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The tunneling rate tv /� of a vortex between two pinning sites �of strength V̄ separated by d� is computed
using the Bogoliubov expansion of vortex wave-functions overlap. For BCS vortices, tunneling is suppressed

beyond a few Fermi wavelengths. For Bose condensates, tv= V̄ exp�−�nsd
2 /2�, where ns is the boson density.

The analogy between vortex hopping in a superconducting film and two-dimensional electrons in a perpen-
dicular magnetic field is exploited. We derive the variable range hopping temperature, below which vortex
tunneling contributes to magnetoresistance. Using the “quantum Hall insulator” analogy we argue that the Hall
conductivity �rather than the inverse Hall resistivity� measures the effective carrier density in domains of
mobile vortices. Details of vortex wave functions and overlap calculations, and a general derivation of the
Magnus coefficient for any wave function on the sphere, are provided in appendixes.
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I. INTRODUCTION

Mass and charge transport in superfluids, superconduct-
ors, and Bose Einstein Condensates �BEC� are governed by
mobility of vortices.1,2 In two dimensions, vortex centers ef-
fectively interact as point charges in a perpendicular mag-
netic �Magnus� field. In the superfluid phase, vortices are
pinned at zero temperature by impurity potentials.2,3 Their
mobility, just below the pinning temperature scale, is domi-
nated by thermally activated hopping,4 essentially following
a classical Arrhenius law.

At lower temperatures, quantum fluctuations may, in prin-
ciple, admit tunneling of vortices under energy barriers, re-
sulting in “quantum flux creep.”5–7 Experimentally, vortex
tunneling in superconducting films manifests itself as low
temperature magnetization relaxation8 and nonactivated,
variable range hopping resistivity.9 As magnetic field and
disorder strength increase, vortex tunneling can turn into
long range delocalization. This amounts to a quantum phase
transition from the superfluid into an insulating,10–12 or per-
haps a Bose metal or vortex metal phase.13

A microscopic computation of vortex tunneling rates has
been an elusive theoretical goal. The semiclassical �instan-
ton� approach14 requires the determination of the “vortex
mass” in the presence of Magnus dynamics, and low energy
superfluid phonons.15–18

In the presence of short range, localized pinning poten-
tials, it is simpler to compute �as we show below� the vortex
tunneling rate from the many-body wave-function
overlap.15,19–21

In this paper we present a first detailed vortex overlap
calculations for the following systems.

�i� The weakly interacting Bose Einstein Condensate
(BEC). The tunneling rate between two localized pinning

potentials of strength V̄, separated by distance d, is deter-
mined to be

tv = V̄ exp�− C
�

2
nsd

2 + O�1/ns�
2�� , �1�

where ns and � are the boson number density and coherence
length, respectively �see Fig. 1�. Numerically C=1±0.02.
The tunneling rate �1� applies to low density BEC’s and their
charged version, the “Bosonic superconductor.” Equation �1�
is computed using an antipodal vortex pair wave function on
a spherical geometry �see Fig. 1�.

�ii� The BCS superconductor. Conventional superconduct-
ors, with large electron density and core radius, have a tun-

neling rate which is suppressed by a factor of e−0.2kF
2d2

, where
kF is the Fermi wave vector. Thus one can conclude that BCS

FIG. 1. �Color online� Overlap of two antipodal vortex-
antivortex pair states on a sphere, shifted by distance d, which are
used in this paper to numerically evaluate the vortex tunneling rate.
White circles depict directions of circulating currents.
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vortices cannot observably tunnel under barriers larger than a
few Fermi wavelengths.

Our results point to the experimental regime where vortex
tunneling in superconductors may have measurable effects
on magnetotransport. Basically, the superfluid density should
be much lower than the usual metallic electron density. This
condition may be realized in cuprate �high Tc� films,8 espe-
cially in the underdoped regime,22 and in highly disordered
superconducting films,11,12 where phase fluctuations are im-
portant.

The paper is organized as follows. Section II sets up the
tunneling calculation by expressing the two site vortex tun-
neling rate in terms of the pinning energy and ground states
overlap. Section III presents the overlap calculations of the
interacting BEC �arriving at Eq. �1��, and the BCS supercon-
ductor. Section IV presents the vortex transport theory and its
relation to electrical conductivity in superconductors. We use
a quantum hopping Hamiltonian based on Eq. �1� coupled to
the QED field of superfluid phonons.17,18 Following the
theory of Ambegaokar, Halperin, and Langer23 �AHL�, we
derive the variable range hopping exponent and temperature
scale. The analogy to the “quantum Hall Insulator”24–26 is
utilized to argue that the Hall conductivity of a bosonic su-
perconductor is a robust measure of its boson number density
ns. �This is in contrast to the commonly used assignment of
the “Hall number” using the inverse Hall resistivity.�

We provide pedagogically instructive details in a series of
appendixes: the overlaps of vortex mean field state, in Ap-
pendix A, the Bogoliubov theory, in Appendix B, and Bogo-
liubov de-Gennes equations, in Appendix B 3, and their ma-
trix formulations in the spherical geometry, in Appendix C.

In Appendix D we prove that the Magnus coefficient
�adiabatic curvature� of an arbitrary wave function on the
sphere is given by its average angular momentum density.
This result, which is peripherally connected to the main sub-
ject of this paper, generalizes a previous proof connecting the
vortex Magnus action to the far field density.27

We conclude in Sec. V with a summary and a discussion.

II. VORTEX TUNNELING AND WAVE-FUNCTION
OVERLAP

The relation between the vortex tunneling rate and wave-
function overlap follows the method of nonorthogonal
ground states first introduced by Heitler and London.28

Let us consider a homogeneous condensate described by a
many-body interacting Hamiltonian H0. We perturb the sys-
tem with two weak, and symmetrically situated, pinning sites
at positions x1 and at x2. The full Hamiltonian is

H = H0 + V1 + V2, �2�

where Vi=�n�xi�. The pinning potentials are repulsive for the
bosons ���0� and are therefore attractive for the vortices.
The separation between the pinning sites is d= �x2−x1�. We
assume for this exercise that a reflection symmetry exists in
H about a mirror plane between the pinning sites. The
ground states ��i

0� of the two partial Hamiltonians satisfy
�H0+Vi���i

0�=E0��i
0�. Thus we can use the symmetric and

antisymmetric superpositions as variational ground states for
the two symmetry sectors,

��±
0� =

��1
0� ± ��2

0�
	2�1 ± �
�1

0��2
0���

. �3�

Their corresponding energies are bounded by

E±
0 � E0 +


�1
0�V2��1

0� ± 
�1
0�V2��2

0�

1 ± �
�1
0��2

0��
. �4�

The coherent tunnel splitting is defined as tv= �E+
0 −E−

0� /2. To
first order in the overlap, 
�1

0 ��2
0�, we obtain �see Ref. 29�

tv � �
�1
0�V2��1

0� · 
�1
0��2

0� − 
�1
0�V2��2

0�� � V̄�
�1
0��2

0�� ,

�5�

where V̄�
�1
0�V2��1

0�
�n1�x2�. We neglect the term pro-
portional to 
�1

0�V2��2
0� since it depends on the density at the

vortex center, which is assumed here to be small.
Thus Eq. �5� establishes that the pinning potential sup-

plies the “attempt rate” of the tunneling. We shall see that the
vortex wave-functions’ overlap depends primarily on the
near field correlations, and decreases as a Gaussian of their
separation d.

A. Overlap exponent and compressibility

We briefly review the important result of Niu, Ao, and
Thouless �NAT�15 concerning vortex overlap. Consider a
vortex centered at X, with core radius �. The
Onsager-Feynman30 wave function is constructed from the
uniform ground state �0, and is therefore asymptotically cor-
rect for coordinates xi far from the core center.

�X � �
i

�exp�i	�xi − X��f��xi − X�/����0, �6�

where f�y�→1 at y
1. The overlap between two such wave
functions, displaced by a distance d, is given by


�X��X+d� = e−Wc exp�−
�

2
nsd

2�
0

k̄ dk

k
S�k�� ,

S�k� =
1

ns
� d2x
�0��n�0��n�x���0�eik·x, �7�

where Wc is the overlap of the core area. 	�x� is the angle
between x and the x axis. ns is the average density, �n=n

−ns, and k̄
2� /� is the core wave-vector cutoff.
The structure factor S�k� is bounded by Bogoliubov’s

inequality31

S�k�� 	F�k���k� . �8�

For interacting bosons of mass m and velocity indepen-
dent interactions, the equal-time correlator F is given by

F�k� �
�2

N

†nk,�H,�n−k�‡� =

�2k2

2m
. �9�

The compressibility � is related to the sound velocity cs by
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lim
k→0
��k� →

1

2mcs
2 . �10�

Inequality �8� ensures that for the interacting BEC, the mo-
mentum integration in Eq. �7� converges at low k, and there-
fore the vortex overlap exponent is finite in the thermody-
namic limit.

We point out in Appendixes A and B 3 that both the
Gross-Pitaevskii �mean field� coherent state and the BCS
vortex wave functions suffer from a spurious overlap catas-
trophe, due to their unphysical, infinite compressibilities.32

III. VORTEX OVERLAP CALCULATIONS

A. The interacting BEC

We consider a two-dimensional BEC with short range in-
teractions, described by the second quantized Hamiltonian

H =� d2x�
†K�A�
 + V�x�
†
 +
g

2

†
†

� , �11�


†�x� creates a boson of mass m and charge q at position x;
� is the chemical potential. The single particle potential V�x�
includes confining and vortex pinning contributions. The ki-
netic operator is

K�A� =
1

2m
��

i
� +

q

c
A�2

, �12�

and A is a vector potential. In the case of bosons of charge q
in a magnetic field B=Bẑ and subject to a rotation �=�rotẑ,
the vector potential is A= � 1

2B+mcq−1�rot�ẑ�x, and the
single particle potential is shifted by �V�x�= ��rot /2c��qB
+mc�rot�x2.

If the system is a uniform droplet of bulk density ns, the
chemical potential gets pinned at �=gns. The important pa-
rameters of the condensate are the phonon velocity cs

=	gns /m, and the coherence length is �=� /mcs.
We use boson coherent states �A1� to set up a semiclassi-

cal expansion of the partition function,

Z =� D��,�*�exp��
0

��

d�� d2x�i�*��� − H��*,����

 exp�− �EMF��̃�� � D��,�*�e−L�2���*,��+O��3�. �13�

The first exponential is the classical �mean field� energy, and
the remaining path integral is over the fluctuation field �
=�− �̃.

The classical field �̃ minimizes the variational energy

��H���. It solves the Gross-Pitaevskii �GP� equation33,34

�K�A� + V − � + g��̃�x��2��̃�x� = 0. �14�

With a weak pinning potential at the origin, and an external
magnetic field or rotation,35 a stable vortex solution can be
found whose approximate analytic form is36

�̃

	n0rei	

	r2 + �2
, �15�

where �r ,	� are the polar coordinates of the vortex center,
and n0 is the mean field asymptotic condensate density. For
numerical evaluation of the fluctuation spectrum, the trial
solution �15� must be improved upon by iterating Eq. �14�.

B. BEC vortex overlap

In Appendix A the mean field vortex coherent state is
shown to suffer from an overlap catastrophe. In Appendix B,
the Bogoliubov-fluctuations corrected ground state is given
by

��� = N exp� 1
2


†Q
†�exp�f
†��0� ,

f�x� � �̃�x� −� d2x��̃*�x��Q�x�,x� , �16�

where the operator Q is determined by solving Bogoliubov’s
equations. The density profile of ��� is defined as

�n�x� = 
��n�x� − n0��� �17�

and plotted in Fig. 2 as a function of radial direction from the
vortex core.

The BEC vortex wave-function overlap is given by

�
�1��2�� = exp�− W0 − W1� . �18�

We note that the leading order W0 is proportional to the
condensate density n0, while the fluctuation correction W1
depends on d ,� ,R, but not on n0. W1�R� turns out to diverge
logarithmically with system size R, which is simply an arti-
fact of the Gaussian approximation in ���. At this subleading
order, in 1 / �n0�

2�, the compressibility of this wave function

FIG. 2. �Color online� The mean field condensate density profile
n0�r� corrected by the Bogoliubov fluctuations density �n�r� as a
function of radial distance r from the vortex center. n0 is the far
field asymptotic density.
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diverges with R. However, this need not concern us here,
since we limit our calculation to the leading order which has
a finite compressibility.

In Appendix B we show that W0 of Eq. �B17� is domi-
nated by the core region. A numerical calculation, described
in Appendix C, is used to determine W�d ,��. The numerical
results for the antipodal vortex pair on a sphere of size R,
depicted in Fig. 1, are presented in Fig. 3. An excellent ana-
lytical fit to the data is given by

W0
sphere�d,R� = C�n0d2�1 + O��/R��, C = 1 ± 0.02.

�19�

By halving the result for the vortex pair on a sphere �Eq.
�19��, and taking the large R limit, we obtain the leading
order result for a single vortex in the plane

W0 = 1
2�n0d2 + O��/R,�n� , �20�

which produces the result quoted in Eq. �1�.

C. BCS vortex overlap

In Appendix B 3 the vortex wave-function overlap for an
s-wave BCS superconductor is calculated by numerically
solving Bogoliubov-de Gennes equations. Analysis of the far
field contributions, combined with the numerical results
yields

�
�1��2�� = exp�− WBCS� ,

WBCS � d2� kF

8�
ln�R/�� + kF

2F�kF��� , �21�

where kF is the Fermi wave vector, � is Pippard’s coherence
length and the vortex core size, and F is a dimensionless
function of magnitude 0.2. The overlap catastrophe �loga-
rithm of system size R� comes from the far field contribu-
tions and is an artifact of the infinite compressibility of the
BCS wave function. The important lesson from Eq. �21� is

derived from the core region contribution e−0.2kF
2d2

. This sup-
pression is not affected by the long wavelength phase fluc-
tuations, but arises from the large density of electrons in the
Fermi sphere which change their momenta when the vortex
moves. We can safely conclude therefore, that in high super-
fluid density superconductors, vortex tunneling cannot be ob-
served beyond a distance of a few Fermi wavelengths.

IV. VORTEX TRANSPORT THEORY

Mobile vortices imply the destruction of the static super-
conducting order parameter. However, when order parameter
�phase� correlations are of sizeable range, it is still conve-
nient to describe the dissipative and Hall transport in terms
of dilute vortices, rather than in terms of a dense system of
interacting bosons. In two-dimensional BEC’s, the neutral
and charged BEC have analogous transport equations, since
shielding can be ignored. The number current, pressure, and
rotation frequency in the neutral BEC play the role of elec-
trical current, voltage, and perpendicular magnetic field, re-
spectively, in the bosonic superconductor. For convenience,
we shall discuss the latter case, keeping a keen eye on pos-
sible experimental ramifications.

A. Vortex conductivity and electrical resistivity

Steady dissipative vortex motion can be driven by a bias
current. For bosons with density ns and charge q the current
is jc=qnsvs, where vs is the superfluid velocity. The vortex
“charge” is the sign of its vorticity, Qv= ±1, and the vortex
“flux quantum” is a unit of boson particle number �v

0 =1.
The kinetic energy difference vortex at site Ri and R j is

E0�i� − E0�j� =
hQv

q
jc� ẑ · �Ri − R j� . �22�

The effective “electric” �actually Magnus� field acting on
that vortex is

�v =
h

q
jc� ẑ . �23�

The stable ground state of a charged superfluid �i.e., a super-
conductor� in a magnetic field B has a finite density of vor-
tices given by

nv = Bq/�hc� , �24�

where c is the speed of light. If the vortices have an average
drift velocity Vv the vortex current density is given by

Jv =
BqQv

hc
Vv. �25�

The electromotive field �EMF� induced by the average vor-
tex drift velocity is

E = − c−1Vv� B = −
h

q
Jv� ẑ , �26�

where c is the speed of light.
The “vortex conductivity” tensor is defined as �v,

FIG. 3. �Color online� The leading order overlap exponent for
an antipodal vortex pair of a BEC on a sphere, displaced by a
distance d. n0 is the mean field condensate density. Numerical data
for Eq. �B16� are marked by crosses and circles representing differ-
ent coherence lengths in the range � /R� �0.075,0.15�. The upper
angular momenta cutoff was taken at lmax=60. The solid line rep-
resents the fit with C=1 in Eq. �19�.
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Jv
� = �

�

�v
���v

�. �27�

Using Eqs. �23� and �25�, the electric resistivity tensor � is
directly related to the vortex conductivity by duality
relations10

�xx = �h

q
�2

�v
yy, �yy = �h

q
�2

�v
xx,

�xy = − �h

q
�2

�v
yx. �28�

For example, consider unpinned vortices which can move
in a Galilean invariant superfluid. The vortex Hall conduc-
tivity is given by analogy to a charged liquid of filling frac-
tion �, which is �xy =�e2 /h. Setting e→Qv, one obtains

�v
xy =

Qv

h
nv/ns, �29�

which by using Eqs. �24� and �28� yields �unsurprisingly� the
classical electric Hall resistivity of a charged liquid with den-
sity ns:

�class
xy = −

B

nsqc
. �30�

This result will be used later, in Sec. IV D.

B. Vortex hopping Hamiltonian

Thus we arrive at a noninteracting vortex hopping Hamil-
tonian described by an Anderson tight binding model in a
strong magnetic field

Hv = �
i

�ici
†ci + �

ij

tv�dij��ei/��xi

x jdx·aci
†cj + H.c.� , �31�

where ci
† creates a vortex at a random pinning site xi with

random energy �i. a is the Magnus gauge field which satisfies

�� a = hnsẑ , �32�

which gives rise to a Hall effect. The vortex hopping rate tv
was precisely defined by Eq. �5�. For a weakly interacting
BEC it was shown to decay with intersite separation d as a
Gaussian

tv�d� � V̄ exp�−
�

2
nsd

2� . �33�

The low energy vortex current operator is

Jv�x� =
− i

2��ij dijtv�dij��cj
†ci − H.c.���x − xij� , �34�

where dij and xij are the separation and midpoints of the
pinning sites, respectively.

Vortex dynamics have been systematically derived for the
two-dimensional translationally invariant superfluid using an
effective quantum electrodynamics �QED� theory.17,18 In the
QED formulation, vortices are point “charges,” moving in

the presence of a “transverse magnetic field” �the condensate
density�, and interacting with “photons” �the Bogoliubov
phonons�. The photons give rise to a vortex self-energy,
which diverges logarithmically at low frequencies. This di-
verging “effective mass,” however, does not preclude quan-
tum tunneling at finite time scales.37

Following the derivation of Ref. 18, we explicitly retain
the low energy phonons by coupling them as a gauge field to
the vortex current:

Hv-ph =� d2xJv�x� · A��x� + �
k
�cs�k�ak

†ak,

A� =
ih
	V

�
k

eik·x� ns�

2�k��
1/2

ẑ� k̂�ak + a−k
† � , �35�

where ak
† creates a Bogoliubov phonon �“photon” in the QED

language18� of wave vector k and frequency �csk, and cs
=� / �m�� is the speed of sound. The vortices are treated as
hard-core particles, which like adsorbates on a surface, have
a Fermi-Dirac occupation probability

ni = �e��i−��/T + 1�−1. �36�

We set the chemical potential � to zero and fix the average
density nv=�ini /Npin by the magnetic field as given by Eq.
�24�. By inserting Eq. �34� in Eq. �35� for two sites separated
by R, the two site conductance is given by the hopping
theory �Ref. 38�

Gv�d� = �0e−�nsd
2
e−1/2T���i�+��j�+��i−�j�� �37�

where

�0 =
2�nvV̄2d4

�4T
Rph��i − � j� ,

Rph��� = Im �
�

�

dte−i�t
A��x,t�A��x,0��

=
h2ns�

4cs
�1 + Nb��/T�� . �38�

Rph is the bosons’ local dissipative response to the vortex
motion, and Nb is the Bose function.

C. Vortex variable range hopping

The macroscopic vortex conductivity for the hopping
Hamiltonian �31� requires knowledge of the distribution of
pinning site positions and energies P��xi ,�i��. We focus our
attention on individual vortex tunneling, in the regime of low

vortex densities nv�npin and small random fluctuations �V̄

� V̄. Interaction effects between vortices are self-consistently
incorporated into �i.

The density of states depends on both the pinning poten-
tial distribution and the effects of vortex interactions. Here,
we shall treat the low field, finite temperature regime where
the mean hopping distance is much smaller than the vortex
separation. The density of states is then reasonably modeled
by
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N�x,�� = ��
i

��x − xi���� − �i�� =
npin

�V̄
, �39�

where npin is the pinning site density, and its energies are

uniformly distributed in the interval �−�V̄ /2 ,�V̄ /2�.
The vortex conductivity maps onto Mott’s variable range

hopping �VRH�39 of charges in a random potential and a
strong magnetic field. The Gaussian decay of Eq. �33� is
directly analogous to that of an electron in the lowest Landau
level,40,41 where the “Landau length” is �=	2�ns.

At low enough temperatures T��V̄, there are typically
many competing tunneling paths between pinning sites sepa-
rated by distances d
� ,1 /	npin. As Shklovskii has
shown,40,41 in this regime multiple �virtual� tunneling pro-
cesses play a crucial role. Their primary effect is to replace
the Gaussian decay of the two-site tunneling rate by a linear
decay, typical of an Anderson insulator. Here, we must there-
fore replace tv�R� of Eq. �33� by

t̃v � V̄e−d/�, � =
2s	npin

�ns
, �40�

where � is the linear localization length, and s is a pure
number which depends on the details of P��x ,���. Replacing
Eq. �33� by Eq. �40�, we arrive at a two-dimensional random
resistor network of the kind discussed by Ambegaokar,
Halperin, and Langer23 �AHL�, with random conductances
given by

G̃v
ij = �0 exp�−

2dij

�
−

��i� + �� j� + ��i − � j�
2T

� . �41�

By AHL, the macroscopic conductance is given by the
critical �lowest� conductance Gv

c of the percolating subset of

conductances which obey G̃ij Gv
c.

Taking the average number of bonds per site at percola-
tion to be �c �e.g., on the square lattice �c=2�, the percolat-
ing bonds all obey

2dij

�
+

��i� + �� j� + ��i − � j�
2T

� ln��0/Gv
c� , �42�

which can be written as

dij

dmax
+

��i� + �� j� + ��i − � j�
2�max

� 1, �43�

where

dmax =
�

2
ln��0/Gv

c� ,

�max = T ln��0/Gv
c� . �44�

By Eq. �39� the density nconn of connected sites within
��i���max is given by

nconn = npin
�max

�V̄
. �45�

The percolation condition on the number of connections per
site is

nconndmax
2 = �c, �46�

which implies the relation

�maxdmax
2 =

�c�V̄

npin
. �47�

Using Eqs. �44� and �47� one obtains the value of the critical
vortex conductance

Gv
c = �0e−�T0/T�1/3

,

T0 = K�V̄��ns

npin
�2

, �48�

where K=4�c /s2 is a dimensionless factor of order unity.
Using Eq. �28� we obtain the variable range hopping magne-
toresistivity

�xx�B,T� = �h

q
�2

�0�nv�B��e−�T0/T�1/3
. �49�

�xx�B ,T� exhibits vortex tunneling in two ways. First, the
power of 1 /3 in the exponential temperature dependence.
Second, the VRH temperature scale T0 depends strongly on
the ratio of vortex tunneling length scales: the characteristic
tunneling distance 1/	npin divided by the interboson separa-
tion 1/	ns.

At stronger fields �higher vortex density�, long range vor-
tex interactions are expected to modify the asymptotic power
of the hopping exponent.9

D. Vortex Hall resistivity

1. Quantum Hall insulator: Review

Early on, Holstein43 studied the Hall effect of the hopping
model �31� at low temperatures. He has shown the impor-
tance of three site tunneling interference for producing a
nonzero Hall effect.

Since then, several groups have extended that work to
electrons in highly disordered two-dimensional semiconduc-
tors in the presence of a strong magnetic field.24 Although
different approximation schemes were used, these groups
have concluded that while �xx diverges at low frequency and
temperature, lim�→0limT→0 �

xy�� ,T���. Such behavior was
dubbed “Quantum Hall insulator” �see Ref. 42�.

Experiments in Hall bars44 have found that the dc Hall
resistivity has a much weaker temperature dependence than
the resistivity on the insulator side of the field tuned metal-
insulator transition. Reference 25 has remarkably found the
Hall resistance in the insulator to be quantized at h /e2�, at
filling factor of �=1/3.

The apparent difference between the behavior of the Hall
resistance versus the longitudinal resistance can be explained
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by Kirchoff’s transport theory of an inhomogeneous resistor
network,45 with widely varying resistances. The Puddles Net-
work Model �PNM�26 was introduced to explain the experi-
ments of Ref. 25. The PNM assumes a network of perfect
Hall liquid puddles with conductivities �xy =�e2 /h, �xx=0,
embedded in an insulating environment and connected by
arbitrary large, classsical resistors. This model yields a quan-
tized value of �xy =h /e2�, independent of �xx.

While the PNM describes ohmic �incoherent� transport,
quantum transport theory yields a different result. Using the
Chalker-Coddington network to represents noninteracting
electrons in the lowest Landau level in the presence of
smooth disorder, Ref. 46 has numerically found that the Hall
resistance at zero temperature actually diverges with system
size, similarly to the quantum induced localization of �xx.
Therefore a true Hall insulator phase for the Chalker-
Coddington model has been ruled out. The conflicting results
of classical and quantum transport theories is related to the
role of dephasing. Inelastic scattering destroys localization
and prevents the divergence of �xy.

2. Quantum vortex insulator

The above discussion is directly relevant to the vortex
hopping model �31�. The vortices are essentially in an insu-
lating state with possible domains of weaker superconductiv-
ity where vortex mobility is higher. A diverging �xy at low
temperatures may indicate long range coherent vortex trans-
port, an interesting result in itself.

Let us for now assume sufficient dephasing at the low
temperature of experiments, due to vortex-phonon, or vortex
fermion interactions. We can appeal to the Boltzmann trans-
port theory and to the resistor network models. This implies
that the Hall conductance �not resistance� is determined by
the Hall conductivity �xy of the most “insulating” puddles.
We do not know how to compute the distribution of �xy.
However, by Eq. �29�, �xy measures the effective carrier den-
sity n* in the most resistive domains �i.e., the vortex liquid
puddles�:

�xy�B� � ns
*qc/B . �50�

Furthermore, a detection of “quantized” plateaus of
�xy�B ,ns� may indicate locked-in charge density waves or
topological ordering48 in the vortex-condensed domains.

V. EXPERIMENTAL IMPLICATIONS
AND DISCUSSION

BEC of cold atoms. Vortices have been created in rotating
cold atomic gases.49 One can imagine optically introducing
localized pinning potentials and measuring the excitation
spectrum. The lowest antisymmetric excitation could be
compared to expression �1� for different potential separations
and boson densities.

Cuprate superconductors. In thin cuprate films, time re-
solved magnetization relaxation8 is a direct measure of the
average vortex mobility. A variable range hopping behavior
of the magnetoresistance section is indicative of tunneling
effects, as was shown in Sec. IV C. For a “bosonic supercon-

ductor” �coupled only to order parameter phase fluctuations�,
the characteristic resistivity given in Eq. �49� is

h2

q2�0 �
h

q2� nv

npin
�� V̄

T
�� ns

npin
�ns�

2. �51�

This expression has dubious applicability to high Tc films.
However, if one accepts a model of tighly bound hole pairs,
with a low superfluid density, the vortices can primarily dis-
sipate momentum to the low energy “nodal” fermions, and
the core states near the vortex center.50,51 Incorporating gen-
eral fermionic excitations �which could also be induced by
short range disorder� can be achieved by including a dissipa-
tive response to Rph, given by

Rfer��� = �h2c2

e2�
��ferm��� , �52�

where �ferm��� is the fermions contribution to the ac conduc-
tivity. Crudely estimating the factors contributing to the char-
acteristic resistivity, we obtain

h2

q2�0 �
h

q2� nv

npin
�� V̄

T
�� V̄

�V̄
�����V̄/��

e2/h
� . �53�

The values of V̄ and �V̄ may be extracted from the resistance
activation energy at higher temperatures. Nikolic and
Sachdev52 have recently considered the effects of nodal fer-
mions on the vortex dynamics in a charged d-wave supercon-
ductor. They have found that only a finite vortex mass renor-
malization is induced, and a viscous drag term which rises
with temperature as T2.

Hall conductivity. Hall effect measurements in under-
doped cuprates have determined the Hall number as nH�T�
=−B / ��xyec� and found it to be of the same sign and magni-
tude as the hole doping concentration away from the Mott
insulator phase.53 However, the “anomalous” strong tempera-
ture dependence of nH�T� has been used to distinguish the
unconventional nature of the cuprates which differs from the
much weaker temperature dependence of the Hall number in
conventional metals.

Our analysis suggests that the Hall conductivity, Eq. �50�,
rather than Hall resistivity, should be used to define a Hall
number in the superconducting phase. In this regime, acces-
sible by strong magnetic fields,54 �xy is expected to be less
temperature dependent and to characterize the Hall coeffi-
cient of metallic “puddles” inside the superconductor, where
vortices are locally delocalized by tunneling.

Disordered superconducting films. Highly disordered su-
perconducting films11 are also likely candidates for observing
vortex tunneling since they effectively exhibit low superfluid
density. We expect variable range hopping and a finite Hall
conductivity near the supercondcutor-insulator transition,
where vortices become delocalized. However, we refrain
from quantitative estimates for these effects since a micro-
scopic theory for strongly inhomogeneous interacting fer-
mion systems is beyond the scope of this paper.

Periodic lattices. Optical lattices of cold bosons and Jo-
sephson junction arrays introduce the challenge of a strong
periodic potential. The vortex hopping Hamiltonian �31� can
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describe a periodic lattice of weak pinning potentials. One
expects the lattice constant to play an important role in vor-
tex mobility. The analogous Hofstadter problem47 of a tight
binding electron motion in a strong magnetic field demon-
strates the strong effects of commensurability between the
site and flux quanta densities. Indeed, recent theoretical work
has shown48 that ground states degeneracies and vortex dy-
namics depend on the boson filling per lattice site.
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APPENDIX A: SPURIOUS OVERLAP CATASTROPHE IN
MEAN FIELD THEORY

This appendix provides pedagogical examples which re-
flect the limitations of mean field theory of superfluids of
superconductors. In particular, we show that Bose coherent
states and Bogoliubov de-Gennes wave functions have loga-
rithmically divergent overlap exponents in the thermody-
namic limit, as a consequence of their infinite compressibili-
ties.

1. Bose coherent states

Coherent states wave functions are often used as zeroth
order approximations to ground states of Bosons, supercon-
ductors, and quantum spin models with long range order.
Here we show that when describing a vortex, coherent states
generically exhibit an overlap catastrophe, i.e., a logarithmi-
cally diverging exponent. This divergence is an artifact of the
unphysical infinite compressibility exhibited by noninteract-
ing bosons.

Consider the coherent state ���, with �=	n0ei	 a complex
scalar field, defined by

��� = exp� d2x���x�
†�x� − �*�x�
�x���0� . �A1�

The overlap exponent between two translated vortex coher-
ent states �A1�, centered at X= ± 1

2d is then �
�1 ��2��
=exp�−WCS�, with

WCS =� d2x� 1
2 ���1�2 + ��2�2� − Re �1

*�2� .

The far field integral �away from the core� ni�x��n0. In this
case, ��	n0 exp�i	�, where 	 is the angle function relative
to the vortex center �see Fig. 4�.

Wfar
CS�d� = n0�

r0

R

d2x�1 − cos�	1 − 	2��



1

2
n0�

r0

R

d2x�d · �	

r
�2

=
1

2
�n0d2 ln�R/r0� , �A2�

where r0 is a near field cutoff. This calculation was first
presented by Sonin19 in the context of vortex tunneling using
a noninteracting �product� condensate wave function.

For the noninteracting Bose condensate wave function, it
is easy to verify that the structure factor is


�n�x��n�x��� = ��x − x��n0 �A3�

which yields finite zero momentum density fluctuations
limk→0 SCS�k�=T�=1. This is an artifact of the unphysical
limit of noninteracting bosons, where the sound velocity
vanishes and the compressibility ��T=0� is infinite. The
wave-function overlap integral in Eq. �7� diverges logarith-
mically with the lower momentum cutoff, signaling this or-
thogonality catastrophe seen in Eq. �A2�. Recall, however,
that noninteracting bosons do not support stable vortices as
their coherence length is infinite.

APPENDIX B: BOGOLIUBOV FLUCTUATIONS

The fluctuations � in Eq. �13� are governed by the har-
monic action

S�2� = 1
2 � d�� d2x��* ���iJ�� − H�2��� �

�* � , �B1�

where

FIG. 4. �Color online� Overlap of two vortex coherent states as
described by Eq. �A2�. Black �red� arrows are vector representa-
tions of �1 ��2�. For asymptotic calculations of BEC and BCS
cases, see Eqs. �B17� and �B29�, the far field region is divided into
uniform phase blocks labeled by l at distances rl and areas Al.
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J � �1 0

0 − 1
�, H�2� = � H0 g�̃2

g�̃*2 H0
* � , �B2�

and H0=K�A�+2g��̃�x��2−�.
The Hamiltonian H�2� is diagonalized by the canonical

transformation,

S = �U V*

V U* �, S†H�2�S = �Ê 0

0 Ê
� , �B3�

with

S†ĴS = Ĵ = SĴS†. �B4�

Here we use the Dirac matrix notations for the eigenfunc-
tions,


x�U�n� = Un�x� ,


x�V�n� = Vn�x� . �B5�

The spectrum is given by the diagonal matrix 
n�Ê�n��
=�nn�En.55 The Bogoliubov eigenoperators and spectrum are
determined by solving the differential equations,

H0Un�x� + g�̃2Vn�x� = + EnUn�x� ,

g�̃*2Un�x� + H0
*Vn�x� = − EnVn�x� , �B6�

1. Bogoliubov corrections in the far field approximation

In a large area, asymptotically far away from the vortex
core, we can solve the Bogoliubov equations �B6� using a
constant order parameter, �̃=	n0ei	. H�2� is diagonal in Fou-
rier space, and the matrix Q is given by


k�Q�k�� = −
e2i	

�
�!k − � − E�!k���k,k� � e2i	−"k�k,k�,

�B7�

where !k=�2k2 /2m and E�!�=	!2+2�!. The Bogoliubov
fluctuations lead to an increase in the density. Defining �n
=ns−n0,

�n = 
���†���� = 1
2�

k
v2�!k� ,

v2��� =
�2

2	�� + ��2 − �2�� + � + 	�� + ��2 − �2
, �B8�

and changing variables to y=1+� /�, one obtains

�n =
1

��2�
1

� dy

2	y2 − 1�y + 	y2 − 1�
=

1

4��2 . �B9�

The dimensionless parameter which controls the higher
order terms in the saddle point expansion of Eq. �13� is then
�n /n0=1/ �4�n0�

2�, which serves as an effective “quantum
disorder” coupling constant.

For a uniform condensate, the leading order structure fac-
tor is given by

SBog =
�q

Eq
+ O�n0�

2�−1, �B10�

where the order 1 / �n0�
2� corrections go beyond the leading

order approximation and hence are ignored. An artifact of the
wave function �, in Eq. �16�, is that it produces a nonvan-
ishing contribution at zero momentum �i.e., an infinite com-
pressibility� from the fluctuations correlator 
�����4���.
These should be cancelled at this �subleading� order in
1/ �n0�

2�, by self-energy corrections due to cubic interactions
g�*�*���2, which we will not calculate here.

A quantum phase transition into another zero temperature
phase �e.g., a solid� may be expected when �n#n0. Here we
shall not explore the strong coupling regime.

2. Full vortex Bogoliubov theory

In Fig. 5 the numerical fluctuation spectrum about a vor-
tex pair configuration on a sphere is plotted as a function of
angular momentum. Equation �14� has a zero mode56 �En

=0� corresponding to a global U�1� phase transformation 	
→	+�, given by

U0�x� = A�̃�x�, V0�x� = A*�̃*�x� ,

� d2x��U0�2 − �V0�2� = 0. �B11�

This �unnormalizable� zero mode, which enforces charge
conservation, is henceforth excluded from our numerical
spectra.

The Bogoliubov eigenoperators �quasiparticles� are given
by

an =� d2x�Un
*�x���x� − Vn

*�x��*�x�� . �B12�

FIG. 5. �Color online� The exact Bogoliubov spectrum for a
vortex pair configuration on the sphere, as a function of azimuthal
quantum number m. The relevant parameters are � /R=0.1, and a
stabilizing rotation frequency of �rot=1.875� /mR2. Note the non-
degenerate zero mode at m=1. Note the vortices induced distortion
of the spectrum around m
0 in a broad energy range.
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To visualize the Bogoliubov fluctuations near a vortex, we
plot in Fig. 6 the tunneling density of states as defined by

T�E,x� = ��
n

�Vn�x��2��E − En� , �B13�

which might prove interesting for inelastic scattering experi-
ments of rotating condensates.57

The Bogoliubov corrected ground state ��� is the
a-vacuum, and thus satisfies an���=0. This may be written
in terms of the original bosons as

��� = N exp� 1
2 � d2xd2x�
†�x�Q�x,x��
†�x���

� exp�� d2xf�x�
†�x���0�

f�x� � �̃�x� −� d2x��̃*�x��Q�x�,x� . �B14�

Integration over coordinates is implied in Eq. �B14�, and the
normalization factor is N= 
� ���−1/2. The pair operator Q is
given by

Q�x,x�� � 
x��U†�−1�1 − �0�
0��V†�x�� = Q�x�,x� ,

�B15�

where the matrices U† and V were defined in Eq. �B5�. The
zero mode �B11� denoted by �0�, is projected out in Eq.
�B15� as required by Bogoliubov’s saddlepoint expansion. In
the following we shall compute the operator Q in convenient
bases.

We next compute the overlap of a vortex state with a
displaced vortex. For two vortex states �16� centered at Xi,
i=1,2, the operators Qi�x ,x�� are distinct and not transla-
tionally invariant. The magnitude of the wave-function over-
lap for Bogoliubov-corrected vortex states is

�
�1��2�� = exp�− W0 − W1� ,

W0 = W0
�12� − W0

�11�, W1 = − ln�D12

D11
� ,

W0
�ij� =

1

2
�f i

*f j�� 1 − Qj

− Qi
* 1

�−1� f j

f i
* � ,

Dij = det−1/2�1 − Qi
*Qj� . �B16�

We note that the leading order W0 is proportional to the
condensate density n0, while the fluctuation correction W1
depends on d ,� ,R, but not on n0. W1 turns out to diverge
logarithmically with system size. However, in this paper we
avoid calculating the subleading order corrections, since we
know that at the same order, the structure factor of � is
incomplete, as discussed after Eq. �B10�.

We now show that in contrast to the coherent state overlap
result �A2�, there is no logarithmic divergence, to leading
order, in the exponent W0�d ,R�. This can be shown analyti-
cally by separating contributions of the core and the far field
regions, as depicted in Fig. 4,

W0 � �
core

d2xwcore�x� + �
l

Alwfar�xl� . �B17�

The far field integral is approximated by a sum over constant
phase domains, at radii rl
�, and of areas Al�rl

2, corre-
sponding to the condensate field �i,l=	n0 exp�i	i,l�. We use
the uniform solutions �B7� in each such domain, assuming
that the block sizes are large enough: Al
�

2. Thus

Qi,l = −
e2i	i,l

Al
�
k�0

Qkeik·�x−x�� = − ei2	i,l���x − x�� + O��/rl�� ,

�B18�

which, by Eq. �16�, yields in each block l, and vortex con-
figurations i=1,2, the constant functions

f i,l�x� = 	n0�ei	i,l − e−i	i,l�
l

d2x�Qi,l�x,x���
= 2	n0ei	i,l + O��/R� . �B19�

Using Eq. �B16� we obtain to zeroth order in � /rl the result

wfar�xl� � n0 Re��e−i	1ei	2�
� 1 − ei2	2

− e−i2	1 1
�

1 − ei2�	2−	1�

�� ei	2

e−i	1
� − �	2 Û 	1��

= 4n0 Re� ei�	2−	1�

1 + ei�	2−	1� −
1

2
� = 0, �B20�

where we have suppressed the block index l. Unlike in the
coherent states overlap exponent which exhibits a logarith-
mic divergence �A2�, W0 is perfectly finite in the large sys-
tem limit

FIG. 6. �Color online� The Bogoliubov tunneling density of
states of a BEC vortex �in arbitrary units� as a function of excitation
energy E and radial distance from the vortex center r. � is the
coherence length.
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�
l

Alwl
far = �

r0

�

d2r�d · �	�2� O��/r��� �B21�

which is in agreement with NAT �7� and �B10�.

3. Vortex overlap in BCS states

It is perhaps little appreciated in the literature that vortex
wave functions of BCS theory of superconductors, as derived
by leading order Bogoliubov de-Gennes equations, suffer
from the same overlap orthogonality catastrophe and infinite
compressibility as the Bose coherent states described above.

We shall demonstrate this point by considering a “ge-
neric” BCS superconductor, which is described by a micro-
scopic Hamiltonian of attractively interacting fermions:

H =� d2x�
s
†�K + V�
s −

g

2

s

†
s�
† 
s�
s� ,

where 
s�x� creates an electron of mass m, charge q, and
spin s= ↑ ,↓ at position x, and the operators of kinetic �K�
and potential �V� energy are the same as defined for bosons
in Eqs. �12� and �11�, and we similarly use the Dirac matrix
notation for operators and vector notation for functions.
Summation over repeated spin indices s ,s� is assumed. The
complex superconducting order parameter is ��x�
= 

↑�x�
↓�x��. At long distances from the edges or vortex
cores, � minimizes the Ginzburg-Landau energy, i.e., it sat-
isfies Gross Pitaevskii equation �14� with pair mass 2m and
charge q=2e. Its magnitude is given by the BCS gap param-
eter, i.e., �=g���. As for the BEC, in the presence of a weak
magnetic field, a quantized vortex solution minimizes the
mean field energy, and its core size is given by the coherence
length ���vF /��0, where vF is the Fermi velocity.2

The Bogoliubov de-Gennes �BdG� equations for the su-
perconductor are

H0Un�x� + g�Vn�x� = EnUn�x� ,

g�*Vn�x� − H0
*Un�x� = EnVn�x� ,

where H0=K−� and �=�2kF
2 /2m, along with the self-

consistency condition

�
n

Un�x�Vn
*�x� = ��x� . �B22�

The self-consistency determines the detailed profile of ���r��
in the core region. The exact BdG spectrum of the vortex
pair on the sphere is depicted in Fig. 7.

Using the solutions of Eq. �B22� the two vortex ground
states are given by

���i = N exp�
↑
†Qi
↓

†��0�, i = 1,2,

Qi = 
x��Ui
†�−1Vi

†�x�� , �B23�

where N is the normalization. The normalized overlap of two
BCS vortex states displaced by d is given by

e−W�d� =
�det�1 + Q1Q2

†��
	�det�1 + Q1Q2

†��1 + Q2Q2
†��

= �det�U1
†U2 + V1

†V2�� .

�B24�

We first calculate the far field contribution and see that it
exhibits from a similar logarithmic divergence as the boson
mean field wave functions. Asymptotically far from the
cores, whose sizes are given by �, one can diagonalize Eq.
�B22� using a constant order parameter �i=�ei	. The solu-
tion of Eq. �B22� yields

Uk
2 =

1

2�1 +
$k

	$k
2 + �2� , �B25�

Vk
2 =

1

2�1 −
$k

	$k
2 + �2�ei2	, �B26�

with $k=�2�k2−kF
2� /2m. Factorizing the determinant into

blocks, as shown in Fig. 4, we obtain

W = Wcore + �
rl�r0

Alwl
far,

wl
far � �1 − cos�	1,l − 	2,l�� � d2k

�2��2Uk
2Vk

2. �B27�

Summing over the far field blocks

�
l

Al�1 − cos�	1,l − 	2,l�� 

1

2
�

�x�
r0,d
d2x��	 · d�2

�B28�

one obtains

W � 1
2�neffd

2 ln�R/r0� + Wcore, �B29�

where neff=kF /4���ne.

FIG. 7. �Color online� The Bogoliubov-de Gennes spectrum for
a vortex pair configuration on the sphere, as a function of azimuthal
quantum number m. The relevant parameters are the BCS gap �
and the Fermi energy �F. Note the branch of �doubly degenerate�
low energy Caroli-de Gennes-Matricon core states at positive angu-
lar momenta.
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The divergence of the first term with log�R� arises from
the far-field contributions. Again, it is an artifact of the BCS
wave function, which is a mean field state where the conden-
sate phase does not fluctuate. As for Bose coherent states, the
BCS wave function also has a nonvanishing structure factor
at zero momentum, and thus an infinite compressibility at
zero temperature. This divergence is cancelled by including
�RPA� phase fluctuations, which restores a finite zero tem-
perature compressibility given by the density of states at the
Fermi energy.

Here we are interested in the core contribution Wcore of
Eq. �B29�. This requires a full diagonalization of the BdG
equations. For the antipodal vortex pair on the sphere, the
details of the computation are found in Appendix C. A fit to
the numerically obtained values of W in Eq. �B24� yields the
asymptotic expressions at large R /d:

WBCS � d2� kF

8�
ln�R/�� + kF

2F�kF��� + O�d4� , �B30�

where F is a dimensionless function of order 0.2, of the
scaling variable �kF�� as demonstrated by the collapse of the
numerical data for W in Fig. 8.

The first R-dependent term is the diverging far field con-
tributions discussed earlier, which is an artifact of the infinite
compressibility of the BCS wave function. The second term
is the core contribution which is in fact very large: it goes as
�kfd�2. Thus we find that the core contribution effectively
suppresses energy conserving tunneling between sites sepa-
rated by more than a few Fermi wavelengths. In the regime
of large coherence length relative to the mean free path, vor-
tices could be dissipatively dragged by the bias current by
exciting low energy core states58. This, in essence, is the
source of friction in Bardeen-Stephen flux creep theory.59

This “frictional” motion involves impurity scattering inside
the vortex cores,60,61 which we do not treat in this paper.

APPENDIX C: CALCULATIONS ON THE SPHERE

An antipodal vortex pair field can be expanded as

��",	� = �
l=1

�

�̃lYl,1�",	� , �C1�

where Ylm�" ,	� are normalized spherical harmonics. Equa-
tion �C1� is an eigenfunction of Lz=−i��	. The coherence
length � determines the core sizes at the north and south
poles, and thus the decay rate of the �̃l with l.

The angular momentum representation, with a cutoff at
lmax
 �R /��, reduces the Bogoliubov equations �B6� and
�B22� to finite matrix diagonalizations. We can also translate
the vortex wave functions using SU�2� rotation Dmm�

l matri-
ces.

1. BEC with antipodal vortex pair

For the BEC vortex pair, some straightforward but tedious
algebra can bring the overlap exponent in Eq. �B16� into a
computationally convenient form

W0 = Re���1
*U1 − �1V1�S12

−1�U2
†��2 − �1� − V2

†��2
* − �1

*��� ,

W1 = 1
2 ln det�S12� ,

S12 = U1
†U2 − V1

†V2. �C2�

For the vortex pair field �̃ given by Eq. �C1� the BdG
equation possesses axial symmetry which allows m= m̄n to
be a good quantum number. The BdG eigenvectors have
components given by

Ul,m
n = Ul

n�m,mn
,

Vl,m
n = Vl�

n �m,mn−2,

�nn� = �
l

Ul
nUl

n� − Vl
nVl

n� �C3�

for these coefficients are

En� Un

− Vn � = � HN A

− At − HN �� Un

− Vn � , �C4�

HN�m� =
�2

2mR2 l�l + 1��ll� + Vll�,m,

Vll�,m = 
l,m�Vpin�"� + 2g��̃�2 − ��l�,m� ,

All��m� = g
l,m��̃2�l�,m − 2� , �C5�

where Eq. �C8� can be used for the precise numerical evalu-
ation of the matrix elements.

2. Boson ground state overlap

Having determined Ul
n ,Vl

n, and recognizing that the trans-
formation between �0 ,U0 ·V0 and �1 ,U1 ·V1 simply involves
an O�3� rotation of the z axis by an angle ", the overlap �C2�
is given by

FIG. 8. �Color online� The function F�kF ,�� defined in Eq.
�B30�, which yields the coefficient of the core contribution to the
BCS vortex overlap on the sphere. kF is the Fermi wave vector and
� is Pippard’s coherence length. The numerical data in the specified
ranges of kFR and � /R collapse to a function of the product �kF.
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�1��2� = det−1/2�S�exp��� tIS−1J�� � ,

Snn� = �
l

�Ul
nDmn,mn�

l Ul
n� − Vl

nDmn,mn�

l Vl
n�� ,

Il,n = �Ul
n + Vl

n��mn,1,

Jn,l = Ul
n��mn,1 − Dmn,1

l � + Vl
n��mn,1 − Dmn−2,−1

l � ,

�� l =� d%Yl,1
* �",	���",	� . �C6�

It is easy to verify that for the limit Ul
n=�n,l ,Vl

n=0, Eq. �C6�
reduces to the result for free particles.

3. Fermions on a sphere

A polar vortex pair field described by Eq. �C1� defines the
pairing order parameter

� = �̃�",	� �C7�

by normalizing it such that 	n0=�0. In the spherical har-
monic basis �l ,m� the Hamiltonian �B22� simplifies greatly.
The Laplacian is proportional to the diagonal operator L2,
and nondiagonal matrix elements of functions F�" ,	� can be
computed using 3j Racah coefficients:62


l,m�F�l�,m − M� = �
L,M

�

FLM� �2l + 1��2L + 1��2l� + 1�
4�

�1/2

� �− 1�m� l L l�

− m M m − M
�� l L l�

0 0 0
� ,

FLM �� d%YL,M
* �%�F�%� . �C8�

Due to axial symmetry, m is a good quantum number,
which is to say that a function mn is defined such that

Ul,m
n = Ul

n�m,mn
,

Vl,m
n = Vl�

n �m�,mn−1. �C9�

The matrix BdG equation for these coefficients is

En�Un

Vn � = �HN A

A† − HN ��Un

Vn � ,

HN = � �2

2mR2 l�l + 1� − !F��ll�,

All��m� = 
l,m��̃�l�,m − 1� . �C10�

The overlap of two vortex pair states relatively rotated by
" is


�1��2� = det
nn�

��
l

�Ul
nDmn,mn�

l Ul
n� + Vl

nDmn−1,mn�−1
l Vl

n��� ,

�C11�

where Dmm�
l �"� is the orthogonal rotation matrix.

APPENDIX D: THE MAGNUS ACTION

The calculation of the Berry phase for the motion of a
vortex wave function can be done using the method of Aro-
vas, Schrieffer, and Wilczek,63 originally for quantum Hall
effect quasiparticles, and later applied mutatis mutandis to
superfluid vortices by Haldane and Wu.64 Here we show how
the Berry phase is calculated simply and exactly on a spheri-
cal geometry.

The spherical geometry yields many advantages for vor-
tex wave functions. The geometric phase of a moving vortex
is tricky to evaluate for superfluids and superconductors on a
finite plane, since it sensitively depends on the boundary
conditions. On the sphere, there are no boundaries to worry
about. The translations are implemented by O�3� rotations,
whose generators do not commute. Hence we can show that
the Magnus density of a general many-body wave function is
simply given by the expectation value of angular momentum
density. When applied to an antipodal vortex pair state, this
result agrees with Thouless, Ao, and Niu’s conclusion27 that
the Magnus density of a single vortex is just the superfluid
density away from the vortex cores.

Consider a general many body wave function ��0� de-
fined on a sphere of radius R, and calculate the Berry phase
acquired by an infinitesimal loop of area A=R�" ·R�	 in
parameter space, as depicted by Fig. 9.

The infinitesimal loop is divided into four segments 
i , i
+1� such that the loop Berry phase is

eiSM/� � �
i=0

3



i+1�
i� . �D1�

For a general wave function, the loop can be defined by a
succession of small O�3� rotations of a vector passing

FIG. 9. �Color online� The orbit of a vortex pair on the sphere
which is used to calculate the vortex Berry phase and Magnus ac-
tion. Motion of the antipodal vortex pair is achieved by four suc-
cessive rotations of the north pole, covering a solid angle of "�	.
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through a special point on the sphere. For our purpose, we
pick that point to be the vortex center. For a general wave
function, however, the choice of special point is somewhat
arbitrary. Inversely, for a given sequence of small rotations,
each point on the sphere executes an orbit. The special points
on the sphere which characterize the sequence are the two
antipodal points whose loops have a maximal area �see Fig.
9�. Without loss of generality, we choose to place these
points at the north and south poles, and apply the corre-
sponding sequence of rotations:

�
1� = eiLy�"/��
0� ,

�
2� = eiLx�	/�eiLy�"/��
0� ,

�
3� = e−iLy�"/�eiLx�	/�eiLy�"/��
0� ,

�
4� = �
0� . �D2�

The overlaps upto quadratic order in �" and �	 are found to
be

eiSM/� 
 1 − i�"�	
Lz�/� + ¯ , �D3�

where the expectation values are in the state �
0�.
Generalizing to a complete path, we obtain

SM = −� dt

0�t��L�
0�t��
d�

dt
, �D4�

where the vector �̇ is the rate of change of the solid angle,
instantaneously directed toward the vortex core.

This Magnus action applies to any wave function, regard-
less of its correlations �e.g., superfluid, Fermi liquid, or
solid�. For an antipodal vortex pair in a superfluid, the angu-
lar momentum density is given by � times the condensate
number density n0, if one assumes that the thermal excita-
tions �normal component� carry no angular momentum. Rep-
resenting the vortex center coordinates by �X ,Y� yields the
Magnus Lagrangian

LM = 2��n0XẎ , �D5�

which resembles the effect of a uniform magnetic field in the
z direction.

The fluctuations correction of the Bogoliubov corrected
wave function �16� is given by

LM = 2���n0 + �n�XẎ . �D6�

Interestingly, although �lz�x���n�x�, the system averaged

quantities are found to be numerically equal, �̄n=�l̄z. Equa-
tion �D6� yields Eq. �32� of the main text, if we define ns

=n0+ �̄n
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