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Disordered flat phase of a crystal surface: Critical and dynamic properties
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We analyze a restricted solid-on-solid (RSOS) model on a square lattice with nearest- and next-nearest-

neighbor interactions, using Monte Carlo techniques. In particular, the critical exponents at the preroughening
transition between the flat and disordered flat (DOF) phases are confirmed to be nonuniversal. Moreover, in the
DOF phase, the equilibration of various profiles imprinted on the crystal surface is simulated, applying evapo-
ration kinetics and surface diffusion. Similarities to and deviations from related findings in the flat and rough

phases are discussed.
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A new type of crystal surface, the disordered flat (DOF)
phase, was introduced by den Nijs and Rommelse almost
20 years ago.!” It is characterized by finite height fluctua-
tions, although it comprises a disordered array of steps,
thereby combining features of the conventional flat and
rough phases. Experimental evidence for a DOF phase has
been reported, for instance, for films of rare-gas atoms on
graphite and for GaAs(001).4-6

A minimal model to describe the DOF phase has been
proposed by Rommelse and den Nijs.! It is a restricted SOS,
or RSOS, model on a square lattice with interactions con-
necting pairs of nearest (i,j) and next-nearest (i,k) lattice
sites, with the Hamiltonian

H=K> Oh-n .1 +L2 Olh~hy.20 (1)
(i) (i.k)

where h; is the integer-valued height at site i. The absolute
value of the height difference is restricted to be at most 1 for
neighboring sites, and, therefore, at most 2 for next-nearest
neighbors. 6 is the Kronecker symbol. The interaction be-
tween next-nearest neighbors, L, is assumed to be positive.

The phase diagram of the Hamiltonian (1) in the
(kgT/L,K/L) plane is depicted in Fig. 1. It displays five
distinct phases: The usual flat and rough phases, the recon-
structed flat and rough phases arising from a repulsive, nega-
tive nearest-neighbor interaction, K<<0, as well as, finally,
the DOF phase. The most intriguing aspects of the phase
diagram are the disordered flat phase and the transition be-
tween the flat and the DOF phases, the preroughening
transition.!

Similar phase diagrams have been obtained for related
SOS as well as other models with short-range
interactions,>>’-? including variants to describe fcc(110) sur-
faces. In the following, we shall first discuss critical proper-
ties at the preroughening transition and then dynamic prop-
erties of the DOF phase, analyzing the minimal model (1).
The findings are expected to be largely independent of de-
tails of the model.

To determine critical properties at the preroughening tran-
sition, we used Monte Carlo techniques, in particular, apart
from the standard METROPOLIS approach, the Wang-Landau,
and the transition matrix algorithms.!®!! Square systems of
size M2, with M up to 64, have been simulated.!? Taking into
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account finite-size effects, we estimated standard critical ex-
ponents, namely those of the order parameter (the parity?), 8,
and its susceptibility, y, as well as of the correlation length,
v, at K/L=1/8, 1/4, and 1/2; see Fig. 1.

Note that the preroughening transition temperature 7, at
fixed ratio r=K/L, may be obtained quite accurately by fit-
ting the height fluctuations to the ansatz c.g In(M). Increas-
ing M, c 4 tends to zero in the flat and DOF phases, while it
seems to approach at 7, a nonvanishing value, with only
minor finite-size dependences. As a result, the height fluctua-
tions seem to diverge directly at the preroughening. The pref-
actor co(M — 0, T,) is estimated to be smaller than the char-
acteristic value 1/7° of a transition of Kosterlitz-Thouless
type (which occurs, e.g., when going directly from the flat to
the rough phase, see Fig. 1).!? It is found to increase with
K/L, reaching, possibly, 1/7 at the triple point between the
flat, DOF, and rough phases.

The critical exponent S is found to tend to increase with
the ratio of the couplings r=K/L from 1.08+0.09 at r=1/8
to 1.16+0.02 at r=1/4, and then to 1.75+0,03 at r=1/2.

The corresponding estimates for 7y are 2.75+0.23,
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FIG. 1. Phase diagram of the RSOS model, Eq. (1), as obtained
from a transcription of the diagram determined by Rommelse and
den Nijs (Ref. 1), with the circles referring to their results using the
transfer-matrix method. The boundary lines of the DOF phase at
low temperatures follow from the present Monte Carlo simulations.
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2.80+0.03, and 3.50+0.05. For v we obtain 2.40+0.20,
2.52+0.03, and 3.43+0.05. The rather unusual values of the
critical exponents at the preroughening transition are in ac-
cordance with previous estimates.”® Our findings confirm the
nonuniversality of the preroughening transition,> with the
critical exponents depending continuously on K/L. Applying
scaling laws, the critical exponent of the specific heat, «,
turns out to be strongly negative. Actually, from our simula-
tion data, the specific heat appears to vary smoothly with
temperature, preventing a direct estimate of a.

Dynamic properties of the DOF phase have not been stud-
ied in much detail before, despite a wealth of theoretical and
experimental analyses of morphological changes for flat and
rough crystal surfaces. In fact, we are aware of only two
studies on the equilibration of initially flat surfaces in the
DOF phase, driven by evaporation kinetics, using either
Monte Carlo techniques [studying the Hamiltonian (1) with
K=0] or the renormalization-group method.!31

In these two studies, the time evolution of the height fluc-
tuations (Sh?) has been analyzed.'>'# For systems of M
sites, one defines (Sh?)=(Z,(h;—h")*/M?), where h* denotes
the average height. The height fluctuations have been ob-
served and argued'>!* to increase initially logarithmically in
time, both in the rough and DOF phases of RSOS models. In
the DOF phase, the fluctuations then decrease, and finally
they approach the equilibrium value. In contrast, in the rough
phase, the fluctuations grow monotonically before they even-
tually saturate, for finite M.

We confirmed these findings, for K=0 and, in the DOF
phase, kzT/L=0.7 (2.5 in the rough phase), with M ranging
from 16 to 256, using full periodic boundary conditions
(previously'® helical boundary conditions had been
employed).'? The initial height configuration is 4,(r=0)=0.
To mimic evaporation kinetics, we apply the standard
METROPOLIS Monte Carlo algorithm, attempting in each
move to change, at a randomly chosen site i, the height by
+1. In addition to the previous work, we identified, at very
early times, a diffusive behavior, with (6h*) o t, due to uncor-
related height changes at randomly chosen sites. Of course, it
seems doubtful that the logarithmic behavior of (Sh?)(r) will
prevail to arbitrarily long times in the DOF phase when
studying larger and larger systems, in contrast to the rough
phase.

The time evolution of the surface may be visualized by
monitoring Monte Carlo configurations. In the DOF phase, at
early times, several clusters of different local average height,
1/2 or —1/2, are formed, with the height fluctuations grow-
ing logarithmically. In the clusters, the sites are, in a disor-
dered fashion, predominantly at heights 0 and 1 or 0 and —1.
The subsequent decrease in (Sh?) is due to the fact that one
type of cluster, 1/2 or —1/2, prevails in the equilibrated DOF
phase, see Fig. 2. Of course, with full periodic boundary
conditions, the overall average height may eventually wan-
der, tending to stick at neighboring half-integer values. This
effect, with the entire surface undergoing a random walk,
does not affect the height fluctuations.

To analyze more completely the dynamics in the DOF
phase, we also studied the equilibration of various other one-
dimensional profiles imprinted on the surface, in particular
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FIG. 2. Typical equilibrium Monte Carlo configuration in the
DOF phase, with K=0 and kz7/L=0.1, comprising sites at height
—1 (black), 0 (dark gray), and 1 (light gray). The surface has 24°
sites.

steps, periodic gratings, and wires.!? There, the interplay of
the orientation-dependent surface tension and mobility!>1
leads to interesting morphological changes in the rough and
flat phases, for evaporation kinetics as well as for surface
diffusion; see pertinent reviews on theory and
experiments.!7-20

In the DOF phase, a step of monatomic height may be
introduced by fixing the average heights of the sites at two
opposite boundaries to be, e.g., at 1/2 or 3/2, by setting the
heights at these boundary sites alternately O and 1, or 1 and
2, respectively. The other two boundaries are connected by
periodic boundary conditions. Square systems with M? sites
are considered. Averaging over sites parallel to the fixed
boundaries as well as over many, N, realizations of the
equilibration process, one obtains a one-dimensional height
or step profile H(x,t), with x running from, say, —M/2
+1/2 to M/2-1/2. At time #=0, the height configuration is
assumed to look like a checkerboard comprising heights O
and 1 in the half of the surface next to the 1/2 boundary, and
heights 1 and 2 in the other half. Then, H(x,t=0)=1/2 for
x<0, and H(x,1=0)=3/2 for x>0, with a sharp step in
between. As time proceeds, the step profile will start to
broaden, see Fig. 3. In the flat and rough phases, the step
width is known'? to grow asymptotically in time, ¢, and in
the thermodynamic limit, M — o, with a power law oo’ The
characteristic exponent b depends on the transport mecha-
nism and the type of phase. For instance, in the case of
evaporation kinetics, b is 1/2 in the rough and 1/4 in the flat
phase; in the case of surface diffusion, b is 1/4 in the rough
and 1/6 in the flat phase.”?’"> b may be determined from
Monte Carlo data by monitoring the position of the step pro-
file at fixed height.?* In that way, an effective exponent b
may be estimated, approaching the true value b in the limits
M, t— o,

Typical simulated step profiles, applying evaporation ki-
netics, in the DOF phase are depicted in Fig. 3. Analyzing
such profiles, we obtain an effective exponent, for M=128,
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FIG. 3. Evolution of step profiles, H(x,7), in the DOF phase,
K/L=0, kgT/L=0.1, at various times (measured in Monte Carlo
steps per site, MCS), applying evaporation kinetics. Systems of
1282 sites have been simulated, averaging over N=11 200 realiza-
tions. For clarity, only each third profile point, on both sides of the
step, is shown.

approaching, from above, closely 1/2 in the rough phase. In
the DOF phase (M=128,K=0,kzT/L=0.1), the effective ex-
ponent also decreases monotonically with time, the data be-
ing well compatible with an asymptotic value b=1/4, as in
the flat phase. Surface diffusion may be mimicked in the
simulations by attempting to, say, decrease the height at a
randomly chosen site by 1 and to increase simultaneously the
height at a neighboring site by 1. For that dynamics, the
effective b is found to approximate nicely 1/4 in the rough
phase, M =128, and to approach 1/6 in the DOF phase,
M=256, K=0, kgT/L=0.1.

An interesting phenomenon occurs when periodic, one-
dimensional gratings are imprinted on the surface. In the flat
phase, the healing proceeds layer by layer, driven by an an-
nihilation of the meandering steps bordering the top and bot-
tom terraces of the grating.?!:26-3% To study the equilibration
of gratings, especially in the DOF phase, we consider an
initial profile of the form H(x,t=0)=aint[A sin(2mx/M)],
i.e., a discretized sine function with amplitude A. Full peri-
odic boundary conditions are employed for lattices of M?
sites. We first shall present results on evaporation Kinetics,
with wavelength M ranging from 32 to 512.

In the DOF phase, K=0 and, mostly, kz7/L=0.7, the pro-
file of the gratings is quite close to sinusoidal during the
equilibration, showing, however, in the beginning a tendency
toward a broadening near the extrema. The time depend-
ence of the decay of the amplitude, H,,(¢), is illustrated in
Fig. 4, studying profiles with fixed ratio M/A. From this
figure and other simulational data, we infer that the ampli-
tude falls off at fairly early times approximately exponen-
tially, H,,>cexp(—t/7), 7 being the relaxation time, in accor-
dance with the prediction of Mullins' for the rough phase.
In that time regime, 7 is proportional to M?, also as
predicted.15 However, as time goes on, in contrast to the
behavior in the rough phase, a systematic deviation from the
exponential decay occurs, with a significantly slower equili-
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FIG. 4. Time, measured in Monte Carlo steps per site divided by
M?, dependence of the amplitude H,, of sinusoidal gratings for
various system sizes, M, and initial amplitudes A, setting K=0 and
kgT/L=0.7. Evaporation kinetics is simulated, averaging over sev-
eral (ranging from N=10 for M=512 up to N=48 000 for M=32)
realizations. The dashed lines correspond to an exponential decay of
the amplitude H,,. In the inset, the effective relaxation time, 7., as
a function of H,, is shown for M =64, A=10.

bration. When fitting there the decay to a power law, the
effective exponent depends both on time and the wavelength
M (fixing M/A), becoming lower for larger systems (in the
largest system we studied, M =512, we find an effective ex-
ponent of roughly —1.5 to —2). Note that one might still be
rather far from a characteristic asymptotic temporal depen-
dence. For comparison, in the flat phase, the equilibration is
predicted®' to follow, at long times, H,,o ", The deviation
from the exponential form sets in at a larger amplitude for
gratings with larger wavelength and larger initial amplitude
A, see Fig. 4. Indeed, that amplitude seems to grow like M?,
with & being about 5/4. As a result, we tend to conclude that
the theory of Mullins describes merely a transient behavior
for gratings of finite wavelength in the DOF phase.

By inspection of Monte Carlo configurations during the
relaxation, one observes the decay to proceed layer by layer.
At a reference moment of time, the top (and bottom) terrace
of the grating may display a flat disordered structure, with
the sites being predominantly at the integer heights n and
n—1, yielding an amplitude H,, of approximately n—1/2.
The terrace is now bordered by two meandering steps, and
the amplitude of the profile (as it follows from averaging
over many realizations) may decrease fairly slowly, when
time goes on. Eventually the two steps may touch each other,
giving rise to islands of flat disordered structures on top of
another flat disordered terrace of average height n—3/2. The
islands then shrink and dissolve quite quickly, associated
with a rather fast decay of the amplitude. As a result, we
expect two time scales, due to the meandering of the steps
and the dissolving of islands, in accordance with previous
simulational results on the equilibration of gratings in the flat
phase.?%?7 Indeed, as exemplified in the inset of Fig. 4, the
two time scales lead to an oscillatory behavior in the effec-
tive relaxation time, 7.;=—(d In H,,/dt)~", as a function of
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the amplitude H,,. The pronounced increase of 7. at small
amplitudes corresponds to the onset of the slower, non-
exponential decay, discussed above. In the rough phase,
these oscillations tend to fade away.

In the case of surface diffusion, similar features hold. We
set K=0 and kzT7/L=0.7 in the DOF phase (kzT/L=2.5 in
the rough phase), with A ranging from 3 to 6, and with M
ranging from 24 to 48. The equilibration proceeds on much
longer time scales than in the evaporation case. First, as is
true for evaporation kinetics as well, the discretized initial
configuration relaxes to a close-to-sinusoidal profile with dis-
ordered flat structures at the extrema. Then, still at early
times, the decay is described well by an exponential time
dependence, with the relaxation time being proportional to
M*, in agreement with Mullins’ theory for surface diffusion
in the rough phase.'> Eventually, as time goes on, in the DOF
phase a slowing down sets in, as for evaporation-
recondensation. A crossover from an exponential decay to a
slower decay at larger times had been found before for sur-
face diffusion in the flat phase, with the crossover time de-
pending on temperature.?’
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Finally, we studied the flattening of one-dimensional wire
profiles. In the DOF phase, applying evaporation kinetics,
the equilibration proceeds again layer by layer, driven by
step annihilation at the disordered flat top terraces, accompa-
nied by two time scales. Analogous features have been found
before for the flat phase.”! The excess mass at the surface,
due to the wire, changes with time, with the average height
tending to approach a half-integer value. In contrast, in the
rough phase, the excess mass is nearly conserved. In the
rough phase, the amplitude of the wire approaches a decay
H,,«t""2, as predicted by Mullins’ theory and already con-
firmed in previous simulations. To determine the asymptotic
decay law in the flat?! and DOF phases, presumably wires
with very large initial width and amplitude are needed, being
beyond the reach and scope of the present study.

In summary, the preroughening transition is found to be
nonuniversal. Dynamic properties in the DOF phase re-
semble partly ones observed in the flat phase, and partly ones
observed in the rough phase. They deserve to be studied in
even more detail in the future.
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