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We study a particle on a ring in the presence of various dissipative environments. We develop and solve a
variational scheme assuming low frequency dominance. We analyze our solution within a renormalization
group �RG� scheme to all orders which reproduces a two loop RG for the Caldeira-Legget environment. In the
latter case the Aharonov-Bohm �AB� oscillation amplitude is exponential in −R2, where R is the ring’s radius.
For either a charge or an electric dipole coupled to a dirty metal we find that the metal induces dissipation,
however the AB amplitude is �R−2 for large R, as for free particles. Cold atoms with a large electric dipole
may show a crossover between these two behaviors.
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The problem of interference and dephasing in presence of
dissipative environments is of significance for a variety of
experimental systems and a fundamental theoretical issue.
The experimental systems include mesoscopic rings embed-
ded on various surfaces where Aharonov-Bohm �AB� oscil-
lations can be measured,1,2 and the related problem of deco-
herence at low temperatures.3 A different type of
experimental systems are cold atom traps created by atom
chips,4–6 or trapped excited atoms with huge electric
dipoles.7 The atom chip that produces a magnetic or electric
trap for the cold atoms necessarily also produces noise. Our
problem is then relevant for evaluating the interference am-
plitude of cold atoms or molecules in presence of such noise.

As an efficient tool for monitoring the effect of the envi-
ronment we follow a suggestion by Guinea8 to find the AB
oscillation amplitude as function of the radius R of the ring,
as measured by the curvature9,10 1 /Bc of the ground state
energy E0 at external flux �x=0, i.e., 1 /Bc=�2E0 /��x

2�0. For
free particles of mass M this amplitude is the mean level
spacing �1/MR2. Two types of environments were sug-
gested to lead to an anomalous suppression, i.e., a stronger
decrease of the oscillation amplitude than 1/R2: system �i� is
that of a Caledeira Legget bath and system �ii� of a charge in
a dirty metal environment.

System �i� is relevant to the Coulomb blockade
problem9–12 as well as to quantum dots at a distance from
metallic gates.13 This problem has been extensively investi-
gated by instanton methods,14–17 by RG methods,8,9,18 and by
Monte Carlo �MC� methods.9,10,19 All methods show that Bc
increases exponentially with the dissipation strength �, i.e.,
Bc��−�e�2�, with differences in the exponent �. In second
order renormalization group9 �RG� �=2, real time RG
gives18 �=6.5, instanton methods give either14 �=2 or15,17

�=3, or16 �=4, while MC suggests19 �=5. This system was
also studied by a variational approach21 which was solved
numerically showing a nonperturbative regime at strong �.
Since �=�R2 where � is a friction coefficient, a length scale
� /�� is identified,8 beyond which the AB oscillations decay.

The system �ii� was investigated by RG methods8 finding
Bc�R2+�� with ���1 nonuniversal, while MC data20 shows
���1.8. Furthermore, the MC data shows that at any finite
temperature an exponential form appears, with a temperature
independent length.

In the present work we study also the effective action for
an electric dipole coupled to a dirty metal. This system �iii�,
which is relevant to experiments on cold atoms7 or mol-
ecules, is found to induce dissipation on the dipole. We then
solve these systems by a variational method. We test our
method on system �i�, which is extensively studied yet still
controversial. Our aim is, however, to develop an efficient
method for a large class of dissipative environments as in
systems �ii� or �iii�.

We show, within the variational method, that at zero tem-
perature the effective mass B /R2 of the zero winding number
sector determines the curvature, i.e., B=Bc. We find that the
variational method defines an RG scheme to all orders and it
reproduces the known RG equation 9 to two loops in system
�i�. In systems �ii� and �iii�, we find that the environment
induces dissipation in the effective action, however the ef-
fective mass remains B /R2�R0 for large R, as for free par-
ticles. As a measurable result, we show that giant Rydberg
atoms7 with huge dipole moments are sensitive probes of
metallic environments. They allow a crossover from system
�i� �at small R� with exponential decrease in its interference
amplitude to a large R behavior with the much weaker 1 /R2

behavior.
The time dependent angular position �m��� of a particle on

the ring has in general a winding number m so that �m���
=����+2�m� /	, where ��0�=��	� has periodic boundary
condition and 	 is the inverse temperature �	→
 below�. In
presence of �x the partition sum has the form

Z = �
m

e2�im�x−2�2m2MR2/	Zm,

Zm =� D�e−S1	����
−Sint	����+2�m�/	
, �1�

where in presence of a general dissipative bath the effective
action can be written in terms of Fourier coefficients8 �n

S1	�
 = �
0

	

d�
1

2
MR2� ��

��
�2

,
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Sint	�m
 = �
n

�n�
0

	 �
0

	

d�d��

�2	−2sin2n

2
��m��� − �m������

sin2��	−1�� − ����

�2�

and �n depend on the type of bath. At �→�� �or at high
frequencies �� one can expand the sin2�¯� in Eq. �2� and
then Sint→�n�nn2�d� �� � ��m����2, identifying a dissipative
system. The Caldeira Legget bath has a single �n with �1
=�R2 while a charged particle in a dirty metal bath has8,20

�n� 2�
�r ln�r /n� for 1�n�r and �n�0 otherwise; here l is

the mean free path, kF is the Fermi wave vector, r=R / l, and
�=3/ �8kF

2 l2�.
As a new realization of Eq. �2� we consider an electric

dipole p perpendicular to the plane of the ring and coupled to
a dirty metal. The interaction with the fluctuating electric
field E�r ,�� is p�0

	Ez�R��� ,��d�, where R���
=R�cos ���� , sin ����� is the particle’s position on the ring.
After a Gaussian average we have Sint=

1
2 p2��d�d��f�X ,�

−���, where X=R���−R���� and

f�X,�� = �Ez�R���,��Ez�R�0�,0�� = �
q,�n

eiq·X−i�n�
4�qz

2

q2�i��n�,q�

�3�

with �i ��n � ,q� being the dielectric function20 �n=2�n /	.
The frequency sum yields the form �2� with

3

8kF
2 l2

p2

e2l21 − �4r2sin2 z

2
+ 1�−3/2� = �

n

�nsin2 n
z

2
. �4�

Hence, for large r, �n� 1
r
�1− n2

r2 � for n�r and �n�0 other-
wise.

The variational method22 for Zm finds the best Gaussian
approximation, i.e., S0= 1

2	��n
G−1��n� ����n��2 so that the

variational free energy 	Fvar=	F0+ �S1+Sint−S0�0 is mini-
mized; here �¯�0 is an average with respect to exp�−S0� and
F0 is the free energy corresponding to S0. The method is
tested below by RG results, where available, and is found to
reproduce these RG results. The interaction term is then

�Sint�0 = 	�
n

�n�
0

	 d�

2�2 	1 − cos�2�nm�/	�

�e−n2��G����1−cos�����
 , �5�

where ��=�d� /2� and the variational equation
�Fvar /�G��n�=0 becomes

G−1��� = MR2�2

+ 2�
n

�nn2�
1/�c




d�
1 − cos����

�2 cos�2�nm�/	�

�e−n2��1
G��1��1−cos��1���. �6�

Here the limit 	→
 is taken �except for the m dependent
term� and a cutoff �c is introduced to control the short time
behavior. This cutoff represents a high frequency limit of the
bath degrees of freedom.

In the following we will study the variational equation
with m=0. To justify this, we show now that the effective
mass B of the m=0 system is indeed what is needed to find
the AB oscillation amplitude at 	→
. The effective mass is
defined by G−1���=B�2 in the limit �→0 and is identified
from Eq. �6� at 	→
 as

B = MR2 + �
n

�nn2�
0




d�e−n2��d�/2��G����1−cos�����. �7�

We use here �m2��	 �Eq. �1�� and convergence in � due to
the exponent in Eq. �6� �exp�−n2� /B�. Hence
cos�2�nm� /	�→1+O�1/	� in Eq. �6� and the effective
mass B is m independent.

The AB oscillation amplitude is usually measured by the
curvature 1/Bc=−�2E0 /�2�x�0=4�2�m2� /	�0. To identify Bc

we expand ln Zm=−	Fvar�m� in m /	 and since at m=0 we
have �G��� /�m=0 and �Fvar�m� /�G=0 �the variational con-
dition� the leading term is from expanding Eq. �5�

	Fvar�m� = 	Fvar�0� +
4�2

	
�B − MR2�m2 + O�m4/	3� . �8�

The effect of Sint in the partition sum Eq. �1� is therefore to
replace the factor 2�2MR2m2 /	 by 2�2Bm2 /	, i.e., the re-
sponse to an external flux is that of a free particle with a
mass renormalized to B /R2. Our task is therefore to study the
m=0 system and find this renormalized mass.

We note that at finite 	�B /n2 the � integrals are not
suppressed by the exponential factor and �Sint�0

��2�n�nn �m�, corresponding to instanton trajectories.14–16

Hence for large �n only the lowest m sectors contribute, in
contrast with low temperatures where �m2��	 /B→
; This
defines a crossover temperature 	*�B /n2.

We assume now that the frequency integral in Eq. �6� is
dominated by low frequencies and derive a simplified varia-
tional equation. Consider first the regime ���c, but � is not
too small, i.e., ln��c /���1. This is a perturbative regime
where the significant low frequencies are not yet manifested.
For large dissipation coefficients �n the term in the exponent
of Eq. �6� is small, and G−1���=MR2�2+���n�nn2. This
form shows that the �2 term acts as cutoff �c� in ��G��� with
�c�=��n�nn2 / �MR2�; we choose �c as the lowest of the
original �c and �c� and ignore the bare �2 term. The next
order in perturbation is then

G−1��� = ���
n

�nn2�1 −
n2

�2�m
�mm2

ln
�c

� � �9�

which identifies the perturbation parameter, i.e., the pertur-
bative � range is large for system �i�, while for systems �ii�
and �iii� the n�r terms require ln �c /��1.

We proceed now to the significant range of ���c and
assume the general form

G−1��� = f���, �0 � � � �c,

G−1��� = B�2, � � �0. �10�
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It is convenient, for ���0, to study a derivative of Eq. �6�
for which the oscillating sin���� /� is replaced by 1 while the
� integration acquires a cutoff ��1/�1�, such that the result
should not be sensitive to �1�1.

We assume now that the integral in the exponent of Eq.
�6� is dominated by �1�1/� where the cos �1� averages to
zero. For ���0 this requires 1 /B�0���0

�cd�1 / f��1� �con-
dition �i��. Introducing a second cutoff uncertainty �2 we
obtain in terms of �2=1/�

f���� = 2��
n

�nn2�
�1�

�c d�2

�2
2 e−n2��2�2

�c d�1/�f��1�. �11�

Taking d /d� we obtain our main equation for f���,

f���� = ���
n

�nn2e−n2��
�cd�1/�f��1�, �12�

where �f����� f���� is assumed �condition �ii��. Here �1

=2/ ���� and �1�2=1 are chosen, to connect smoothly with
the perturbative regime where f���c�=���n�nn2; from Eq.
�9�

� = 1 +
�n

�nn4

���n
�nn2�2

. �13�

A similar analysis for the range ���0 leads to f���0�
=��B�0 �note the similarity of Eqs. �7� and �12�� with ��
reflecting cutoff uncertainties. Hence Eq. �12� is to be solved
with the boundary conditions �� given by Eq. �13��

f��c� = ��c�
n

�nn2, f��0� = B�0
2,

f���c� = ���
n

�nn2, f���0� = ��B�0. �14�

We show now that the variational Eq. �12� can be solved
by an RG process. The latter identifies a change in the cutoff
d�c=�c�−�c combined with a change in the couplings d�n
=�n�−�n such that Eq. �12� for f���� is unchanged. In terms
of dl=−d�ln �c� this yields an RG equation to all orders
�provided ���m� is known�

d�n

dl
+

�n

�
�
m

��

��m

d�m

dl
= −

n2�n

�2�m
�mm2

, �15�

which to lowest order ��=1� agrees with the RG proposed
by Guinea.8 In system �i� with a single � we obtain to order
1 /� �and ���1 for brevity�

d�

dl
= −

1

�2 −
1

�4�
�16�

which amazingly is precisely the two loop RG result9 �re-
quiring 14 diagrams�. For system �ii� �n�nn4 / ��n�nn2�2

=O�1� is independent of the large parameter r. Hence there
is no expansion parameter for the RG, yet the variational
method is useful as shown below.

We proceed to solve the nontrivial Eq. �12� for the
Caldeira-Legget system. Differentiating Eq. �12� we obtain

f����=
f����

�f��� which upon integration yields

f���� = �−1ln�Kf���� , �17�
where from the boundary conditions �14�

K =
e�2��

���c
. �18�

A solution of Eq. �17� requires an asymptotic expansion
of the log integral �df / ln f , an expansion that is not available
in standard textbooks. We develop here a large � expansion
using the following idea: In terms of f���=�g�K�� we have

g�x� + xg��x� = �−1ln�xg�x�� . �19�
The boundary condition at �=�c can be written as

g� e��2�

��
� = �� . �20�

We claim that if the function g�K�� is chosen such that it
does not depend explicitly on �, except through its argument
K���, then a useful large � expansion is generated. The
boundary condition �20� becomes a functional relation in-
volving ����. To show our claim we use the boundary con-
dition �20� g�xc�=�� at xc=K�c, its derivative xcg��xc�

=�
K���

K���� , and f���c�=���=g�xc�+xcg��xc� to yield

� = 1 +
K���

�K����
= 1 +

1

�2�� − 1 + �2�2d�

d�

. �21�

This relation generates a large � expansion with the leading
form �=1+ ��2��−1+O���−2, consistent with the perturba-
tion expansion �13�. It is remarkable that the initial values for
Eq. �17� as given by the perturbation expansion are precisely
such as to allow for an asymptotic expansion of Eq. �21�.

We note that combining the RG equation �15� with �21�
leads to yet another remarkable relation

d�

dl
= ��1 − ����� , �22�

where ���� solves Eq. �21�. Hence 1−���� is the exact 	
function within the variational method. In view of its success
in reproducing the two loop result9 it may hold even to
higher orders in RG for the original action �2�.

For ���c we choose �̄��� such that K��̄�����c

=K����. The boundary condition �20� with �̄ produces then
the solution f���=�g�K��=���̄��� with �̄��� the solution
of

K� =
e�2�̄������̄����

��̄���
. �23�

Inverting this relation we find

f��� = ���̄��� =
�

��
ln���̄K��

=
�

��
ln�K�

��
ln���̄K��� =

�

��
ln�K�

��
ln�K�

��
¯ ��

�24�

and at least two ln embeddings are needed for a large �
solution.
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To identify the effective mass B we note that the boundary
condition for Eq. �17� at �0 is K�0=e���B�0 /B�0 so that
g�K�0�=B�0 becomes g�e���B�0 /B�0�=B�0. This equation
does not involve the large parameter �, hence B�0�1,
K�0�1, and the effective mass is

B �
1

�0
�

e�2�

��c
. �25�

Condition �i� for Eq. �12� is satisfied if ln �1�1, while
condition �ii� requires ln � /�0�1; this is valid in the expo-
nentially large range ��0����c while in the relatively
small range ��0 ,��0� O�1� changes occur in Eq. �12�.

We conclude that the effective mass is exponentially
large, Eq. �25�, and that the power of the prefactor is �=2, as
in the second order RG result9 �we use the cutoff �c=�c�
=�� /MR2 here, which adds 1 to the power of � in Eq. �25��.
The crossover temperature is 1 /	*��0 where �m2� drops
from the divergent �	 /B to a small �1/� value at high
temperatures.

We proceed now to multi-�n problems. A generalized
asymptotic expansion in the parameter ��n�nn2�2 /�n�nn4 is
possible. Replacing �n→��n we obtain that Eq. �12� is
equivalent to

� = 1 +
1

��2��
d�

d�
+ ����n

�nn2�2

�n
�nn4

− 1

. �26�

It is again remarkable that the perturbation expansion �22�
allows an asymptotic expansion of Eq. �26� for large �, i.e.,
from Eq. �13� �2d� /d��O��0� produces higher order terms.

We show now that for the charge or dipole in a dirty metal
environment, systems �ii� and �iii�, the dependence on the
radius is B�R2 as for the free particle. For both cases and
for r�1 �n=r−1�*�n /r� with �*�n /r� decaying to 0 after a
large number of terms n�r. Hence the action in Eq. �2� has
the form, for the m=0 winding number

Sint	�0
 = �
n=1

n=r

�1/r��*�n/r�S̄	n�0���
 → �
0

1

dx�*�x�S̄	x�̄0���
 ,

�27�

where ���� is rescaled, �̄0���=r�0���. The action �including
the free term S1� is then r independent and therefore the

effective mass for ��̄0����2 is r independent, which after
unscaling yields B�r2. We rely here on the variational
scheme only to the extent that it shows that Bc can be de-
duced from the m=0 sector, i.e., B=Bc. For an actual solu-
tion for f��� we can imagine starting from a large � and
integrating Eq. �26� to an actual value of ��1. Since Eq.
�26� is r independent for large r, the resulting � will also be
r independent.

We note that for r�1 the dipole problem reduces to that
of the Caldeira Legget system �i� with �= 9r2

4kF
2 l2

� p
el

�2. Hence

for large p, as for the giant Rydberg atoms,7 one can be in the
regime of large � showing the exponential dependence
of Eq. �25�. Upon further increase of r a crossover to the
free particle form is predicted with B�r2. We also note
that the instanton crossover temperature 	*=B /r2 is r inde-
pendent. At temperatures above 1/	* we have �m2��e−��r

with ��= 3�

2kF
2 l2 for a charged particle, as in Ref. 20, while

��= 3�

kF
2 l2

� p
el

�2 for a charge dipole.

In conclusion, we developed and solved a variational
scheme for a large class of dissipative systems. The solution
provides an RG of a high order, provided that a coefficient
� is derived to high order in the perturbative regime. We also
found an efficient asymptotic expansion for the relevant type
of differential equations. We applied our method to the
Caldeira-Legget system and found that its AB amplitude be-
haves as �R2e−�2�R2

. For a charged particle or a charged
dipole in a dirty metal environment we find for large R an
AB amplitude of �R−2 as for free particles, in contrast with
previous results.8,20 Huge charge dipoles7 in a dirty metal
environment can show a variety of behaviors and provide
therefore a valuable probe of dissipative environments.
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