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For studying the interplay of dipolar interaction and anisotropy energy in systems of ultrafine magnetic
particles we consider simple cubic systems of magnetic dipoles with anisotropy axes pointing into the z
direction. Using Monte Carlo simulations we study the magnetic relaxation from several initial states. We show
explicitly that, due to the combined influence of anisotropy energy and dipole interaction, magnetic chains are
formed along the z direction that organize themselves in frozen metastable domains of columnar antiferromag-
netic order. We show that the domains depend explicitly on the history and relax only at extremely large time
scales towards the ordered state. We consider this as an indication for the appearance of frozen metastable
states also in real sytems, where the dipoles are located in a liquidlike fashion and the anisotropy axes point
into random directions.
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In the last decade, systems of ultrafine magnetic nanopar-
ticles have received considerable interest, due both to their
important technological applications �mainly in magnetic
storage and recordings� and their rich and often unusual ex-
perimental behavior.1 An important scientific question con-
cerns the magnetic structure of the systems.2 Several experi-
ments on disordered magnetic materials present indications
of a spin-glass phase2–7 or of a random anisotropy system,8,9

while on the theoretical side, it is a matter of controversy
if, at large concentrations of nanoparticles, a spin-glass
phase exists or not.10–13 While Monte Carlo simulations on
ageing10 and magnetic relaxation11 seem to favor the spin-
glass hypothesis, simulations of the zero-field cooling and
field-cooling susceptibility showed no indication of a spin-
glass phase.12 In this paper, we use Monte Carlo simulations
�see, e.g., Refs. 14–16� to study the slow magnetic relaxation
from a nonequilibrium situation into the final state in ordered
systems of ultrafine particles.17 We find that already in this
fully ordered arrangement of magnetic dipoles, the competi-
tion between anisotropy energy and dipole interaction is suf-
ficient to produce frustration and metastable frozen states.
We consider this as an indication that in the corresponding
real systems of ultrafine magnetic particles, where additional
frustration naturally arises as a consequence of the disorder,
spin-glass phases may exist.

We focus on perhaps the most basic model of magnetic
nanoparticles that �i� assumes a coherent magnetization rota-
tion within the anisotropic particles, and �ii� takes into ac-
count the magnetic dipolar interaction between them. Here,
in order to get insight into the interplay of dipolar interaction
and anisotropy energy, we further simplify this problem dras-
tically by �iii� placing all magnetic particles onto the lattice
points of a simple cubic lattice and �iv� orienting all aniso-
tropy axes into the z direction. It is known that the simple
cubic dipolar system possesses a columnar antiferromagnetic
�CAF� ground state,18 where the magnetic moments are ar-
ranged in linear chains along an arbitrary direction and each
chain is surrounded by chains aligned in the opposite direc-
tion. In our case, the additional anisotropy energy favors the
formation of chains along the z axis, which are arranged

antiferromagnetically in the xy plane, similar to the case of a
cubic Ising system with additional dipolar interaction.19

For describing the magnetic structure, we are thus led to
introduce two order parameters O� and Ot, where O� de-
scribes the magnetic order in each chain and Ot the anti-
ferromagnetic order between neighboring chains. Here,
we study the relaxation of O� and Ot, �i� from the CAF state
�O�=1, Ot=1�, and �ii� from general configurations where all
dipoles are randomly oriented �O�=0, Ot=0�. We find that in
contrast to O�, the transversal order parameter Ot depends
strongly on the initial state. Only for relaxation from the
CAF state, the state with lowest energy is reached quite fast,
while for the general case, the system gets frozen in some
intermediate disordered state. This dependence on the initial
conditions becomes more pronounced in the thermodynamic
limit and results, at low temperatures, in complex frozen
structures that consist of several domains. In each domain,
the chains are ordered in an antiferromagnetic way.

For the numerical calculations, we use the same model as
in Refs. 11 and 12, where every particle i of constant volume
V is considered to be a single magnetic domain with all its
atomic magnetic moments rotating coherently. This results in
a constant absolute value ��i�=MsV of the total magnetic
moment of each particle, where Ms is the saturation magne-
tization. The energy of each particle consists of two contri-
butions: anisotropy energy and dipolar interaction energy.
We assume a temperature independent uniaxial anisotropy
energy EA

�i�=−KV���� in� i� / ��� i��2, where K is the anisotropy
constant and the unit vector n� i denotes the easy directions. As
usual, the energy of the magnetic dipolar interaction between
two particles i and j separated by r�ij is given by ED

�i,j�

= ��� i�� j� /rij
3 −3��� ir�ij���� jr�ij� /rij

5 . Adding up the two energy
contributions and summing over all particles we obtain the
total energy

E = �
i

EA
�i� +

1

2�
i

�
j�i

ED
�i,j�. �1�

In the Monte Carlo simulations we concentrate on samples of
N=L3 particles placed on a cubic lattice with periodic bound-
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ary conditions and L between 4 and 12, where all anisotropy
axes n� i point into the positive z direction. The unitless con-
centration c is defined as the ratio between the total volume
NV occupied by the particles and the volume Vs of the
sample. Here, we focus on the large concentration c /c0
�0.64, where c0=2K /Ms

2 is a dimensionless material-
dependent constant �c0�1.4 for iron nitride nano-
particles11,20�, but we also tested samples with c /c0�0.2 and
0.4 that gave qualitatively the same results. The relaxation of
the individual magnetic moments per Monte Carlo step is
simulated by the standard Metropolis algorithm,21 where the
�� i are described by their two spherical coordinates �i and �i.
The interaction energies are calculated using the Ewald sum
method with periodic boundary conditions in the x, y, and z
directions.12,14 To study the magnetic relaxation we start
from a given initial state and determine as a function of time
t �number of Monte Carlo steps� for each particle i the angle
�i between the magnetic moment �� i and the z axis, from
which we obtain the relevant quantities.

To quantify the relaxation process and the final state, we
study the dependence of the order parameters O��t� and Ot�t�
on t �number of Monte Carlo steps�. While O�	
�mj

�z��� de-
scribes the order along the chains, Ot	−
SjSj+�� describes
the order perpendicular to the chains. Here, mj

�z� is the z
component of the magnetic moment of the jth chain and
Sj =1 if all magnetic moments of the jth chain point into the
positive z direction, Sj =−1 if they point into the negative z
direction, and Sj =0 otherwise. The index j+� denotes a
nearest-neighbor chain of chain j and 
 � denotes the average
over all j, � and over the number Nc of configurations that
ranges from Nc=1000 for the smallest to Nc=100 for the
largest systems.

In order to identify a temperature above which the ferro-
magnetic order inside the chains and the antiferromagnetic
order between the chains cannot be preserved, we first con-
sider relaxation from the CAF state. Figures 1�a� and 1�b�
show O��t� and Ot�t� for systems of N=63 �white symbols�
and 103 �black symbols� particles as a function of t, for sev-

eral values of the reduced temperature T̃=kBT / �2KV�, where
2KV is the height of the anisotropy barrier. One can see that
O��t� and Ot�t� reach final plateau values O�

* and Ot
* quite

fast. Figures 1�c� and 1�d� show these values as a function of

T̃. The figures show that for small temperatures, O�
* and Ot

*

are close to 1 and decay rapidly to much smaller values in a

narrow temperature regime around T̃�0.5. In both cases, the
width of the transition regime shrinks with increasing system
size. From the inflection point, we can identify the critical
temperature Tc�0.5 above which the longitudinal and trans-
versal order breaks down. The figures show that both the
order along the chains and the order in the xy plane disappear
at the same transition point. We can also see in the figure that
only as long as T is below Tc, the order parameters do not
depend on the system size L. For T�Tc, Ot decreases with L,
which reflects the fact that the chains have started to break.

Next, we consider the relaxation from a random initial

configuration. We start with T̃=1/10, a temperature well be-

low T̃c. Figure 2 shows that again both O��t� and Ot�t� be-
have in a similar way. They first increase with t and then

reach a plateau value at the same crossover time t1�L� that
increases monotonically with L �see the arrows in Fig. 2�.
But while O� reaches an L-independent plateau value �which

agrees with the equilibrium value O�
* for T̃=1/10 of Figs.

1�a� and 1�c��, the plateau values of Ot continue to increase
with the system size and seem to approach the corresponding
value Ot

* from Figs. 1�b� and 1�d� only in the thermodynamic
limit.

Therefore, we arrive at the following picture for T�Tc:
Below t1, the system is disordered, while above t1, all mag-
netic moments are ordered in chains along the z direction.
But in contrast to the relaxation from the CAF state �Fig. 1�,
the chains are not �yet� ordered in an antiferromagnetic way.
Accordingly, the system has not yet reached its �equilibrium�
state of minimum energy and must be considered as meta-

FIG. 1. The order parameters �a� O��t� and �b� Ot�t� as a func-
tion of t �number of Monte Carlo steps� are shown for the system
sizes L=6 and L=10 when starting in the CAF state for several

values of the reduced temperature T̃=kBT / �2KV�=10 �circles�, 1
�squares�, 2 /3 �diamonds�, 1 /2 �triangles up�, 1 /2.5 �triangles left�,
and 1/10 �triangles right�, where T is the temperature, kB the Bolt-
zmann constant, K the anisotropy constant, and V the particle vol-
ume. In �c� and �d� the plateau values O�

* and Ot
* are shown for

fixed t=104 as a function of T̃.

FIG. 2. The order parameters �a� O��t� and �b� Ot�t� are plotted
versus the time t �number of Monte Carlo steps� when starting in

random configurations for the temperature T̃=1/10 and for L=4
�circles�, 6 �squares�, 8 �diamonds�, 10 �triangles up�, and L=12
�triangles left�. The arrows indicate the approximate crossover times
t1 for the system sizes �from left to right� L=4 to L=12.
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stable. We therefore expect that there exists a second cross-
over time t2, which can be roughly identified as the inverse
of the probability P�L ,T� that a chain flips into a more fa-
vorable direction. Accordingly, above t2� P−1�L ,T� chain
flips will dominate the relaxation and this leads to a further
increase of Ot�t� towards its equilibrium value Ot

* �see Fig.
1�d��. Since P�L ,T� decays drastically with decreasing T and
increasing L, one must go to small system sizes and com-
paratively large temperatures �below Tc� in order to find t2.
Indeed, Fig. 3 shows that at the intermediate temperature

T̃=1/5, t2 can be observed only for the smallest system size
L=4. We like to note that the metastable state shown here
differs from the typical metastable spin-glass structure iden-
tified in Ref. 19 for an Ising system, where the up and down
columns are arranged in a completely random fashion and Ot
should be equal to zero. Instead, we will show in the follow-
ing that in our system, different domains grow from different
seeds.

We now consider the L dependence of Ot�t�. The increase
of the plateau values with L in Figs. 2�b� and 3 seems to
suggest that in the thermodynamic limit, the system reaches
the CAF ground state already at t1�L�. To see that this is
not the case, we illustrate the relaxation process in Fig. 4 for
�=10 and two different system sizes L=4 and L=10. To
visualize the antiferromagnetic order, we follow the defini-
tion of Ot: each of the L2 sites in the xy plane can be either
a “�” site or a “	” site, if all magnetic moments in the chain
point into the positive or negative z direction, respectively, or
a “0” site if this is not yet the case �gray sites�, in close
analogy to the definition of Sj. The figure shows that in the
initial time steps, for both sizes, only distant isolated chains
have been formed. Due to the dipolar interaction, chains are
more likely formed in the neighborhood of another chain.
This way, small �columnar� antiferromagnetic domains de-
velop that grow further with increasing time. When different
domains contact each other, they either emerge and form
larger domains �if they fit to each other� or establish quite
stable domain walls between them. In Fig. 4, both types of
domains are in black and white, respectively, such that do-

mains of the same shade fit to each other and are in principle
allowed to emerge. The figure illustrates the change of the
domains �i� with t �number of Monte Carlo steps� and �ii�
with system size L.

First, Fig. 4 shows that below t1, the longitudinal order is
not yet fully established and in rare cases �particularly for
small system sizes� complete chains can still flip into the
other direction �compare Figs. 4�f� and 4�g��. Above t1, chain
flips are too rare to be observed and the structure is practi-
cally frozen-in, until at considerably larger time scales
�above t2, not shown here� chain flips may again occur. How-
ever, since t2 increases drastically with L, the structure is
practically frozen-in above t1 for reasonably large system
sizes. The reason for this glassy-like phenomenon is the
competition between the longitudinal order along the chains
and the transversal order in the plane that leads to frustration
of the single magnetic moments inside the chains.

FIG. 3. The order parameters Ot�t� are plotted versus the time t
�number of Monte Carlo steps� when starting in random configura-
tions for several L from L=4 to L=12 �same symbols as in Fig. 2�
and for the temperature T̃=1/5. The second crossover time t2 is
shown for L=4.

FIG. 4. Visualization of the antiferromagnetic order in the xy
plane for systems at �=10 when starting in a random configura-
tion. �a�–�d� One L=10 system at fixed t �number of Monte Carlo
steps�, t=102, 103, 104, and 105, �e�–�h� one L=4 system after t
=20,102 ,2
103, and 105. The complete chains are indicated by �
or 	 signs, depending on the direction of the chain. Antiferromag-
netic domains are shown in black and white. Domains of the same
shade fit to each other and are allowed to emerge, whereas domain
walls exist between clusters of different shades. Sites where chains
have not yet been built are indicated by the gray shade. �e� The
average relative size Nmax/L2 of the largest cluster at t with t1� t

� t2 is plotted versus the size L for T̃=1/10 �squares� and T̃
=1/20 �diamonds�.
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Second, also the monotonous increase of the plateau value
of Ot with L in Figs. 2�b� and 3 can be understood qualita-
tively from Fig. 4. According to the figure, the system con-
sists of large clusters and of small inclusions inside them.
Above t1, the fraction of the domain wall sites decreases with
increasing L, and thus Ot is enhanced. �Compare Figs. 4�h�
and 4�d�: in the first case, all sites except one belong
to a domain wall, whereas in the case of L=10 many interior
sites exist.� Nevertheless, the system does not reach a homo-
geneous antiferromagnetic order. Instead, as it is shown in
Fig. 4�i�, we have found numerically that at small tempera-
tures, the fraction of sites occupied by the largest cluster,
Smax/L2, has a size-independent value that is close to 0.6 for

T̃=1/10 and 1/20. This means that the relative size of the
largest cluster does not grow with L on dispense of the
smaller clusters, i.e., no unique domain is reached.

From the preceding it is evident that different initial con-
ditions will lead to different domain structures in the plateau
regime. When we start, e.g., with a random chainlike struc-
ture consisting of certain �columnar� antiferromagnetic do-
mains, the first crossover time t1 vanishes as for the relax-
ation from the CAF and the initial state will freeze-in.
Therefore, in the plateau regime, the structure of the frozen

configuration depends strongly on the history.
In summary, we have shown that already an ordered sys-

tem of ultrafine magnetic particles, where each particle is
located at a lattice site and its anisotropy axes are oriented
parallel to each other, shows complex dynamical behavior
with the formation of frozen history-dependent states, where
linear magnetic chains are formed that are quite stable and
act as seeds for the formation of the frozen domain structure.
Accordingly, the complex behavior results from the interplay
between dipole interaction and anisotropy energy. We expect
that also in real systems of ultrafine magnetic particles,
where the dipoles are located in a liquidlike fashion and the
anisotropy axes point into random directions, similar linear
structures are formed in the beginning of the process and act
as seeds for the formation of larger frozen-in structures in the
same way as the chains in the ordered systems. We thus take
the results for the ordered magnetic structure as an indication
that also in the corresponding disordered system, where frus-
tration arises in a quite natural way, spin-glass phases exist at
low temperatures.
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