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The in-plane magnetoresistance of an epitaxial Bi2Sr2CuO6+� thin film was systematically investigated as a
function of doping, above Tc. The orbital magnetoconductance is used to extract the crossover field line Hc2

* �T�
in the fluctuation regime. This field is found in good agreement with the upper critical field obtained from
resistivity data below Tc, and exhibits a similar upward curvature, thus pointing toward the existence of a
critical correlation length. The consequences regarding the nature of the resistive transition are discussed.
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I. INTRODUCTION

The superconducting transition in a magnetic field of
high-Tc cuprates has shown unusual features. Within a flux
line description, the combined effects of high temperature,
strong anisotropy, short coherence length and large penetra-
tion depth promote a large flux liquid domain in the vicinity
of the upper critical-field line, Hc2�T�. Such a liquid is char-
acterized by the loss of the phase coherence, which is other-
wise present in the ordered Abrikosov vortex lattice;1,2 the
first order flux melting transition �or the irreversibility line,
in the case of disordered materials� replaces the usual super-
conducting transition line, which is no longer characterized
by the occurrence of zero resistivity.

The absence of a genuine transition opens the possibility
to describe the normal state as a region of fluctuating vorti-
ces. However, in the absence of local pairing, regular vorti-
ces do not survive above Tc. The observation of a large
Nernst effect well above Tc,

3–5 combined with a diamagnetic
magnetization, has lent support to the idea that only the
phase coherence is broken at the superconducting transition,
while the condensate amplitude remains finite.3,4 In the vor-
tex description, this means that the vortex-core energy re-
mains essentially unchanged at the superconducting transi-
tion and that it is unusually small. Therefore, the usual mirror
in the descriptions of the fluctuating superconducting state
and of the fluctuating normal state is broken: this results
from the observation of an upper critical field which remains
constant through Tc.

6,7

Within this picture, the superconducting transition line ob-
tained from the saturation of the resistivity to a value close to
the normal state one marks the loss of phase coherence. It
roughly coincides with the peak in the Nernst effect �ridge
line� and it is strikingly different from the one inferred from
the vanishing of the Nernst effect related the order parameter
amplitude.6,7 Such a picture does not, however, completely
clarify the superconducting phase diagram. In particular,
there is in the case of Bi-based cuprates a large temperature
interval between the onset for the Nernst signal and the tem-
perature for its maximum and one may wonder whether a
thermodynamic transition line for the loss of the phase stiff-
ness exists, or whether the latter is gradually lost in this
temperature interval.

Most of the speculations concerning the nature of the re-
sistivity line were brought by the early observation of its

pronounced upwards curvature for several cuprates and or-
ganic materials �see Ref. 8 and references therein�. Experi-
mentally, the reality of this curvature in the Hc2�T� line is
discussed. It was soon pointed out that this might result from
an incorrect determination of the upper critical field from
resistive measurements. The in-plane resistive transition
might yield a considerably lower value than the true upper
critical field, due to the existence of a large flux liquid re-
gime above the melting line: zero-resistivity measurement
would actually detect the irreversibility line �with an upward
curvature� instead of Hc2. Indeed, in Refs. 9 and 10, it was
found that, for strongly overdoped and slightly underdoped
Bi-2201 single crystals, a linear Hc2�T� line is obtained, pro-
vided that the resistive criterion is chosen close to the normal
state resistivity value. Existence of similar thermally acti-
vated motion of pancake vortices may be opposed to the
critical field measurements from out-of-plane resistivity.11

However, analysis of magnetization measurements on Bi-
2201 showed that even though a linear temperature depen-
dence of the upper critical field allows for the scaling of the
magnetic moment with field and temperature, a power law
�Tc−T�2.5 is needed to scale both the magnetic moment and
its second derivative, �2M /�T2, thus implying a positive cur-
vature in the Hc2 line.12

Considering theories, some of them claim that the curved
line is a genuine transition intrinsically related to the super-
conducting mechanism in cuprates. In Ref. 13, the curved
Hc2�T� obtained from out-of-plane resistivity is found con-
sistent with the predictions based on the Bose-Einstein con-
densation of bosons formed above Tc. It was argued that this
model is unable to account for the observation of similar data
for overdoped samples, whereas this could be explained
within the boson-fermion model, which accounts for both
real-space paired carriers and itinerant fermions.14 In Refs.
15 and 16, a peculiar magnetic pair-breaking mechanism
specific to two-dimensional superconductors, allowing both
strong pair-breaking effects and a clean situation, was shown
to correctly describe the Hc2�T� features. Finally, it was pro-
posed that the critical field obtained from resistivity is actu-
ally the one for phase ordering of superconducting grains
embedded in the material �with a critical temperature higher
than the zero-field resistivity one�;17,18 above this field, de-
coupled grains with nonzero superconducting order param-
eter would subsist. This mechanism could be either intrinsic
to these cuprates for which there is a local doping effect,19,20

PHYSICAL REVIEW B 74, 064513 �2006�

1098-0121/2006/74�6�/064513�8� ©2006 The American Physical Society064513-1

http://dx.doi.org/10.1103/PhysRevB.74.064513


or could originate from chemical inhomogeneities or substi-
tutions due to the elaboration process.

In this situation, experiments which are able to probe the
upper critical field above and below Tc are valuable. In the
following, we demonstrate that magnetoresistance measure-
ments reveal a crossover field line Hc2

* �T� above Tc which is
essentially similar to the Hc2�T� line below Tc. This suggests
that both lines are governed by a common correlation length,
as expected for a regular continuous transition.

II. EXPERIMENTS

A. Sample and experimental setup

Transport measurements were performed on one epitaxial,
2700 Å thick, c-axis oriented, Bi2Sr2CuO6+� �Bi-2201� thin
film. Different levels of doping for this sample were studied,
from superconducting overdoped to underdoped states �Fig.
1�. The sample was grown on a heated SrTiO3 substrate,
using rf sputtering �Ref. 21 and references therein� and char-
acterized by x-ray diffraction. The quality of the c-axis ori-
entation is attested by the rocking curve through the �008�
peak, which has a full width at half-maximum less than 0.2°.
It was patterned in the standard 4 point resistivity bridge,
with a 160 �m long and 95 �m large strip. The sample was
first annealed at 420 °C and slowly cooled in a pure oxygen
flow, yielding a nonsuperconducting overdoped state. Suc-
cessive lower-doped states were obtained by annealing the
sample under vacuum, using temperatures between 240 °C
and 290 °C, thus decreasing its oxygen content. Figure 1
presents the resistivity curves of these different doping
states, labeled from a �most overdoped� to j �most under-
doped�. Transition temperatures are defined at the midpoint
of the resistive transition. The transition width �10%–90%
completion� of the optimally doped state �Tc�19 K� was
2 K. The evolution of doping was followed through the evo-

lution of these transition temperatures. We observe that the
transition temperature as a function of the conductivity at
300 K is well described by a parabolic law �see Fig. 2�.
Although such a behavior is compatible with the empirical
law relating the transition temperature to the doping level22

and a linear relationship between the conductivity and the
doping level, the conductivity should not be considered here
as a direct measurement for the hole content as pointed out
by Ref. 23, but merely as a monotonous function of it.

The resistivity was measured using a standard lock-in de-
tection, with a 90 �A ac. Special care was taken to limit
temperature shifts during measurements under a magnetic
field: after stabilization of the temperature in zero mag-
netic field using a calibrated thermometer, the temperature
measurement and regulation was switched to a capaci-
tance sensor and the magnetic field was ramped from
0 to 6 T, with the field parallel or perpendicular to the
planes. The temperature stability was better than 30 mK. An-
gular measurements—varying the angle � between the nor-
mal to the film and the applied field—were performed to
evaluate the sample anisotropy. The configuration of the
measurement is displayed in the inset of Fig. 2. Using the
minimum in the magnetoresistance, we were able to align the
magnetic field within the film plane �CuO2 plane� to better
than 1° to determine the longitudinal magnetoresistance
�with �=� /2� which, together with the transverse magne-
toresistance �with �=0�, was used to obtain the orbital and
the isotropic magnetoconductivity.

FIG. 1. ��T� in zero field for different doping. The sample was
fully overdoped; then successive doping states were obtained on the
same sample by decreasing its oxygen content �see text for details�.
These states were labeled chronologically, from a the most over-
doped, to j the most underdoped doping state. The optimally doped
state corresponds to label e. Inset, the three most underdoped states
are represented, in a semilog representation.

FIG. 2. Raw magnetoconductance data ���H=6 T� for field
applied perpendicular and parallel to the plane direction. The mea-
surement geometry is displayed in the upper panel. Full circles,
Tc �the line is a parabolic fit�. Open circles, the temperature
where the magnetoconductance reaches a given criterion ���6 T�
=−9.5	10−3, −1.9	10−2, −4.7	10−2, and −0.19 in units of �0

=e2 /16
s from top to bottom. Shaded areas show where a positive
magnetoconductance is observed.
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B. Determination of the magnetoconductance components

The raw data of the magnetoconductance �� at 6 T are
presented in Fig. 2, for �=0 and �=� /2. We found that a
simple anisotropic-mass law24 alone cannot describe our
data. We postulate that the measured magnetoresistance
originates from the sum of an isotropic magnetoconductance
�independent of the magnetic field orientation�, ��iso, and an
orbital one which scales with field and angle according to the
anisotropic-mass law,24,25 ��orb:

����,H� = ���,H� − ���,0� = ��orb�H̃� + ��iso�H� , �1�

where H̃=H�cos���2+�2 sin���2�1/2 and �2�1 is the aniso-
tropic mass ratio. So we have

��orb�H� = ���0,H� − ����/2,H� + ��orb��H� , �2�

��iso�H� = ����/2,H� − ���0,�H� + ��iso��H� . �3�

As is usually done, we have neglected the last term in
Eqs. �2� and �3� to obtain ��orb �Fig. 2, H �ab� and ��iso
�Fig. 2, H �c� from the longitudinal magnetoconductance,
���� /2 ,H�, and the transverse one, ���0,H�. We self-
consistently checked that the former terms are negligible.
Within the two-dimensional approximation ��=0�, the longi-
tudinal magnetoconductance data in Fig. 2 would directly
yield the isotropic magnetoconductance. As the present com-
pound is not highly anisotropic,26 the latter approximation is
not strictly valid and it is necessary to determine the sample
anisotropy. The anisotropic mass ratio is obtained in the fol-
lowing way: we first set ��iso�0 and determine the � value
which scales the angular data ���� ,H� at H=3 T and at H
=6 T, using Eq. �1�. Then, using the longitudinal and the
transverse magnetoconductance data and Eqs. �2� and �3�, the
isotropic component is obtained as well as the orbital one.
The scaling procedure is iterated taking into account the new
orbital component until the � value is consistent with the set
of angular- and field-dependent magnetoconductance data.
As shown in Fig. 3, �−1=22±2 scales the data nicely. We
have used this anisotropy value to extract the isotropic and
orbital component of the magnetoconductance for all doping
states.

III. RESULTS AND DISCUSSION

A. Positive isotropic magnetoconductance

For the two most underdoped states �i and j�, a positive
magnetoconductance for field applied along the CuO2 plane
is found in a wide range of temperature �see the shaded area
of Fig. 2�. Using the procedure described above, it is found
that this results from the existence of a positive, isotropic
magnetoconductance for these doping states �Fig. 4�. The
origin of this positive contribution can be found neither in
the superconducting fluctuations �since the only positive con-
tribution to the field-dependent excess conductivity is the
anomalous Maki-Thompson orbital one, which is
anisotropic25�, nor in the two-dimensional weak localization
�the latter was generally thought to explain the low-
temperature upturn of the resistivity in the underdoped cu-

prates until the observation of a similar upturn in the trans-
verse resistivity refuted this conventional picture27�. The
present results contrast with the ones obtained on a heavily
underdoped, nonsuperconducting, Bi2Sr2CuO6 single crystal
in Ref. 28. Indeed, based on the observation of a positive,
anisotropic magnetoresistance, the authors interpreted the
low-temperature resistivity upturn as the occurrence of weak
two-dimensional localization. Our results for the most under-
doped states clearly indicate that the magnetoconductance is
here a balance between a negative, anisotropic contribution
�due to the superconducting fluctuations� and a positive, iso-
tropic one, the former overcoming the latter as T→Tc.

It is generally admitted that the isotropic magnetoconduc-
tance originates from a spin effect. While a positive contri-

FIG. 3. Scaling of the orbital magnetoconductance �T=9 K,
H=3 T �crosses� and H=6 T �circles�, varying � from 0 to � /2� for
the most underdoped state �j in Fig. 2�, using the anisotropic mass
law and �−1=22. The inset shows the isotropic and orbital magne-
toresistance, as determined by the iterative procedure.

FIG. 4. Isotropic �positive� and orbital �negative� magnetocon-
ductance vs H for the most underdoped state �j in Fig. 2�. The
magnetoconductance is expressed in units of �0=e2 /16
s, see Eq.
�4�. The inset shows the isotropic magnetoconductance at 6 T vs T
�filled and open symbols are for the most �j� and the second most
underdoped state �i� in Fig. 2, respectively�. Crosses are a fit of the
isotropic magnetoconductance using the KMHZ formula, with the
Kondo temperature TK=15 K and the crossover field Hcr=0.9 T.
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bution is in the case of out-of-plane conductivity naturally
understood as the closing of the pseudogap by the magnetic
field �at a characteristic field given by g�BH�kBT*, where
T* is the temperature for the opening of the pseudogap29�, the
in-plane positive contribution cannot be accounted by the
same effect, as the opening of the gap in the spin excitation
spectrum results in an increase of the conductivity below T*

and a negative magnetoconductance.27 Such a behavior may
be expected from the Kondo mechanism. This was proposed
to account for the isotropic positive magnetoconductance in
both insulating and superconducting La2−xSrxCuO4+y �Ref.
30� �similar results were reported in the case of
Bi2Sr2Ca0.8Y0.2Cu2O8+� �Ref. 31��. In the Kondo scenario, a
crossover between a quadratic field dependence and a loga-
rithmic one is expected when kBT�g�BHcr, where g=2
�from the generalized Hamann formula32—or KMHZ for-
mula�. However, in Refs. 30 and 31 the crossover field was
found one order of magnitude smaller than this prediction.
The same observation may be done in the present case, as we
have g�BHcr /kBT�0.1 �using Hcr�0.9 T at T= 18 K, Fig.
4�. The same discrepancy is observed from the data in Ref.
33, where the low-temperature resistivity upturn for heavily
underdoped, nonsuperconducting La2−xCexCuO4 was fitted
using the KMHZ formula: the KMHZ formula similarly fails
to properly describe the negative magnetoresistance at the
higher temperatures.

An alternative explanation may be looked for within a
spin-glass scenario, since, as pointed out in Ref. 30, spin
glasses also exhibit an isotropic positive magnetoconduc-
tance. There is indeed evidence for the occurrence of a spin-
glass system on the high-doping side of the antiferromag-
netic phase, coexisting with the superconducting one �for a
review, see Ref. 34�. Metallic alloys exhibit a spin-glass state
between the very dilute situation, showing the Kondo effect,
and the concentrated one, for which the ordered magnetic
state �ferromagnetic or antiferromagnetic� is found. The glass
state allows one to account for a crossover field �actually, the
exchange field� as small as the one observed here, as kBTg
��BHcr, using Tg�1 K, Tg being the freezing temperature.
However, in this model, for temperatures higher than Tg, the
magnetoconductance should be quadratic up to a magnetic
field much larger than Hcr:

35,36 this is clearly not observed
here �Fig. 4�.

Thus, for both the Kondo scenario and the spin-glass one,
we are faced with a contradiction concerning the energy
scales inferred from the crossover field, and the much larger
thermal energy for the temperature at which it is measured.
Such a contradiction can be resolved only in the case of the
existence of strong magnetic correlations. A remarkable fea-
ture is the occurrence of a maximum of the positive magne-
toconductance at T�20 K �Fig. 4, inset�. A similar behavior
is usually observed in ordered antiferromagnets close to TN.
Thus, this nonmonotonic behavior points towards the com-
petition between a reduction of the spin scattering due to
increased AF correlations and an increase due to local Kondo
interactions as the temperature is lowered.

Finally, it should be underlined that the negative magne-
toresistance discussed above represents only a very small
fraction of the low temperature resistivity upturn. The fit in
Fig. 4 indicates that the magnetic field is very far from as-

ymptotically exhausting this upturn, so the mechanisms dis-
cussed above do not allow us to conclude on the origin of the
resistivity upturn.

B. Orbital magnetoconductance

1. Dominant Aslamazov-Larkin contribution

Two contributions to the orbital magnetoresistance are ex-
pected: the Aslamazov-Larkin one �ALO� and the Maki-
Thompson one �MTO�. Since the MTO contribution is less
singular than the ALO one, it is expected to overcome the
ALO contribution only well above Tc, as verified
experimentally.37,38 This situation should be accentuated here
with respect to cuprates with a higher Tc, due to the com-
bined effects of stronger disorder and lower temperature. In
this regime, the characteristic field of the MTO contribution
is H=
 / �4De��, where D is the diffusion coefficient and
� is the phase dephasing time.39 We evaluate this field
within a crude cylindrical Fermi surface picture. Considering
the optimally doped state �e, Tc=18.3 K� and T�2Tc, using
the carrier concentration at optimal doping n�1.5
	1027 m−3 and the corresponding two-dimensional Fermi
vector kF=3.4	109 m−1 �this obtained from both the
straightforward chemical valency computation and the ther-
moelectric power in Ref. 40, and about twice smaller than
would be obtained from the maximum in the Hall resistance
of this sample at about 100 K �Ref. 23�� and the resistivity
�=2.3	10−6 �m, we compute the metallic parameter kFl
=14. The two-dimensional free electron model, for which
kFl=hs /�e2—where s=12.3 Å is the conducting plane
separation—yields the same value. Taking for the hole effec-
tive mass m*=3me,

41 we get the diffusion coefficient, D
=
kFl / �2m*�=3	10−4 m2/s. Being in the linear resistivity
regime, we may evaluate the dephasing rate as the thermal
transport scattering rate, �=3	10−14 s. From this, we obtain
the dephasing field H�20 T. This is only a crude approxi-
mation and the Fermi surface complexity for cuprates must
be taken into account to account for their transport
properties.42 Nevertheless, we consider that this is an indica-
tion that the contribution from the MTO process should be
small in the range of field and temperature of interest. Fur-
thermore, this correction, larger for larger temperature �the
MTO contribution overcomes the ALO one as the tempera-
ture rises�, should contribute to increase the magnetoresis-
tance and cannot account for the curvature of the Hc2

* �T� line
discussed below.

2. Crossover field

The direct contribution of the thermodynamic fluctuations
to the conductivity �the orbital Aslamazov-Larkin
contribution—ALO� is determined by the same coherence
length as in the superconducting regime. Hence, a character-
istic field Hc2

* �T� can be determined as a mirror of the con-
ventional upper critical field Hc2�T�. The formulas describing
the ALO contribution generally assume a linear dependence
in T for the characteristic field Hc2

* �which corresponds to a
square root divergence of the coherence length near Tc�. We
used the more general formula of the ALO contribution
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where the temperature dependence for Hc2
* �T� is kept

arbitrary,43

�ALO = − 2�0�−1�ALO�H/Hc2
* �T�� ,

�ALO�x� = 	��1 + 1/�2x�� − ��1/2 + 1/�2x�� − x
/x2,

�0 = e2/16
s , �4�

where �0 is proportional to the universal ALO excess con-
ductance per square in a 2D superconductor �� ��0=�� /s�,
� is the digamma function, �=ln�T /Tc� and Hc2

* �T� is the
crossover field, symmetric with respect to Tc of the upper
critical field Hc2�T�. When H�Hc2

* �T�, the field dependence
in Eq. �4� is quadratic and the magnetoconductance is, as-
suming Hc2

* �T�=�Hc2
* �0�,

��ALO � − �0H2/2Hc2
*2

�0��3. �5�

We do observe such a quadratic dependence at high tem-
perature. A linear fit of the data in Fig. 5 �T=33 K� straight-
forwardly provides the value Hc2

* �0�=37±4 T for the almost
optimally doped state �similarly, this procedure yields Hc2

* �0�
value for other doping states roughly proportional to Tc�.
This agrees with the determination of the upper critical field
from resistivity data in the limit T→0 presented in Ref. 44.
However, it is observed that quadratic fits of the magneto-
conductance for larger temperature yields larger values of the
upper critical field. This means that Hc2

* �T� is not a linear
function of � as assumed in Eq. �5� and that it exhibits an
upward curvature. This may be seen using the full expression
in Eq. �4� to determine Hc2

* �T�. A convenient way to do this is
to determine Hc2

* �T� such that ���orb vs H /Hc2
* �T� obtained

at different field and temperature values defines a single
curve. As seen in Fig. 6, it is possible to reasonably scale the
data along this scheme. The universal function in Eq. �4�
roughly accounts for the scaled data. We have noticed, how-
ever, that for the strongly overdoped and underdoped states,
the prefactor �0 in Eq. �4�—when used as a fitting
parameter—is reduced by about 30% with respect to the the-

oretical value, which may result from a spread of the doping
level. Also, at low temperature ���0.1�, the universal func-
tion obtained in this way systematically deviates from Eq.
�4�, which could be due to the finite width of the transition or
to the occurrence of critical fluctuations in the vicinity of Tc.
The Hc2

* values needed to scale the data define a strongly
curved Hc2

* �T� line, the curvature being stronger for lower
doping �Fig. 7�. Given the reduced temperature and the tran-
sition temperature, the crossover field found in this way is
also lower for the underdoped regime, which is a direct con-
sequence of the excess magnetoconductance on the under-
doped side �Fig. 8�. This excess cannot be due to the onset of

FIG. 5. Orbital magnetoconductance vs H2 for the almost opti-
mally doped state with Tc=18.3 K �state e in Fig. 2� showing qua-
dratic field dependence at high temperature.

FIG. 6. Orbital magnetoconductance �state e� rescaled according
to the ALO expression in Eq. �4�. The deviation from Eq. �4� �line�
is observed at T�21 K and H�3 T. Arrows indicate the location
of the H=6 T point for several temperatures. The inset is the un-
scaled orbital magnetoconductance.

FIG. 7. Crossover field Hc2
* , obtained from the scaling of ���orb

above Tc. Open squares are obtained from resistivity measurements
below Tc in a magnetic field up to 20 T for a thin film with Tc

=16.5 K �Ref. 46�, following a mirror symmetry with respect to Tc

�this film was nearly optimally doped, in a state close to state e of
our sample�. Both procedures yield a similar curved crossover field.
The inset shows that the crossover field obtained from fluctuations
roughly scales as Tc.
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localization, which would result in a positive contribution.
We have also checked, using the procedure described in Ref.
45, that the effect of Tc inhomogeneities is to depress the
Hc2�T� values obtained from our procedure only for tempera-
tures such that T−Tc��Tc, where �Tc is the width of a
Gaussian Tc distribution. So, a curvature for T larger than
2Tc, as observed in the underdoped regime, cannot be ac-
counted for by a distribution of Tc.

3. Discussion

The Hc2
* �T� found in this way is strikingly similar to the

one inferred from the onset of the resistive transition. We
show for comparison in Fig. 7 the Hc2�T� values obtained
below Tc on a similar sample in a magnetic field up to
20 T,26,46 using the determination of Ref. 44. Our data ob-
tained above the zero field transition temperature confirm
this curvature. It appears also that the transition is less
robust to the magnetic field on the underdoped regime than
it is on the overdoped one: the curvature for Hc2

* �T� appears
to be stronger for the underdoped states �this is best evi-
denced in Fig. 7, by comparing the overdoped state b, with
Tc=11.6 K, to the corresponding underdoped state g, with
Tc=12.1 K�.

In a general manner, the observation of symmetric lines in
the superconducting and the fluctuation regimes points to-
ward the existence of a conventional correlation length simi-
lar to that obtained from the mean field theory of second-
order phase transitions �defined as �2=
 / �2eHc2��, which is
probed by the magnetic field. We note that Nernst-effect
measurements may also be used to define symmetric cross-
over lines. Such measurements locate the Hc2�T� line ob-
tained from resistivity measurements as a crossover between
the melting line and the ridge line joining points of maxima

of the Nernst signal vs H.7 A ridge line may also be found in
the fluctuation regime above Tc from the data in Fig. 13 of
Ref. 7: this line—connecting the points where the contour
line of the Nernst signal shows a vertical tangent—is found
roughly symmetric with respect to Tc and may indicate the
existence of a similar crossover line in the fluctuation re-
gime.

We believe our observation rules out a conventional flux-
flow mechanism in a vortex line liquid as the origin of the
anomalous Hc2�T� curvature. Indeed, this should occur in the
vicinity of the vortex melting line transition �in the �H ,T�
plane�, which is first order and thus does not have a dual line
in the fluctuation regime. However, above this line, it was
proposed from numerical simulations that there exists a sec-
ond line which may be viewed as an extension of the zero
field vortex loop unbinding transition to finite magnetic
field.2 Such a vortex unbinding is invoked to account for the
anomalous Nernst signal. According to Ref. 2, this line may
represent a true thermodynamic transition, while the mean
field Hc2�T� line would be reduced to a crossover line. Now,
does this transition define a correlation length that could also
be probed by the magnetic field in the regime of fluctuating
Cooper pairs? By analogy with the low-temperature mecha-
nism, this requires that fluctuating vortex loops can thread
the superconducting fluctuating domains which has, to our
knowledge, never been considered.

Description of high-Tc superconductivity by means of
granular models is appealing, as there is some evidence that
the granular nature of the Bi-based compounds is stronger in
the underdoped regime,19,20 which would be in agreement
with the marked curvature of the Hc2

* �T� line in this regime.
Also, such a granularity may account for the observation of
an anomalous effect of the transport current on the supercon-
ducting fluctuations in Bi-2201.47 Concerning the supercon-
ducting cluster model,17,18 the proposed mechanism—the
magnetic-field induced decoupling of large superconducting
islands, connected through a normal-metal proximity
effect—implies that the resistive transition line is governed
by the temperature for coherence of the normal-metal areas,
which is much smaller than the phase-ordering temperature.
So, this model cannot account for the existence of a symmet-
ric line Hc2

* �T� in the fluctuating regime. A similar objection
may be made against the phase fluctuation model in Ref. 48:
when the mean-field temperature at which pairing sets in is
well above the transition temperature for phase coherence,
the analogy of this model with one of a Josephson-junction
array allows one to conclude that no symmetric transition
line is expected with respect to the phase-coherence transi-
tion temperature. The model in Ref. 15 for inhomogeneities
of the order of the coherence length does not have such an
inconvenience, but corrections to the conventional upper
critical field are small and leave this quantity unchanged near
Tc. So it is difficult to account for the reduced slope of the
Hc2

* �T� line close to Tc.
Concerning the magnetic impurities mechanisms,15,16 the

pair-breaking effect must be specific to the underdoped re-
gime. As it is essential also in this model, the spin-flip scat-
tering time should increase as the temperature decreases: our
observation of a positive isotropic magnetoconductance in

FIG. 8. Isoorbital magnetoconductance �open circles� and Tc

�full circles� in a temperature-��300 K� phase diagram for the dif-
ferent doping �see Fig. 2 for comparison�. The full and dotted lines
are homothetic parabolas. The open circles represent the tempera-
ture where the orbital magnetoconductance at our maximal field
reaches a given value, expressed as a ratio of �0 �see Eq. �4��.
Changing this ratio �−5	10−2 here� does not alter the shape of the
dome. An excess of negative orbital magnetoconductance can be
seen on the underdoped side.
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the strongly underdoped regime and a possible magnetic or-
dering at low temperature goes along these lines. However,
the fact that this mechanism rests on some low magnetic-
ordering temperature breaks the symmetry with respect to Tc,
and the Hc2�T� curvature should actually be reversed in the
fluctuation regime.

Finally, the increased curvature in the underdoped regime
appears to be consistent with both the Bose-Einstein conden-
sation and the boson-fermion models. As can be seen from
the above considerations, it is essential that, in these models,
the upper critical field is determined only by the bulk transi-
tion temperature and that no other temperature scale �such as
magnetic ordering in Ref. 15, or coherence of a metallic
grain in Ref. 18� is found. In the case of the models with
preformed bosons, there is an energy scale corresponding to
their formation; but this energy scale does not appear in the
determination of the upper critical field, making these mod-
els compatible with the present observation.

IV. CONCLUSION

We have investigated the magnetoresistance for a
Bi2Sr2CuO6+� thin film, from highly overdoped to highly un-

derdoped states above the zero-field resistive superconduct-
ing transition temperature. The isotropic magnetoresistance
is found negative for the lower �but still superconducting�
doping states, which we tentatively interpret as a contribu-
tion from strongly correlated magnetic scatters. The orbital
positive magnetoresistance is fitted by the Aslamazov-Larkin
theory. This yields an anomalous critical-field temperature
dependence, which agrees with previous resistive measure-
ments below Tc. This points toward the existence of a similar
correlation length above and below Tc, as expected for a
continuous transition and rules out models where the resis-
tive transition is determined by the onset of phase coherence,
as is the case for the flux lattice melting mechanism or the
phase decoupling one.
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