible explanation of the peaks experimentally observed in
Ref. 31. In order to understand its origin, one has to go
beyond the low-temperature arguments presented in the pre-
vious section, and take into account the contributions to the
convolution integral in Eq. �5� coming from the states at �
�E0.

Because of thermal activation, there is a nonvanishing
probability for transitions involving an initial state at ener-
gies above the ground state. The Fermi golden rule tells us
that the transition probability at a given frequency � will be
proportional to the conjugate density of the initial and final
states separated by �, times the occupation factor of the ini-
tial state. Therefore, a sharp resonance will arise if: �i� many
pairs of initial and final states exist that are separated by
approximately the same energy �*, which is equivalent to the
condition that the energy dispersions in the initial and final
subband are parallel; �ii� such states are long lived, which is
possible at low temperatures because Im � is exponentially
suppressed in the whole region E0���E0+�0. Both condi-
tions can be fulfilled in the intermediate coupling regime, as
illustrated in Fig. 3 of Ref. 18. Upon increasing the tempera-
ture, the states involved in the transitions are eventually
smeared out by thermal disorder, which explains the non-

monotonic temperature dependence of this resonance.36

This qualitative argument can be formalized as follows
�the detailed calculations are presented in Appendix B�.
When the scattering rate in the initial state is negligible, the
spectral function ��� ,�� can be replaced by a delta function
and the convolution integral in Eq. �5� becomes �cf. Eq.
�B5��:

D��� � �
E0

	

d�N�� − Re ������� − Re �����e−���−E0�

��−
1

�
Im

1

� + Re ���� − Re ��� + �� + i�
� .

�15�

This quantity is maximum for those values of � such that
there is a wide range of energies � where the denominator is
close to zero. This condition corresponds to the pair of equa-
tions

� + Re ���� − Re ��� + �� = 0,

� �Re �

��
�

�

− � �Re �

��
�

�+�

= 0, �16�

whose solutions we denote as �* and �*. The optical conduc-
tivity can be evaluated by expanding Eq. �15� around these
special values, and taking �−Im ���+�� to be small and
constant in the frequency range of interest, which gives

�PIT��� �
�

�2Q��

�1 − e−���e−��*

N���

�N��* − Re ���*����*

− Re ���*��F	M�� − �*�
�


 , �17�

where M is the effective mass of the initial �and final� states
and Q is related to the curvature of the dispersion. The func-
tion

F�y� =
�y + �y2 + 1

�y2 + 1
�18�

has an inverse square root tail �y−1/2 at large y, and tends to
1 for 0�y�1, giving rise to a narrow peak of width ��
�� /M. Such an asymmetric shape can be clearly identified
in Fig. 5�b�, at �*�0.3�0. Reminding one that ��e−��0,
and using the definition Eq. �4�, we see that the weight of the
narrow peak scales as follows:

w��� �
1 − e−��*

�*

e−���*−E0+�0/2�

N���
. �19�

This quantity rises exponentially with temperature and then
decreases as a power law at temperatures above some frac-
tion of �0, whose precise value depends on the parameters
�*, �*, and W.
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VI. CONCLUSION

In this work, we have studied the optical absorption of
electrons interacting with phonons in the framework of the
Holstein model, applying a unified treatment—the dynamical
mean-field theory—which is able to account for both the
quantum nature of the phonons and the effects of a finite
electronic bandwidth. The present nonperturbative approach
allows one to span all the ranges of parameters of the model,
from weak to strong electron-phonon interactions, and from
the adiabatic to the antiadiabatic limit. The limits of validity
of the standard available formulas are pointed out, and the
quantitative and qualitative deviations arising in wide ranges
of the parameter space are analyzed, which will hopefully
lead to a better understanding of the experiments performed
on polaronic systems.

In the antiadiabatic regime, the present method allows one
to address the evolution of the optical absorption away from
the single molecule limit, where the spectra reduce to a dis-
tribution of delta functions. Considering a finite bandwidth D
yields an intrinsic width to the multiphonon peaks, which is
not uniform over the whole spectral range �peaks at high
frequency are broader than at low frequency� and generally
does not obey the exponential narrowing predicted by the
standard approaches. Moreover, in the strong coupling re-
gime, the peaks are found to broaden upon increasing the
temperature, in marked contradiction to the commonly ac-
cepted results in the literature, which are based on uncon-
trolled approximations.

The situation is different in the adiabatic regime, where it
is found that the nature of the optical absorption changes
drastically at the sharp polaron crossover occurring at
���c. The weak coupling formula �10� is shown to extend
qualitatively to finite values of �, up to the polaron cross-
over, whose proximity is signaled by the emergence of a fine
structure related to multiphonon processes. Beyond the po-
laron crossover, the absorption mechanism in the strong cou-
pling regime is found to depend on an additional parameter,
the ratio s /D between the broadening of the Franck-Condon
line, and the free-electron bandwidth. The usual polaronic
Gaussian line shape described by Eq. �12� is recovered for
s�D. In the opposite limit, s�D, a different absorption
mechanism sets in, related to the photoionization of the po-
laron towards the free-electron continuum. Correspondingly,
the line shape in this limit is entirely determined by the shape
of the free-electron band, and is characterized by a sharp
absorption edge at finite frequency, as described by Eq. �13�.
The optical spectra at intermediate values of s /D, a situation
often encountered in real systems, are not properly described
by any of the two limiting formulas, Eqs. �12� and �13�. In
particular, due to finite bandwidth effects, the frequency of
the absorption maximum is appreciably lower than the usual
estimate �max=2EP, and the line shape is more asymmetric
than the Gaussian of Eq. �12�, which should be taken into
account when interpreting experimental data.

In the intermediate coupling region around ���c, quali-
tatively new features arise that are distinctive of the adiabatic
polaron crossover. First, the optical absorption exhibits a re-
entrant behavior, switching from weak-coupling-like to po-
laroniclike upon increasing the temperature. The temperature

scale that governs such transfer of spectral weight is of elec-
tronic origin, being set by the renormalized polaronic band-
width W, a quantity that is necessarily less than �or equal� to
the phonon energy, and rapidly decreases upon increasing �.
In addition, sharp peaks with a nonmonotonic temperature
dependence emerge at typical phonon energies, and are most
clearly visible in the region below the single-phonon absorp-
tion gap. These can be ascribed to thermally excited resonant
transitions between long-lived states located in different sub-
bands in the polaron internal structure, and their peculiar
temperature dependence results from the competition be-
tween the thermal activation and the thermal broadening of
the corresponding states.

Concerning vertex corrections, which are absent in our
formalism, we have seen that these are irrelevant in the lim-
iting regimes of weak and strong coupling, as well as in the
adiabatic regime s�D at any coupling strength and for any
lattice dimensionality �including in one dimension�. On the
other hand, their presence could quantitatively change the
optical spectra when both the phonon frequency and cou-
pling strength lie in the intermediate regime. From this point
of view, the polaron interband transitions evidenced in the
intermediate adiabatic crossover region, relying on the reso-
nance condition Eq. �16�, could indeed be affected by the
inclusion of vertex corrections.

As a last remark, we stress that the description of the
optical properties provided in this work, based on the solu-
tion of the Holstein model for a single particle, is valid in
principle for a system of independent polarons. How the
above features are modified by polaron-polaron interactions
at finite densities remains a fundamental question that needs
to be addressed in the future.

APPENDIX A: DERIVATION OF LIMITING FORMULAS

1. Weak coupling limit, low temperatures T™�0

In the limit of weak interactions, we can write the spectral
function �� appearing in Eq. �5� as

�� = ��
�0� + ���

where ��
�0� is noninteracting and reduces to a delta function.

Substituting the previous expression in Eq. �5� and taking
into account only the contributions proportional to �� we get

D��� =� d�N������ � d�e−���−E0�

����
�0��������� + �� + ��������

�0��� + ��� .

�A1�

Performing the two integrals in � yields

D��� = −
1

��2 � d�N�������e−���−E0�Im ��� + ��

+ Im ��� − ��e−���−�−E0�� . �A2�

Perturbation theory gives, to order g2 and at zero density
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���� = g2��1 − nB�G�� − �0� + nBG�� + �0�� , �A3�

where nB is the Bose occupation number. Substituting the
self-energy into Eq. �A2� gives rise to four terms, namely:

D��� =
g2

�2 � d�N��������1 − nB�e−���−E0�N�� + � − �0�

�A4a�

+ nBe−���−E0�N�� + � + �0� �A4b�

+ �1 − nB�e−���−�−E0�N�� − � − �0� �A4c�

+ �nBe−���−�−E0�N�� − � + �0�� . �A4d�

At temperatures T��0, the second and third term are expo-
nentially small, and can be neglected. Note also that, since
the above terms are explicitly proportional to g2, the normal-
ization factor �6� can be evaluated in the noninteracting limit,
which gives N���= �2/��e−�DI1��D�, where I1 is the modi-
fied Bessel function of the first kind, whose limiting behav-
iors are N��2/� / ��D�3/2 for �D�1 and N→1 for �D
�1.

At temperatures much smaller than the width of the band
under study, due to the presence of the exponential factors,
only the low energy edges of the density of states �corre-
sponding to low-momentum states� contribute to the inte-
grals in Eq. �A4�. In this case we can make use of the fol-
lowing approximation:

�
�

d�e−���−���� − ���f��� �
f���
��+1��� + 1� , �A5�

where ��n� is the Euler gamma function and f��� is a generic
continuous function. By substituting the previous expression
in Eqs. �A4�, only the term �A4d� survives in the limit T
�D, and we obtain

������T�D =
g2�

�3 �� − D − �0�N�� − D − �0� , �A6�

which corresponds to a sharp edge behavior �������0

−��3/2, in agreement with perturbative calculations in three
dimensions.6 Similar arguments lead to �������0−��d/2 if
one assumes the appropriate d-dimensional noninteracting
band in Eq. �5�.

In the adiabatic regime, the condition T��0 ensures that
T�D. In the opposite antiadiabatic regime, the result �A6�
remains valid for T�D, while for D�T��0, we can set the
exponential factors equal to 1 in Eqs. �A4�, leading to

������D�T��0 =
g2�

�3 F�� − �0� , �A7�

where the function F is defined as

F�y� = �
−D

D−�y�

dxN�x�N�x + �y����x� + �x + �y��� �A8�

�note that current vertex corrections are not included in this
formula; however, they lead to the same functional form in

both the adiabatic and antiadiabatic limits�. In this tempera-
ture range, the absorption related to the excitation of a single
phonon is nonzero in the range �0−2D����+2D and is
symmetric around �=�0 �see the inset in Fig. 1�a�� where
�= �128/45��g2D /�0

3. By comparing Eq. �A8� with Eq.
�A6�, we see that in the antiadiabatic regime, the absorption
peak is shifted to lower frequency when the temperature is
increased above T�D, and the sharp square root edge is
converted into �������− ��0−2D��.3

2. Strong coupling limit, narrow bands

In the adiabatic limit ��0→0�, the strong coupling regime
can be attained by increasing � while keeping the polaron
energy EP finite. In this case, the spectral function of a single
polaron becomes independent of momentum �the � index
drops because the bandwidth D=EP /�→0�. The self-energy
in Eq. �2� becomes �=−gX, where X is a classical variable
that acts as a source of disorder that modifies the electronic
levels according to the Boltzmann distribution.7,26 Corre-
spondingly, the spectral function tends to a Gaussian

���� =
1

�2�s2
exp	−

�2

2s2
 �A9�

whose variance s=�2EPT is determined by the thermal fluc-
tuations of the classical phonon field. Once the � integral is
factored out �yielding a numerical prefactor�, the convolution
integral in Eq. �5� is readily evaluated and yields

����s�D =
�D2

4�

1 − e−��

�4�s2
exp	−

�� − 2EP�2

4s2 
 �A10�

which coincides with the standard result of Refs. 6 and 9–11.
It should be noted that, due to the initial assumption �0
→0, the above derivation is strictly valid only in the high
temperature limit T��0. However, Eq. �A10� can be gener-
alized to all temperatures by setting

s2�T� = EP�0 coth��0

2T
� �A11�

�note that Eq. �A9� is also valid at T=0, in which case the
variance is determined by the phonon zero point fluctuations
and becomes s=�EP�0 �Refs. 7 and 26��. Equation �A10� is
valid in the strong coupling adiabatic regime provided that
s�D.

The above result has been obtained by taking first the
limit �0→0, then D→0. In the opposite limit of an isolated
molecule �D=0� at finite �0, which is qualitatively represen-
tative of the antiadiabatic regime, the spectral function con-
sists of a distribution of delta functions, describing the mul-
tiphonon excitations inside the polaron potential well.6 The
convolution integral in Eq. �5� can be carried out, and yields
a discrete absorption spectrum, whose envelope in the strong
coupling limit �2=EP /�0�1 coincides with Eq. �A10�.

3. Strong coupling limit, wide bands

There is an alternative way of reaching the polaronic adia-
batic regime, i.e., assuming that the phonon induced broad-
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ening of electronic levels s is negligible compared to the
electron dispersion D. For sufficiently large EP, the optical
absorption will be due to transitions from a perfectly local-
ized level whose electronic energy is −2EP, to the free-
electron continuum. Put in the context of the convolution
integral Eq. �5�, this corresponds to the following replace-
ments:

���,� + �� = ��� − � − �� , �A12�

���,�� = ��� + 2EP� , �A13�

where the last quantity is independent of �. The result is

����s�D�EP
= �

1 − e−��

�
�� − 2EP�N�� − 2EP� .

�A14�

This result is equivalent to that reported in Refs. 12 and 13
for small polarons in one-dimensional systems, and in Ref.
11 for large polarons in two and three dimensions. However,
the limit of a perfectly localized state assumed here is strictly
valid only for EP→	. At finite EP, a more accurate formula
can be obtained by restoring the � dependence of the initial
state in Eq. �A13�. This can be achieved by taking

���,�� = −
1

�
Im

1

� − ���� − �
� −

1

�

Im ����
�� − ��2 , �A15�

where we have used the fact that both Re � and Im � are
small around ��−2EP. The scattering rate at these energies
can in principle be extracted from the atomic limit of Ref. 6,
because it is a local quantity. For s→0 it is given by:

−
1

�
Im ����e−���+EP� = �2��� + 2EP� . �A16�

Evaluation of Eq. �5� now yields a more asymmetric shape

����s�D = �
4EP

2

�2

1 − e−��

�
�� − 2EP�N�� − 2EP�

�A17�

which reduces to the previous Eq. �A14� in the limit EP
�D.

It should be noted that when the appropriate one-
dimensional DOS is used, Eq. �A17� describes much better
the exact diagonalization data of Ref. 13 than Eq. �A14�
itself, that was used by Alexandrov and co-workers in their
Figs. 3�c� and 3�d�. A possible generalization of the present
scheme to finite values of s is currently under study.32

APPENDIX B: OPTICAL CONDUCTIVITY
AT LOW TEMPERATURE

In this appendix we give a formal expression for the op-
tical conductivity in the limit of low temperatures, which is
useful for the understanding of the results in the intermediate
coupling regime.

We can formally separate ��� ,�� in two parts, at energies
above and below the ground state

���,�� = ��� − E0�����,�� + ��E0 − ������,�� �B1�

�a similar separation will hold for N*����. Accordingly, in Eq.
�4� we can separate in both numerator D and denominator N
the contributions coming from energies lower and higher
than the ground state energy E0, obtaining

D��� = D���� + D����� + D���� , �B2�

N = N� + N�. �B3�

In Eq. �B2� the last contribution is negligible at low tempera-
ture for ��0 since ����+�� decays exponentially as exp�
−��E0+�−���. On the contrary both N� and D����� can-
not be neglected due to the thermal population factor exp�
−���−E0�� appearing in Eq. �4�. Let us calculate the remain-
ing four terms separately.

1. Calculation of Dš
„�…

D���� = �
E0

	

d��
−D

D

d�N������

�e−���−E0�����,������,� + �� . �B4�

At low temperature, ���� ,�� weighted by the exponential
factor gets contributions only for ��E0. This occurs when
the temperature is so low that both the thermal occupations
of the first excited subband and of the incoherent background
edge at �=E0+�0 are negligible, i.e., for ��0�1. In this
case the scattering rate is negligible �the low-energy states
are coherent�, ���� ,�� can be replaced by ���−�−Re �����
and the integral in � appearing in Eq. �B4� can be carried out:

D���� = �
E0

	

d�N�� − Re ������� − Re �����

� e−���−E0����� − Re ����,� + �� . �B5�

At temperatures lower than the renormalized bandwidth W,
the thermal weighting factor selects an integration range of
width T around the ground state energy where, from Eqs. �7�
and �8�, we have

N�� − Re ����� �
2

�D2
�2D/Z�� − E0�1/2, �B6�

�� − Re ����� �
2D/Z

3
�� − E0� . �B7�

Here Z= �1−��Re ��−1 is the ground state quasiparticle resi-
due, equal to the inverse of the effective mass in the case of
a purely local self-energy. Making use of Eq. �A5� and the
definition E0−Re ��E0�=−D, we obtain

D���� = C�T��−
1

�
Im

1

� + E0 + D − ��� + E0�� �B8�

with C�T�=�2/�D2 /Z3/2�T /D�5/2 for T�W. In the strong
coupling regime, the polaron band becomes extremely nar-
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row and can itself be replaced by a delta function. For T
�W→0, we obtain the same expression Eq. �B8� with
C�T��4W2→0, and this contribution becomes negligible.

2. Polaron interband transitions

The previous formula for D� was derived assuming that
T��0. Upon increasing the temperature, other contributions
arise that involve states at frequencies � away from the
ground state E0. These can give rise to sharp resonances in
the optical absorption spectra �see Sec. IV B�. Eq. �B5� can
be rewritten

D���� = �
E0

	

d�N�� − Re ������� − Re �����e−���−E0�

��−
1

�
Im

1

� + Re ���� − Re ��� + �� + i�
� ,

�B9�

where �=−Im ���+�� is taken to be small and constant in
the frequency range of interest. A resonance will arise for
those values of � such that there is a wide range of energies
� where the denominator is close to zero. This condition
corresponds to the pair of equations

� + Re ���� − Re ��� + �� = 0,

� �Re �

��
�

�

− � �Re �

��
�

�+�

= 0,

whose solutions we denote �* and �*. Now the denominator
in Eq. �B9� can be expanded around these special points,
which gives

M�� − �*� − Q�� − �*�2 + i� ,

M =1− ��� /����* being the �equal� effective mass of the ini-
tial �and final� states and Q a parameter related to the curva-
ture of Re �. If one assumes that the prefactors N and  are
smooth functions in the vicinity of �*, these can be taken out
of the integral, which can be evaluated to

DPIT �
N��* − Re ���*����* − Re ���*��

�2Q�

�e−��*F�M�� − �*�/�� , �B10�

where the function

F�y� =
�y + �y2 + 1

�y2 + 1
�B11�

tends to 1 for 0�y�1 and has an inverse square root tail
�y−1/2 at large y.

3. Calculation of D��
„�…

D����� = �
E0−�

E0

d��
−D

D

d�N������

�e−���−E0�����,������,� + �� . �B12�

The excitations in �� are mostly incoherent, due to the pres-
ence of thermally activated phonons. This is best expressed
by showing explicitly the proportionality to the scattering
rate

����,�� = −
1

�

Im ����
�� − Re ���� − ��2 + �Im �����2 .

�B13�

Through Eq. �B13�, the product e−���−E0�Im ���� appears in
Eq. �B12�. A sample plot of this product is reported in Fig.
6�b�. At energies below the ground state, taking advantage of
the continued fraction expansion of Ref. 7, the imaginary
part of � can be approximately written as a sum of separate
contributions

− Im ���� = �
p=1

	

e−�p�0up��� . �B14�

As was the case for D�, we treat separately the cases T
�W and T�W→0. In the former case, up is a function with
a square root edge at �=E0− p�0,

up��� = ūp�� − E0 + p�0�1/2, �B15�

which is reminiscent of the behavior of the spectral density
at energy E0− �p−1��0 and ūp is an unknown weighting fac-
tor. As can be seen from Fig. 6�b�, each up��� has a band-
width which is independent of p, and equal to the width W of
the first polaronic band. Therefore, when T�W, the square
root edges can all be replaced by delta functions by making
use of Eq. �A5�. When Eqs. �B14�, �B15� are substituted in
Eq. �B12� the � integral can be carried out, leading to

D����� = ��3/2�T3/2�
p=1

p̄ �
−D

D

d�N������

�����,� + E0 − p�0�

�
1

�

ūp

�E0 − p�0 − � − Re ��E0 − p�0��2 ,

�B16�

where p̄= int�� /�0�. In Eq. �B16� we have neglected the
exponentially vanishing scattering rate Im � in the denomi-
nator of Eq. �B13�. At higher temperatures, or in the strong
coupling regime, where �0�T�W→0, we can take

up��� = ūp���� − E0 − W + p�0� , �B17�

which leads to an expression analogous to Eq. �B16�, with
the prefactor replaced by e−�W and E0→E0+W, reflecting
the fact that the dominant weight is now carried by localized
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excitations at the top of the band �see the discussion in Sec.
III A�.

4. Calculation of N�

N� = �
E0

	

d��
−D

D

d�N���e−���−E0�����,�� . �B18�

Since a gap of width �0 separates the coherent pole of ��

from the incoherent continuum, for ��0�1 only the lowest
energy edge of the spectral density contributes to the integral
Eq. �B18�. Using Eqs. �A5�, �B6� we get

N� =
2

�D2
�2D/Z��3/2�T3/2. �B19�

5. Calculation of N�

N� = �
−	

E0

d��
−D

D

d�N�������,�� . �B20�

As was stated before, �� represents incoherent states as
given by Eq. �B14�. For �W�1, the integrals in � can be
carried out with the help of Eq. �A5� giving

N� = ��3/2�T3/2�
p=1

	 �
−D

D

d�N���

�
1

�

ūp

�E0 − p�0 − � − Re ��E0 − p�0��2 . �B21�

At higher temperatures, T�W, we get an analogous result,
with the prefactor replaced by e−�W and E0→E0+W. By
comparing the two expressions, it can be deduced that the
term N� changes behavior from �T3/2 to e−�W at a tempera-
ture TW�W / log�D /W�. The resulting normalization factor
N has the form �T3/2 in the weak coupling regime and
�e−�W→1 in the strong coupling regime. In the intermediate
coupling regime, where W is of the order of �0, a crossover
between the two behaviors occurs at TW.

6. Final formula for �„�… at T=0

Collecting the results Eqs. �B8�, �B16�, �B19�, �B21� into
Eq. �4� we get the final result. To separate the terms �B8� and
�B19� which involve the coherent states close to the ground
state E0 from the remainder, it is useful to introduce a tem-
perature dependent weight

W�T� =
N�

N
, �B22�

which tends to a constant for T�W, and to a �different�
constant for T�TW. Then

���� = W�T��0��� + �1 − W�T���1��� , �B23�

where, from Eqs. �B8�, �B19�:

�0��� =
�D/Z

�
T�−

1

�
Im

1

� + E0 + D − ��E0 + ��� ,

�B24�

Eq. �B24� is Eq. �7� of Ref. 18, where it was incorrectly
identified with the zero temperature limit of the optical ab-
sorption �note that the linear dependence on temperature
makes this contribution vanish at T=0�.

Under the above hypothesis the remaining term �1 does
not depend explicitly on temperature. In fact, using Eqs.
�B16�, �B21� we get a formal expression

�1��� =
�

�

�p=1

p̄ � d�N����������,� + E0 − p�0�ūp���

�p=1

	 � d�N���ūp���
,

�B25�

where

ūp��� =
ūp

�E0 − p�0 − � − Re ��E0 − p�0��2 �B26�

and at T=0 we have ����= �1−W�0���1���. Note that, since
the sum is limited to p̄, at low temperature only the first term
in the numerator of Eq. �B25� contributes to the Drude peak
at ��0 and to the one-phonon threshold at �=�0.

To recover the perturbative expression Eq. �A6� we con-
sider only a single contribution in the sums appearing in Eq.
�B25�. Then we perform the integral in the numerator of Eq.
�B25� using the free spectral function ���� ,�+E0− p�0�
=���+E0− p�0−�� obtaining

�1��� =
�

�

N�� + E0 − �0��� + E0 − �0�ū1�� + E0 − �0�

� d�N���ū1���
.

�B27�

To proceed further we have from Eq. �A3�

ū1�� + E0 − �0� � − 2g22�2D

D2�2 , �B28�

where we have neglected the self-energy term in the denomi-
nator of ū1 for ��0�1. Eq. �A6� follows by multiplying
�B27� by the factor �1−W�.
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