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We investigate the energy and phase relaxation of a superconducting qubit caused by a single quasiparticle.
In our model, the qubit is an isolated system consisting of a small island �Cooper-pair box� and a larger
superconductor �reservoir� connected with each other by a tunable Josephson junction. If such a system
contains an odd number of electrons, then even at lowest temperatures a single quasiparticle is present in the
qubit. Tunneling of a quasiparticle between the reservoir and the Cooper-pair box results in the relaxation of
the qubit. We derive master equations governing the evolution of the qubit coherences and populations. We find
that the kinetics of the qubit can be characterized by two time scales—quasiparticle escape time from the
reservoir to the box �in

−1 and quasiparticle relaxation time �. The former is determined by the dimensionless
normal-state conductance gT of the Josephson junction and one-electron level spacing �r in the reservoir
��in�gT�r�, and the latter is due to the electron-phonon interaction. We find that phase coherence is damped on
the time scale of �in

−1. The qubit energy relaxation depends on the ratio of the two characteristic times � and �in
−1

and also on the ratio of temperature T to the Josephson energy EJ.
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I. INTRODUCTION

Recent experiments with superconducting charge qubits
demonstrated coherent oscillations between two charge states
of a superconducting island, a so-called Cooper-pair box
�CPB�, in a single-electron device.1–4 A device with a large
superconducting gap ��Ec�EJ�T can be controlled with
the gate voltage and magnetic flux, and has only one discrete
degree of freedom: the number of Cooper pairs in the box.
�Here Ec is the charging energy of the island, and EJ is an
effective Josephson energy of its junctions with the reservoir;
EJ can be tuned by the flux.� The practical implementation of
superconducting qubits requires long coherence times.5 Al-
though the contribution of the quasiparticles to the decoher-
ence of the existing qubits is not the leading one,6,7 it limits
qubit operations on the fundamental level. This motivates us
to study the qubit dynamics in the presence of a quasiparti-
cle.

In this paper we consider energy and phase relaxation in a
superconducting charge qubit due to the presence of a single
quasiparticle. Passing of a quasiparticle through the Joseph-
son junction leads to the escape of the qubit out of a two-
level system Hilbert space, and thus determines the decay
rate of coherent oscillations. In a previous paper,8 we evalu-
ated rates of the elementary acts involving quasiparticle tun-
neling. In particular, we showed that the rate of tunneling
into the CPB �in is determined by the dimensionless �in units
of e2 /h� conductance gT of the junction between the CPB
and the reservoir, and level spacing in the reservoir �in
�gT�r /4�. The rate of tunneling out of CPB is �out
�gT�b /4� with �b being level spacing in the box. Taking
into account the difference in the volumes �Vr�Vb�, one can
notice that �out��in. Therefore, for a sufficiently small box
the quasiparticle dwelling time in the CPB is very short, and
the qubit spends most of the time in the “good” part of the
Hilbert space. Nevertheless, the evolution of the qubit will be
affected by quick “detours” the qubit takes outside that part

of the Hilbert space. We demonstrate that even a single de-
tour destroys the coherence of the qubit. Combined with the
phonon-induced relaxation of the nonequilibrium quasiparti-
cle in the reservoir, the detours also lead to the relaxation of
the populations of the qubit states. We derive and solve the
master equations for the dynamics of the qubit, which de-
scribe its relaxation caused by a quasiparticle.

The paper is organized as follows. We begin in Sec. II
with a qualitative discussion and brief overview of the main
results. In Sec. III we derive the microscopic master equa-
tions for the dynamics of the qubit without quasiparticle re-
laxation. We solve these equations and discuss the kinetics of
the coherences and populations in Secs. IV and V. In Sec. VI
we incorporate mechanisms of quasiparticle relaxation into
the master equations and solve them for fast and slow qua-
siparticle relaxation limits. Finally, in Sec. VII we summa-
rize our main results.

II. QUALITATIVE CONSIDERATIONS AND MAIN
RESULTS

Dynamics of the superconducting charge qubit is conven-
tionally described by an effective Hamiltonian9

Hqb = Ec�N − Ng�2 + HJ, �1�

where Ec is charging energy of the box, N is the charge of the
CPB in units of one-electron charge e, and Ng is the dimen-
sionless gate voltage. The Hamiltonian of Cooper-pair tun-
neling HJ is defined as HJ=−

EJ

2 ��N+2��N�+H.c.�, where EJ is
the Josephson energy. In the case of a large superconducting
gap

� � Ec � EJ � T ,

the existence of quasiparticles is usually neglected, and the
dynamics of the system is described by Hamiltonian �1� with
only one discrete degree of freedom, the excess number of
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Cooper pairs in the box. The qubit can first be prepared in a
state with an integer number of pairs in the CPB, e.g., in
state �N� with even N, and then tuned to the operating point
by adjusting the gate voltage to the value Ng=N+1. The
charge degeneracy between states �N� and �N+2� at this point
is lifted by the Josephson tunneling, and the states of the
qubit are described by the symmetric and antisymmetric su-
perposition of the charge states �−�= �N�+�N+2�

�2
and �+ �

= �N�−�N+2�
�2

with energies

	− = Ec − EJ/2 and 	+ = Ec + EJ/2, �2�

respectively. Other charge states have much higher energy,
and effectively the Cooper-pair box reduces to a two-level
system. Being coherently excited by such tuning, the qubit
oscillates between the states ��� and �
� with the frequency
defined by the Josephson energy EJ.

The presence of a quasiparticle with a continuum excita-
tion spectrum provides a channel for relaxation of the qubit.
If the state �N� is prepared in equilibrium conditions, then the
quasiparticle resides in the reservoir part8 of the qubit. Upon
tuning of the qubit from state �N� to the operating point, a
charge degeneracy point for the system is passed at Ng=N
+1/2, see Fig. 1. �Hereafter we assume equal superconduct-
ing gap energies in the reservoir and Cooper-pair box.� How-
ever, if tuning is performed fast enough, the quasiparticle
remains in the reservoir.10

The coherent charge oscillations at the operating point of
the qubit continue until the particle finds its way into the
CPB. On average, this occurs on a time scale of the order of
�gT�r /4��−1. There are several assumptions that allow for
this estimate.8 First, the quasiparticle level spacings �b and �r
in the CPB and reservoir, respectively, must be small com-
pared with the temperature T, which defines the initial width

of the energy distribution of the quasiparticle. Second, the
fluctuations of the potential between the grains must exceed
�r, see, e.g., Ref. 11. Third, we neglected the difference be-
tween � and Ec when including in the estimate the density of
states and tunneling matrix elements of a quasiparticle at
energy �Ec above the gap in the CPB. Under these condi-
tions, the average time it takes the quasiparticle to leave the
reservoir and enter the CPB is of the order of the inverse
level width of a state in the reservoir with respect to leaving
it through the junction of conductance gT

�in
−1 � �gT�r

4�
	−1

. �3�

Once the quasiparticle enters the CPB, the charging en-
ergy that the qubit has at operation point is transformed into
the kinetic energy of the quasiparticle, see Fig. 1. The qua-
siparticle may escape the CPB leaving the qubit in the ex-
cited or ground state, see Fig. 2. The rates of escape into
these states are different due to the difference of the kinetic
energies available to the quasiparticle upon the escape and
due to the energy dependence of the superconducting density
of states ����. If the qubit ends up in the excited state upon
the escape, then only energy ��T is available for the quasi-
particle, and ��T���r

−1�� /T�1/2 �we used here the condition
��T�. The corresponding escape rate is

�out
�+� �

gT�b

4�
��

T
. �4�

If the qubit arrives in the ground state, then energy �EJ is
available to the quasiparticle, and its density of states in the
final state is ��EJ���r

−1�� /EJ�1/2; the rate of escape to this
state is

FIG. 1. �Color online� Energy of the Cooper-pair box as a func-
tion of dimensionless gate charge Ng in units of e �solid line�. Near
the degeneracy point �Ng=1� Josephson coupling mixes charge
states and modifies the energy of the CPB. The dashed line corre-
sponds to the charging energy of the CPB with an unpaired electron
in the box. At Ng=0.5, the tunneling rate �in lifts the degeneracy
between the ground state of the CPB �solid line� and a state with a
single quasiparticle in CPB �dashed line�. We assume equal super-
conducting gap energies in the reservoir and CPB.

FIG. 2. �Color online� Schematic picture of the transitions be-
tween the qubit states in the presence of a quasiparticle in the res-
ervoir, e.g., �+ ,Ep�↔ �o ,Ek�. Having kinetic energy �EJ the quasi-
particle can emit a phonon. The corresponding state of the system is
�−,Ep+EJ�.
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�out
�−� �

gT�b

4�
� �

EJ
. �5�

These two rates are much higher than �in because �b��r, so
detours of the quasiparticle to the CPB are short compared to
the time quasiparticle spends in the reservoir. Nevertheless,
the typical time the quasiparticle spends in the CPB is much
greater than the oscillation period of the qubit. Indeed, the
ratio

�out
�−�

EJ
�

�b

�
� �

EJ
�6�

is small: �b /��10−4−10−3 for any reasonable size of the
CPB �we used here the Ambegaokar-Baratoff relation be-
tween EJ, gT, and ��. The times of return of the quasiparticle
back to the reservoir are randomly distributed. The probabil-
ity of the quasiparticle returning to the reservoir during times
that are short compared to the oscillation period 2� /EJ is of
the order �out /EJ and is small �here we do not distinguish
between �out

�−� and �out
�+��. Therefore, a single detour of the qua-

siparticle into the CPB destroys coherent oscillations of the
qubit with overwhelming probability. Taking into account the
relation �in�out

± , we find that the dephasing rate for the
qubit, induced by the quasiparticle, is limited by the rate of
quasiparticle tunneling into the CPB

1

T2
� �in �7�

with �in of Eq. �3�.
Unlike the phase, the energy stored in the degrees of free-

dom described by the qubit Hamiltonian �1� is not dissipated
at the short time scale given by Eq. �7�. We start analyzing
the time evolution of the qubit energy by considering the
limit of infinitely slow quasiparticle relaxation �the latter
typically is determined by the electron-phonon interac-
tion13,14�. If initially the system was prepared in the ��� state,
then upon a single cycle of quasiparticle tunneling, the qubit
ends up in the ground state with a small probability defined
by the ratio �out

�−� /�out
�+� ��T /EJ. In other words, the qubit en-

ergy will randomly change over time between two values 	+
and 	−, see Eq. �2�. The portion of the time, the qubit spends
in the ground state and the quasiparticle is excited to the
energy EJ above the gap, is small ��T /EJ.

The portion of time that the quasiparticle spends in an
excited state in the reservoir becomes important when we
account for the phonon-induced relaxation of the quasiparti-
cle. Having energy EJ, the quasiparticle may emit a phonon
at some rate 1 /� and relax to a low-energy state. The relax-
ation of the quasiparticle will prevent further reexcitation of
the qubit into ��� state and result in qubit energy relaxation.
To find the energy relaxation rate of the qubit, we multiply
the portion of time the quasiparticle spends in the excited
state by the relaxation rate 1 /�:

1

T1
�� T

EJ

1

�
. �8�

This estimate is applicable if ��1/�in, and many cycles oc-
cur before the energy is dissipated into the phonon bath.

In the opposite case of fast relaxation �1/�in, the qua-
siparticle loses its energy the first time it gets it from the
degrees of freedom of Hamiltonian �1�. Therefore, in this
case the qubit energy relaxation on average occurs on the
time scale

1

T̃1

�� T

EJ
�in. �9�

For aluminum, a typical superconductor used for charge
qubits, the quasiparticle relaxation time � is indeed deter-
mined by the inelastic electron-phonon scattering,13,14 and at
low energies ���EJ� it can be estimated as ��10 �s. For a
small mesoscopic superconductor this time is longer than the
typical values of 1 /�in, and Eq. �8� gives an adequate esti-
mate for the qubit energy relaxation rate.

A comparison of the phase relaxation time �7� with even
the shortest of the two energy relaxation times �9� indicates
that the coherence is destroyed much earlier than the popu-
lations of the qubit states approach equilibrium. Therefore
one may consider the decay of qubit coherence separately
from the process of equilibration, which involves the
electron-phonon interaction in addition to the quasiparticle
tunneling. In the rest of the paper, we derive and solve the
master equations, which yield results discussed qualitatively
in this section.

III. DERIVATION OF THE MASTER EQUATIONS
WITHOUT QUASIPARTICLE RELAXATION

The Hamiltonian of the entire system consists of the qubit
Hamiltonian Hqb, BCS Hamiltonians for the superconducting
box and reservoir HBCS

b and HBCS
r , respectively, and quasipar-

ticle tunneling Hamiltonian V:

H = H0 + V , �10�

where H0=HBCS
b +HBCS

r +Hqb and perturbation Hamiltonian
V takes into account only tunneling of quasiparticles V=HT
−HJ. The tunneling Hamiltonian HT is defined as

HT = 

kp�

�tkpck,�
† cp,� + H.c.� , �11�

where tkp the is tunneling matrix element, ck,�, cp,� are the
annihilation operators for an electron in the state k ,� in the
CPB and state p ,� in the superconducting reservoir, respec-
tively; HJ is of the second order in tunneling amplitude12

HJ = �N��N�HT
1

E − H0
HT�N + 2��N + 2� + H.c. �12�

The matrix element �N�HT
1

E−H0
HT�N+2� is proportional to

effective Josephson energy EJ, and HT is defined in Eq. �11�.
Without quasiparticles Hamiltonian H0 reduces to Eq. �1�,
and qubit dynamics can be described using the states ��� and
�
�. In the presence of a quasiparticle, qubit phase space
should be extended. Relevant states now are �+ ,Ep�, �−,Ep�,
and �o ,Ek�. The first two states �± ,Ep� correspond to qubit
being in the excited �ground� state ��� and a quasiparticle
residing in the reservoir with energy Ep=��p

2 +�2:
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� ± ,Ep� � � ± � � �Ep� .

The third state �o ,Ek� describes the qubit in the “odd” state
with N+1 electrons in the box, i.e., the qubit escapes outside
of its two-level Hilbert space. Here Ek=��k

2+�2 is the energy
of the quasiparticle in the box. Perturbation Hamiltonian V
causes transitions between the states �± ,Ep� and �o ,Ek�, see
Fig. 2. Note that V does not induce the transitions between
�+ ,Ep� and �−,Ep�.

The evolution of the full density matrix of the system is
described by Heisenberg equation of motion ��=1�:

�̇I�t� = − i�VI�t�,�I�t� , �13�

where subscript I stands for the interaction representation,
i.e., VI�t�=eiH0tVe−iH0t. The iterative solution of Eq. �13�
yields for the matrix elements of the density matrix

�s��̇I�t��s�� = − i�s��VI,��0��s��

− �
0

t

d��s��VI�t�,�VI�t − ��,�I�t − ���s�� ,

�14�

where �s� can be �+ ,Ep�, �−,Ep� or �o ,Ek�. The interaction
Hamiltonian V has no diagonal elements in the representa-
tion for which H0 and ��0� are diagonal. Therefore, the first
term in right-hand side of Eq. �14� is equal to zero,

�s��̇I�t��s�� = − �
0

t

d��s��VI�t�,�VI�t − ��,�I�t − ���s�� .

�15�

Equation �15� implies that evolution of the projected density
matrix is proportional to V2. Since interaction is assumed to
be weak, the rate of change of �I�t−�� is slow compared to
that of VI�t�. Therefore, one can approximate �I�t−�� by �I�t�
in the right-hand side of Eq. �15� �see, for example, Refs. 15
and 16 for more details on the derivation�. Finally, going
back to the original representation, we arrive at the following
system of master equations

�s��̇�t��s�� = − i�s��Es − Es����t��s��

− �

m,n

�s�V�m��m�V�n��n���t��s����En − Em�

− �

m,n

�s���t��m��m�V�n��n�V�s����Em − En�

+ �

m,n

�s�V�m��m���t��n��n�V�s����En − Es��

+ �

m,n

�s�V�m��m���t��n��n�V�s����Em − Es� ,

�16�

where states �m�, �n�, �s�, and �s�� denote �+ ,Ep�, �−,Ep�, or
�o ,Ek�, and the sum runs over all possible configurations.
The system of equations �16� describes the kinetics of the
qubit in the presence of a quasiparticle in the Markovian
approximation. We are interested in elements of the density
matrix that are diagonal in quasiparticle subspace, e.g.,

P+−�Ep , t�= �+,Ep���t��Ep ,−�, since at the end one should
take the trace over quasiparticle degrees of freedom to obtain
observable quantities. Note that Eq. �16� which describes
evolution of a closed system �the qubit and the quasiparticle�
does conserve its total energy. We will include the mecha-
nisms of energy loss to the phonon bath and discuss the
proper modifications of the master equation later in Sec. VI.

We now apply secular approximation to Eq. �16�. This is
justified due to the separation of the characteristic time scales
EJ

−1�out
−1 �in

−1 established in the previous section. When
considering the evolution of the off-diagonal elements of the
density matrix P+−�Ep , t�, we need to keep only terms
�P+−�Ep , t� in the right-hand-side of the corresponding mas-
ter equation. The contribution of other elements of the den-
sity matrix to the evolution of the coherences P+−�Ep , t� is
small as �out /EJ and �in /EJ. Thus, we arrive at the equation
governing the evolution of the coherences

Ṗ+−�Ep,t� = − iEJP+−�Ep,t� −
1

2

k

�W+�Ep,Ek�

+ W−�Ep,Ek�P+−�Ep,t� . �17�

The transition rates W+�Ep ,Ek� and W−�Ep ,Ek� are given by
the Fermi Golden rule

W+�Ep,Ek� = 2���Ep, + �HT�o,Ek��2��Ep + 	+ − Ek� ,

W−�Ep,Ek� = 2���Ep,− �HT�o,Ek��2��Ep + 	− − Ek� �18�

with 	± of Eq. �2�. The matrix elements �Ep , ± �HT�o ,Ek�
can be calculated using the particle conserving version of
the Bogoliubov transformation17 and are �Ep , ± �HT�o ,Ek�
=�2�tpkupuk− tkpvpvk�, where up, vp are Bogoliubov coher-
ence factors:

up
2 =

1

2
�1 +

�p

Ep
	 and vp

2 =
1

2
�1 −

�p

Ep
	 , �19�

leading to18

W+�Ep,Ek� = 2��tpk�2�1 +
�p�k − �2

EpEk
	��Ep + 	+ − Ek� ,

W−�Ep,Ek� = 2��tpk�2�1 +
�p�k − �2

EpEk
	��Ep + 	− − Ek� .

�20�

Now we may relate the tunneling matrix elements to the
normal-state junction conductance

gT = 8�2

p,k

�tpk�2���p����k� .

Assuming that tunnel matrix elements tpk are weakly depen-
dent on the energies �k, �p, we can rewrite Eq. �20� in terms
of the dimensionless conductance

W+�Ep,Ek� =
gT�r�b

4�
�1 +

�p�k − �2

EpEk
	��Ep + 	+ − Ek� ,
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W−�Ep,Ek� =
gT�r�b

4�
�1 +

�p�k − �2

EpEk
	��Ep + 	− − Ek� ,

�21�

where �r�b� is mean level spacing in the reservoir�box� �r�b�
= ��r�b�Vr�b��−1 with �r�b� being single-spin electron density of
states at the Fermi level in the reservoir �box�.

The system of equations for the diagonal part of the den-
sity matrix describes the evolution of the populations and
follows from Eq. �16�. From now on we adopt the short-hand
notation for the diagonal elements of the density matrix
�s���t��s�= Pss�Es , t�. In particular, we denote the probability
of the qubit to be in the state ��� or in the state �
� and a
quasiparticle to have energy Ep as P++�Ep , t� or P−−�Ep , t�,
respectively; the probability Po�Ek , t� corresponds to the state
with a quasiparticle residing in the CPB and having energy
Ek. In these notations the system of equations describing the
dynamics of the populations for the states �+ ,Ep�, �−,Ep� or
�o ,Ek� can be written as

Ṗ++�Ep,t� + 

k

W+�Ep,Ek��P++�Ep,t� − Po�Ek,t� = 0,

�22a�

Ṗ−−�Ep,t� + 

k

W−�Ep,Ek��P−−�Ep,t� − Po�Ek,t� = 0,

�22b�

Ṗo�Ek,t� + 

p

�W+�Ep,Ek� + W−�Ep,Ek�Po�Ek,t�

− 

p

�W+�Ep,Ek�P++�Ep,t� + W−�Ep,Ek�P−−�Ep,t� = 0,

�22c�

where we neglected the contribution of the coherences. This
is justified as long as P+−�Ep ,0�=0 in the initial moment of
time, and the two parameters �out /EJ and �in /EJ, are small.
The transition rates in Eqs. �22� are given by the Fermi
Golden rule, see Eqs. �18�.

At the end, experimentally observable quantities can be
obtained from Pij by taking the proper trace over the quasi-
particle degrees of freedom,

�ij�t� = 

p

Pij�Ep,t� , �23�

where i , j= + ,−. This completes the derivation of the master
equations without quasiparticle relaxation, and we proceed to
the solution of these equations.

IV. EVOLUTION OF THE QUBIT COHERENCES

We now discuss the solution for the off-diagonal elements
of the density matrix. We assume that initially the qubit and
quasiparticle are independent; the quasiparticle is in thermal
equilibrium in the reservoir, and the qubit is prepared in a
superposition state with �+−�0��0:

P+−�Ep,0� = �odd�Ep��+−�0� � 0, �24�

where �odd�Ep� is the equilibrium distribution function with
an odd number of electrons in reservoir at temperature T
�,

�odd�Ep� =
exp�− Ep/T�

Zodd
. �25�

The normalization factor Zodd here is

Zodd = 

p

exp�−
Ep

T
	 =��

2

�

�r

�T

�
exp�−

�

T
	 .

The solution of Eq. �17� is straightforward. After tracing
out quasiparticle degrees of freedom we obtain

�+−�t� = �+−�0�

p

�odd�Ep�exp�− iEJt −
1

2
�in�Ep�t	 ,

�26�

where �in�Ep� is given by

�in�Ep� = 

k

�W+�Ep,Ek� + W−�Ep,Ek� . �27�

In the low-temperature limit T	− ,	+, the expression for
�+−�t� can be simplified

�+−�t� = �+−�0�exp�− iEJt −
t

T2
	 . �28�

Here the phase relaxation time T2 is given by

T2 =
gT�r

8�
�� 	+

2� + 	+
+� 	−

2� + 	−
	 . �29�

The decay of qubit coherences is determined by the rate
of the quasiparticle tunneling into the box as previously dis-
cussed in Sec. II. This result remains valid also in the pres-
ence of quasiparticle relaxation. On the contrary, the evolu-
tion of the diagonal parts of the density matrix P++ and P−−,
depends strongly on the relaxation of the quasiparticles. We
will study this evolution with and without quasiparticle re-
laxation in the next sections.

V. KINETICS OF THE QUBIT POPULATIONS WITHOUT
QUASIPARTICLE RELAXATION

The evolution of the diagonal elements of the density ma-
trix is described by Eq. �22�. We will assume that initially the
qubit is prepared in the state ���, and the quasiparticle re-
sides in the reservoir. As explained in Sec. II tunneling out of
the box ���out� is much faster than tunneling in ���in� due
to the differences in the volumes of the CPB and the reser-
voir. In fact, for a sufficiently small box, 1 /�out is the short-
est time scale in the system of Eqs. �22�. Therefore, we may
neglect term �tPo�Ek , t� in Eq. �22c�; i.e., the value of
Po�Ek , t� follows instantaneously the time variations of
P++�Ep , t� and P−−�Ep , t�. This greatly simplifies the system
of equations for the populations. The solution for Po�Ek , t� in
this approximation is
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Po�Ek,t� =



p

W+�Ep,Ek�P++�Ep,t�



p

�W+�Ep,Ek� + W−�Ep,Ek�

+



p

W−�Ep,Ek�P−−�Ep,t�



p

�W+�Ep,Ek� + W−�Ep,Ek�
. �30�

After substituting this expression back into Eqs. �22a� and
�22b�, we obtain effective rate equations for the qubit in the
presence of an unpaired electron in the superconducting parts

Ṗ++�Ep,t� + �+�Ep�P++�Ep,t� − �+�Ep�P−−�Ep + EJ,t� = 0,

Ṗ−−�Ep,t� + �−�Ep�P−−�Ep,t� − �−�Ep�P++�Ep − EJ,t� = 0

�31�

with �±�Ep� having the form

�+�Ep� = 

p�,k

W+�Ep,Ek�W−�Ep�,Ek�



p�

�W+�Ep�,Ek� + W−�Ep�,Ek�
,

�−�Ep� = 

p�,k

W−�Ep,Ek�W+�Ep�,Ek�



p�

�W+�Ep�,Ek� + W−�Ep�,Ek�
. �32�

This structure of the transition rates reflects the nature of the
transitions involving an intermediate state �o ,Ek�. The nor-
malization condition



p

�P++�Ep,t� + P−−�Ep,t� = 1 �33�

is preserved under evolution. This can be checked directly
with the help of Eqs. �31� and the following relation for the
rates:



p

�+�Ep�X�Ep� = 

p

�−�Ep�X�Ep − EJ� �34�

�here X�Ep� is an arbitrary function of Ep.
Let us discuss the solution of Eqs. �31�. In the initial

moment of time the qubit and quasiparticle are uncorrelated;
the qubit is prepared in the excited state ��� and quasiparticle
can be described by the equilibrium distribution function
�odd�Ep�:

P++�Ep,0� = �odd�Ep� and P−−�Ep + EJ,0� = 0. �35�

Upon solving Eqs. �31�, we find expressions for the popula-
tions of the qubit levels

�++�t� = 

p

�odd�Ep��−�Ep + EJ�
�−�Ep + EJ� + �+�Ep�

+ 

p

�odd�Ep��+�Ep�
�−�Ep + EJ� + �+�Ep�

exp�− ��Ep�t ,

�−−�t� = 

p

�odd�Ep − EJ��−�Ep�
�−�Ep� + �+�Ep − EJ�

− 

p

�odd�Ep − EJ��−�Ep�
�−�Ep� + �+�Ep − EJ�

exp�− ��Ep − EJ�t ,

�36�

where ��Ep� is defined as

��Ep� = �+�Ep� + �−�Ep + EJ� . �37�

In the low-temperature limit, we calculate the sums in Eq.
�36� assuming ��	+�EJ�T to find



p

�+�Ep��odd�Ep�
��Ep�

�� T

�EJ
�38�

and

�++�t� = 1 −� T

�EJ
+� T

�EJ
exp�−

t

T1
*� ,

�−−�t� =� T

�EJ
�1 − exp�−

t

T1
*�	 . �39�

The relaxation time T1
* is defined as

1

T1
* �

gT�r

4�
� 	+

2� + 	+
�1 +

EJ

	+
	 . �40�

In deriving this expression we assumed EJ /�1 and kept
only the leading terms.

The solution for the populations in this case �no quasipar-
ticle relaxation, �=�� show that final qubit populations are
determined by the tunneling rates, which, in turn, depend on
the superconducting DOS at different energies ��Ep� and
��Ep+EJ�. Since the states with higher DOS are more favor-
able, the quasiparticle can be found most of the time with
energy close to � and rarely with energy �+EJ. Therefore, at
low temperatures TEJ, the qubit will mostly remain in the
excited state ���. The probability to find the qubit in the
ground state is proportional to ��T /EJ and thus is small, see
Sec. II. As soon as we include mechanisms of quasiparticle
relaxation into consideration, the qubit populations will
eventually reach equilibrium. In the next sections we inves-
tigate the equilibration of the qubit.

VI. KINETICS OF THE QUBIT POPULATIONS WITH
QUASIPARTICLE RELAXATION IN THE RESERVOIR

A. Master equations with quasiparticle relaxation

Here we consider a more realistic model by incorporating
the mechanisms of quasiparticle relaxation into the rate
equations. Such mechanisms were studied in the context of
non-equilibrium superconductivity.13,14 In aluminum, a typi-
cal superconductor used in charge qubits, the dominant
mechanism of quasiparticle relaxation is due to inelastic
electron-phonon scattering. The relaxation time depends on
the excess energy � of a quasiparticle13
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1

����
=

1

�0

64�2

105
� �

Tc
	3� �

�
	7/2

, �41�

where �=Ep−��, and �0 is characteristic parameter defin-
ing electron-phonon scattering rate at T=Tc �here Tc is su-
perconducting transition temperature�. For typical excess en-
ergies of the order of EJ�0.3 K, the estimate for � yields
quite long relaxation time ��10−5–10−4 s.

The procedure developed in Sec. III allows us to include
the mechanisms of quasiparticle relaxation into the master
equations. One can start by writing an equation of motion for
the density matrix that includes the qubit, quasiparticle, and
phonons, then expand the density matrix in the small param-
eter, the electron-phonon interaction strength as discussed in
Sec. III. Finally, one should trace out phonon degrees of
freedom and obtain master equations for the qubit with qua-
siparticle relaxation. We will skip the cumbersome derivation
and present only the results here. In the relaxation time ap-
proximation the collision integral has the form

I± = −
1

�
�P±±�Ep,t� − P̄±±�Ep,t� , �42�

where �=����EJ�. The probability P̄±±�Ep , t� is proportional
to the equilibrium distribution function of a quasiparticle
�odd�Ep� and the proper qubit population �±±�t�:

P̄±±�Ep,t� = �odd�Ep�

p

P±±�Ep,t� . �43�

The form of P̄±±�Ep , t� is dictated by the fact that phonons
equilibrate the quasiparticle only, without affecting directly
the qubit states.19,20 The collision integral Eq. �42� replaces
zero in the right-hand sides of Eqs. �22a� and �22b�. How-
ever, Eq. �22c� for Po�Ek , t� remains unchanged due to the
short dwelling time of a quasiparticle in the box �we assume
that ����	+���out

−1 , but set no constraints on ��in. Then,
the system of equations �31� for populations can be written
as

Ṗ++�Ep,t� + �+�Ep�P++�Ep,t� − �+�Ep�P−−�Ep + EJ,t�

= −
1

�
�P++�Ep,t� − P̄++�Ep,t� ,

Ṗ−−�Ep,t� + �−�Ep�P−−�Ep,t� − �−�Ep�P++�Ep − EJ,t�

= −
1

�
�P−−�Ep,t� − P̄−−�Ep,t� �44�

with the effective transition rates �±�Ep� defined in Eq. �32�.
The obtained system of integro-differential equations �44�
for P±±�Ep , t� describes the effect of quasiparticle relaxation
on the dynamics of the qubit.

We solve Eqs. �44� first in the simple case of a short
relaxation time ���in

−1�. Under these assumptions, we can
seek the solution in the form

P±±�Ep,t� = �odd�Ep��±±�t� , �45�

with �±±�t� defined in Eq. �23�, so that P±±�Ep , t�
= P̄±±�Ep , t�. Using this ansatz and performing the appropri-
ate summation, Eqs. �44� reduce to the Bloch-Redfield equa-
tions

�̇++�t� + 

p

�+�Ep��odd�Ep��++�t�

− 

p

�+�Ep��odd�Ep + EJ��−−�t� = 0,

�̇−−�t� + 

p

�−�Ep��odd�Ep��−−�t�

− 

p

�−�Ep��odd�Ep − EJ��++�t� = 0. �46�

Utilizing the property of the rates, Eq. �34�, one can simplify
the equations above,

�̇++�t� + ��+��++�t� = ��−��−−�t� ,

�̇−−�t� + ��−��−−�t� = ��+��++�t� , �47�

where thermal-averaged transition rates ��+� and ��−� are

��+� = 

p

�+�Ep��odd�Ep� ,

��−� = 

p

�−�Ep��odd�Ep� . �48�

One can also check that due to relation �34� rates ��±� com-
ply with the detailed balance requirement

��+�
��−�

= exp�EJ

T
	 .

For the initial conditions: �++�0�=1, �−−�0�=0, the solu-
tion for populations is

�++�t� =
e−EJ/T

1 + e−EJ/T +
e−���+�+��−��t

1 + e−EJ/T ,

�−−�t� =
1

1 + e−EJ/T �1 − e−���+�+��−��t . �49�

In the low-temperature limit �TEJ�	+��� we find a
simple form for the effective rates ��±� in the leading order
in T /� and EJ /�:

��−� =
g�r

4�
� 	+

2� + 	+
�1 +

EJ

	+
	� T

�EJ
exp�−

EJ

T
	 ,

��+� =
g�r

4�
� 	+

2� + 	+
�1 +

EJ

	+
	� T

�EJ
. �50�

Factors of �T /�EJ in the rates can be interpreted as the
probability of flipping the qubit ��+ �→ �−��, which is mainly
determined by the ratio of the DOS of quasiparticles at en-
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ergies ��Ep� and ��Ep+EJ�, respectively �see the discussion
in Sec. II�. We would like to point out here that energy re-
laxation rate ��+�+ ��−� is smaller than the phase relaxation
rate by a factor of �T /�EJ.

B. General solution for the qubit populations in the
relaxation time approximation

In this section we find the solution of Eqs. �44� at an
arbitrary value of �in�. In order to find the solution for the
qubit populations we will use Laplace transform

P�Ep,s� = �
0

�

dtP�Ep,t�e−st, �51�

and reduce the system of differential equations �44� supplied
with the initial conditions Eq. �35� to the system of algebraic
equations

sP++�Ep,s� − �odd�Ep� + �+�Ep�P++�Ep,s� − �+�Ep�P̃−−�Ep,s�

= −
1

�
�P++�Ep,s� − P̄++�Ep,s� ,

sP̃−−�Ep,s� + �̃−�Ep�P̃−−�Ep,s� − �̃−�Ep�P++�Ep,s�

= −
1

�
�P̃−−�Ep,s� − P̃

¯
−−�Ep,s� . �52�

Here tilde denotes the shift by EJ of the energy argument in

a function, e.g., P̃−−�Ep ,s�= P−−�Ep+EJ ,s�. The system of
algebraic equations �52� can be solved for P++�Ep ,s� and
P−−�Ep ,s�. Then, by summing these expressions over the
momenta p and utilizing Eq. �43� we obtain a closed system
of equations for qubit populations �±±�s�:

�++�s� = A�s� +
A�s�

�
�++�s� +

B�s�
�

�−−�s� ,

�−−�s� = C�s� +
C�s�

�
�++�s� +

D�s�
�

�−−�s� , �53�

where the coefficients A�s�, B�s�, C�s�, and D�s� are given
below

A�s� =
1 − Z�s�
s + 1/�

, B�s� =
Z�s�e−EJ/T

s + 1/�
,

C�s� =
Z�s�

s + 1/�
, D�s� =

1 − Z�s�e−EJ/T

s + 1/�
. �54�

Function Z�s� is

Z�s� = 

p

�+�Ep��odd�Ep�
s + 1/� + ��Ep�

�55�

with �+�Ep� and ��Ep� being defined in Eqs. �21�, �32�, and
�37�, respectively. From now on we take thermodynamic
limit and replace the sum by the integral in Eq. �55�. �Ther-
modynamic limit is appropriate here, since �rT.�

Z�s� =
1

�r
�

�

�

dEp��Ep�
�+�Ep��odd�Ep�
s + 1/� + ��Ep�

. �56�

The solution of Eqs. �53� yields the following results for
�±±�s�:

�++�s� =
1

s
�1 −

��s + 1�Z�s�
�s + Z�s��1 + e−EJ/T�	 ,

�−−�s� =
1

s

��s + 1�Z�s�
�s + Z�s��1 + e−EJ/T�

. �57�

Equations �57� allow us to analyze the dynamics of the qubit
populations for arbitrary �in�. Let us point out that Eqs. �57�
satisfy normalization condition �++�s�+�−−�s�=1/s. To find
the evolution of the populations, it is sufficient to evaluate
�++�t�.

The inverse Laplace transform is given by

�++�t� =
1

2�i
�

�−i�

�+i�

ds�++�s�est, �58�

where � is chosen in such way that �++�s� is analytic at
Re�s��. The integral �58� can be calculated using complex
variable calculus by closing the contour of integration as
shown in Fig. 3 and analyzing the enclosed points of non-
analytic behavior of �++�s�. In general, the singularities of
�++�s� consist of 3 poles and a cut. The latter is due to the
singularities of the function Z�s� causing �++�s� to be
nonanalytic along the cut s� �smin,smax�, where

FIG. 3. �Color online� Contour of integration �red line� chosen
to calculate inverse Laplace transform �58�. Points of nonanalytic
behavior of �++�s� are shown. �Poles at s1, s2, and s3, and a cut s
� �smin,smax�.
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smin = −
1

�
− max���Ep� , smax = −

1

�
− min���Ep� .

The schematic plot of ��Ep� is shown in Fig. 4.
In addition to the cut, �++�s� has three poles. The first one

is at s1=0; two more poles, s2 and s3, are the solutions of the
following equation in the region of analyticity of the function
Z�s�:

�s + Z�s��1 + e−EJ/T� = 0. �59�

The preceding discussion of the analytic properties of
�++�s� is general for any ratio of the relaxation time � and
quasiparticle escape rate �in. However, the location of the
singularities and their contribution to the integral �58� de-
pends on �in�. Below we briefly present results for two cases
of interest: fast ��in�1� and slow ��in��1� quasiparticle
relaxation. The detailed analysis of the singularities of �++�s�
is given in the Appendix.

In the fast relaxation regime ��in�1�, the contributions
from the cut and the residue at s3 are small �proportional to
�in�, see the Appendix� and thus can be neglected. Then,
relevant poles of �++�s� in this limit are

s1 = 0, s2 = − ��+� − ��−� . �60�

The integration of Eq. �58� yields, up to corrections vanish-
ing in the limit �in�1, Eqs. �49� for the populations.

In the slow relaxation case, �in��1, the main contribu-
tion to the integral �58� comes from the cut, and poles s1
=0 and s2. The latter may be found by iterative solution of
Eq. �59�,

s2 = −
Z�0�

�
�1 + e−EJ/T� ,

where function Z�0� is defined in Eq. �56�, and in the case of
slow relaxation can be approximated as

Z�0� =
1

�r
�

�

�

dEp��Ep�
�+�Ep�
��Ep�

�odd�Ep� . �61�

The residue at s3 gives a smaller by factor 1 /�in�1 contri-
bution, see the Appendix.

Taking integral in Eq. �58� along the contour enclosing
the cut shown in Fig. 3, and accounting for poles s1 and s2,
we find

�++�t� =
e−EJ/T

1 + e−EJ/T + � 1

1 + e−EJ/T − Z�0�	
� exp�− Z�0��1 + e−EJ/T�

t

�
	

+
1

�r
�

�

�

dEp��Ep�
�+�Ep��odd�Ep�

��Ep�
exp�− ��Ep�t .

�62�

Here we neglected the corrections to Eq. �62� of the order
1 /�in�. The obtained expression for �++�t� describes the ki-
netics of the qubit populations in the slow relaxation regime.
Note that the solution Eq. �62� satisfies initial conditions

�++�0�=1 and is consistent with previous results. Indeed, in
the limit �→�, the exponent in the second term goes to zero
and we recover Eq. �36� �to show this one should use Eq.
�34�.

Equation �62� becomes physically transparent in the low-
temperature limit. Using the approximation �38� for Z�0� and
for the integral in the last term of Eq. �62� we find

�++�t� =
e−EJ/T

1 + e−EJ/T +� T

�EJ
exp�−

t

T1
*	

+ � 1

1 + e−EJ/T −� T

�EJ
	exp�−

t

T1
	 , �63�

where relaxation times T1 and T1
* are

1

T1
=

1

�
� T

�EJ
and

1

T1
* =

gT�r

4�
� 	+

2� + 	+
�1 +

EJ

	+
	 .

�64�

Obtained results describe the relaxation of the qubit popu-
lations in the slow relaxation limit ��in��1� discussed quali-
tatively in Sec. II. According to Eq. �63�, in this case the
process of equilibration of qubit populations occurs in two
stages. The first stage �t�T1

*� corresponds to a quasistation-
ary state formation with qubit populations much larger than
equilibrium ones. For the typical experimental temperatures
T�20 mK, the excited state population of the qubit is about
85%. The equilibrium populations are established in the sec-
ond stage, on the time scale of T1. The relaxation time T1 sets
an important experimental constraint on the frequency of
repetition of qubit experiments.

We estimate now energy and phase relaxation times for
the realistic experimental parameters:1,2 ��2 K, Ec
�0.5 K, EJ�0.3 K, gT�1, and T�20 mK. For the volume
of the reservoir 10−19–10−17 m3, Eq. �29� yields the phase
relaxation time T2�10−5–10−3 s. Energy relaxation depends
on the relation between �in and 1/�. Taking ��10−4 s and
�in

−1�10−5 s, which corresponds to the lower end of the vol-
ume range, energy relaxation is described by Eq. �63� with
T1

*�10−5 s and T1�10−3 s.
We considered so far the effect of a single quasiparticle on

the qubit kinetics. It is possible to generalize our results onto
the case of many quasiparticles Nqp residing in the system. In
this case T2 becomes shorter since the quasiparticle tunneling
rate �in, see Eq. �3�, should be multiplied by the number of
quasiparticles in the superconducting reservoir

1

T2
� �inNqp �

gTnqp

4��
. �65�

�Here � is the normal density of states per unit volume and
nqp is the density of quasiparticles in the reservoir.� Note that
the volume of the reservoir does not enter in Eq. �65�. A
finite density of quasiparticles in the reservoir affects also the
process of energy relaxation of the qubit. The most clear
example corresponds to the limit �in�1 in which quasipar-
ticle relaxation in the reservoir occurs fast compared to the
time needed for the quasiparticle to reenter the CPB. In this
limit T1 /T2��EJ /T.
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The comparison of the theoretical prediction for T2 and T1
with experimental data is complicated by the unknown value
of Nqp in a qubit. The quasiparticle density in a system with
a massive lead is known to deviate from the equilibrium
value in a number of experiments.21,22 The estimate of nqp
can be obtained from the kinetics of “quasiparticle poison-
ing” studied in the recent experiments.23,24 The observed rate
of quasiparticle entering the CPB was 105–104 Hz. Assum-
ing that the bottleneck for the quasiparticles was tunneling
through the junction �rather than the diffusion in the lead�,
we estimate the density of quasiparticles in the lead to be
nqp�1019–1018 m−3. The same quasiparticle density in a qu-
bit with the reservoir volume 10−19–10−17 m3 would result in
Nqp�1–100.

VII. CONCLUSIONS

We studied the kinetics of a superconducting charge qubit
in the presence of an unpaired electron. The presence of a
quasiparticle in the system leads to the decay of quantum
oscillations. We obtained master equations for the coher-
ences and populations of the qubit, which take into account
energy exchange between the quasiparticle and the qubit, and
include the mechanisms of quasiparticle relaxation due to
electron-phonon interaction. Finally, we found decay expo-
nents governing the dynamics of the qubit for different cases:
fast and slow quasiparticle relaxation in the reservoir.

We have shown that phase relaxation is determined by the
quasiparticle tunneling rate to the box �in�gT�r /4�. Kinet-
ics of the qubit populations depends on the ratio of the qua-
siparticle relaxation time � and escape time �in

−1. In this pa-
per, we considered two limits—fast ���in1� and slow
���in�1� quasiparticle relaxation. In the latter case, decay of
qubit populations occurs in two stages. In the first stage at
t��in

−1 a quasistationary regime is established with large
nonequilibrium excited state population. The second stage
describes the attainment of the equilibrium populations and
occurs on the time scale of ���EJ /T. In the fast relaxation
case, equilibrium qubit populations are established at t
��in

−1��EJ /T.
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APPENDIX: ANALYSIS OF THE ANALYTICAL
STRUCTURE OF �++„s…

In this appendix we study the analytic properties of �++�s�
in order to calculate the inverse Laplace transform �58�. In
general, the nonanalytic behavior of �++�s� is determined by
three poles, one of them is at s=0, and a cut as shown in Fig.
3. The locations of two other poles and of the cut, and also
contributions of all the mentioned singularities in �++�s� to
the integral �58�, depend on the value of �in�.

In the fast relaxation regime ��in�1�, in the vicinity of
the s=0 pole, we find

�++�s� =
e−EJ/T

1 + e−EJ/T

1

s
. �A1�

Two other poles s2 and s3 are the solutions of Eq. �59� with
s2 being the solution at small s��in and s3 at large s�1/�:

s2 = − ���+� + ��−�� ,

s3 = −
1

�
− min���Ep� +

gT�r

4�
C1. �A2�

Here ��Ep� is defined in Eq. �37� and C1 is a distance from
the beginning of the cut in units of gT�r /4�, see Fig. 3. In
the vicinity of the second pole, �++�s� is given by

�++�s� = � 1

1 + e−EJ/T − Z�0�	 1

s − s2
, �A3�

with Z�0� defined in Eq. �61�. The residue of �++�s� at s3 is
proportional to ���in�2. Consequently, the contribution to the
integral �58� from the pole s3 is small.

In addition to the poles discussed above, nonanalyticity of
�++�s� comes from the singularities of Z�s�. The function
Z�s� is nonanalytic along the cut s� �smin,smax�, where

smin = −
1

�
− max���Ep� , smax = −

1

�
− min���Ep� ,

with ��Ep� being defined in Eq. �37�. The proper contribu-
tion to Eq. �58� can be calculated by integrating along the
contour enclosing the cut

FIG. 4. �Color online� Main panel: dependence of ����, defined
in Eq. �37�, on quasiparticle energy �=Ep−�. Inset: dependence of
���� in the vicinity of �min. The maximum value of the rate is
�max=gT�r /4� �dashed line�. In the limit EJ	+�, a simple
analytic expression for the minimum can be found: �min=EJ /25,

and
�min−��0�

��0� �−C
EJ

	+
, where ��0�=

g�r

4�
� 	+

2� , and numerical constant

C�0.1.
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Icut =
− 1

2�i
�

smin

smax

dsest��++�s + i�� − �++�s − i�� . �A4�

The discontinuity of the imaginary part of �++�s� at the cut is

�++�s + i�� − �++�s − i��

=
− 2i���s + 1�Im Z�s + i��

��s + Re Z�s��1 + e−EJ/T�2 + �Im Z�s + i���1 + e−EJ/T�2 .

�A5�

In the limit �in�1 we find

�++�s + i�� − �++�s − i�� �
− 2i����in�Im Z�s + i��

�− 1 + Re Z�s�2 + �Im Z�s + i��2 ,

�A6�

which yields a negligible contribution to Eq. �58� from the
cut, Icut��in�1. Finally, after summing up two relevant
contributions, one obtains the result for �++�t� given in Eq.
�49�.

In the opposite limit of slow relaxation ��in��1�, the first
pole s1=0 is the same as in the previous case with the ex-
pression for �++�s� given by Eq. �A1�. The other two poles s2

and s3 are found from Eq. �59� assuming �in��1:

s2 = −
Z�0�

�
�1 + e−EJ/T� ,

s3 = − min���Ep� −
1

�
+

C2

�2�in
, �A7�

where Z�0� is defined in Eq. �61�, and C2 is a positive con-
stant of the order of unity. In the vicinity of the second pole
�++�s� is given by

�++�s� = � 1

1 + e−EJ/T − Z�0�	 1

s − s2
. �A8�

The third pole s3 lies in close proximity to the beginning
of the cut smax. In order to find the position of the pole we

expand the denominator of Z�s� in the neighborhood of the
minimum of ��Ep�, see Fig. 4:

Z�s� = �
�

� dEp

�r

��Ep��+�Ep��odd�Ep�
s + 1/� + �min + ���Epmin

��Ep − Epmin
�2 ,

�A9�

and solve Eq. �59� to obtain s3 of Eq. �A7�. Here we used the
small-y asymptote, Z�y��1/�y, where y is the distance from
smax in units of �in; i.e., we made a substitution

s = − 1/� − �min + �iny

in Eq. �A9� and evaluated the integral at y1. Then, in the
neighborhood of s3 the expression for �++�s� can be written
as

�++�s� �
�in�Z�y0�

�in� + Z��y0��1 + e−EJ/T�
1

s − s3
, �A10�

where y0 is the corresponding solution of Eq. �59� and is
small: y0���in��−21. Since derivative Z��y0��y0

−3/2, the
residue at s3 is suppressed as ��in��−1 and thus can be ne-
glected.

The contribution from the cut in the limit �in��1 can be
evaluated from Eq. �A5�. The discontinuity of the function
�++�s� is

�++�s + i�� − �++�s − i�� � −
2i

s
Im Z�s + i�� . �A11�

Hence, the contribution to Eq. �58� from the cut is

Icut = − �
�

� dEp

�r
��Ep��+�Ep��odd�Ep��

smin

smax

ds
est

s
��s + ��Ep�

= �
�

� dEp

�r
��Ep�

�+�Ep��odd�Ep�
��Ep�

exp�− ��Ep�t . �A12�

Finally, combining proper terms one finds the inverse
Laplace transform of Eq. �62�.
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