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We study the ground state of a d-dimensional Ising model with both long-range (dipole-like) and nearest-
neighbor ferromagnetic (FM) interactions. The long-range interaction is equal to r”, p>d, while the FM
interaction has strength J. If p>d+1 and J is large enough the ground state is FM, while if d<p<d+1 the
FM state is not the ground state for any choice of J. In d=1 we show that for any p>1 the ground state has
a series of transitions from an antiferromagnetic state of period 2 to 2k-periodic states of blocks of sizes & with
alternating sign, the size i growing when the FM interaction strength J is increased (a generalization of this
result to the case 0<p =<1 is also discussed). In d=2 we prove, for d<p<d+1, that the dominant asymptotic
behavior of the ground-state energy agrees for large J with that obtained from a periodic striped state conjec-
tured to be the true ground state. The geometry of contours in the ground state is discussed.
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I. INTRODUCTION

There has been and continues to be much interest in me-
soscopic pattern formation induced by competing short- and
long-range interactions.!™ Of particular interest is the com-
petition between dipole-like interactions between spins
which decay as 7@+ d the dimension of the lattice, and
short-range exchange interactions.>® For d=2, this type of
competitive interaction is believed responsible for many of
the observed patterns in thin magnetic films’ and other quasi-
two-dimensional systems, including Langmuir monolayers,3
lipid monolayers,” liquid crystals,'® polymer films,'"' and
two-dimensional electron gases.!>!3

The simplest models to describe such systems are Ising
spins with a nearest-neighbor ferromagnetic interaction and a
power-law long-range antiferromagnetic pair potential, of di-
pole (or Coulomb) type.®!'41° The zero-temperature phase
diagram of these models has been thoroughly investigated
over the last decade and a sequence of transitions from an
antiferromagnetic Néel state to periodic striped or lamellar
phases with domains of increasing sizes has been predicted,
as the strength of the ferromagnetic coupling is increased
from zero to large positive values. These theoretical predic-
tions are mostly based on a combination of variational tech-
niques and stability analysis: they start by assuming a peri-
odic structure, proceed by computing the corresponding
energy and finally by comparing that energy to the energy of
other candidate structures, usually by a combination of ana-
lytical and numerical tools. These calculations give an excel-
lent account of the observed “universal” patterns displayed
by the aforementioned quasi-two-dimensional systems.
However, they run the risk of overlooking complex mi-
crophases that have not been previously identified.?’ This
risk is particularly significant in cases, as those under analy-
sis, where dynamically (e.g., in Monte Carlo simulations) the
domain walls separating different microphases appear to be
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very long lived as the temperature is lowered.'*

In order to settle the question of spontaneous pattern for-
mations on more solid grounds it would be desirable to be
able to first prove periodicity of the ground state and then
proceed with a variational computation within the given an-
satz. The problem is not simple. Most of the mathematically
rigorous techniques developed for obtaining the low-
temperature phase diagram of spin systems, e.g., the
Pirogov-Sinai theory,?! depend on the interaction being short
range. Only methods based on reflection positivity?*> or on
convexity>>?7 seem applicable to the kind of systems con-
sidered here. In this paper we apply reflection positivity to
give a characterization of the ground states of the one-
dimensional system and to give in this case a full justifica-
tion of the variational calculation based on the periodicity
assumption. Moreover we obtain rigorous upper and lower
bounds on the ground state energy in higher dimensions, thus
providing a quantitative estimate of the possible metastabil-
ity of the striped or lamellar phases.

A. The model

Given an integer N, let Ay be a “simple cubic”
d-dimensional torus of side 2N and ¢ € {+1}*. Any configu-
ration ¢ is a sequence of o;=+1 labeled by i e Ay. The
Hamiltonian of this Ising model with periodic boundary con-
ditions is taken to be

d
Hy(g)=-J 2 2 0i0ite, E ad,(j-i)oj,

ieANk:l (i,j)

LG-i)= > 1 (1)
ey L

r Sali—j+2nNp

where in the first sum e, is the unit vector in the kth coordi-
nate direction (and if i+e, € Ay we define o-i+ek50'i_2Nek),
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the second sum runs over generic distinct pairs of sites in Ay
and p>d. The first term in Eq. (1) will be called the “ex-
change energy” term and we will take /=0 while the second
one will be called the “dipolar energy” term. In d>1 we
shall define |i—j| to be the usual Euclidean distance between
i and j. Note that the sum over n in the definition of J,(j
—i) makes sense as long as p>d. However, some of the
results discussed below hold true even in the case d—1<p
<d, provided the definition of J,(j—i) is replaced by J,(j
—i)=|j—i|P+(2N-|j-i]), V1<|j—i|<2N-1. In the fol-
lowing we will restrict attention to the case p >d and we will
comment on possible generalizations of our results to d—1
<p=d in the remark after theorem 2. See also the remark
after theorem 3.

B. Main results

We wish to determine the ground state of model (1) for
different values of p and J. A first remark is that in any
dimension for p>d+1 and J large enough the ground state is
ferromagnetic and is unique modulo a global spin flip. This
is, in d>1, a corollary of the contour estimates in Ref. 28,
and we shall reproduce its proof as a by-product of our
analysis. For this case the low-temperature Gibbs states are
also known: for d=1 and p >2 there is a unique Gibbs state
for any B<+o (Ref. 29) while for d=2, p>d+1 and B
large enough, there are two different pure states obtained as
the thermodynamic limits of the equilibrium states with + or
— boundary conditions.?® On the contrary, for d<p<d+1,
the ferromagnetic state is not the ground state in any dimen-
sion, for any value of J. Instability of the ferromagnetic state
in presence of a long-range antiferromagnetic interaction of
the form 1/77, d<p<d+1, was first noted in Ref. 30. The
reason for this instability lies in the divergence of the first
moment of the long-range interaction which makes the fer-
romagnetic state unstable towards flipping spins in a large
enough domain.

Our main results give a characterization of the ground
state in the whole regime p >d. For d=1 the characterization
is complete, in the sense that for any p>1 we can compute
the ground-state energy per site and we can prove that the
corresponding ground-state configurations are periodic and
consist of blocks of equal size and alternating signs (a block
is a maximal sequence of adjacent spins of the same sign).

Theorem 1. (Ground state energy d=1.)

For d=1 and p>1, the ground state energy Ey(N) of the
Hamiltonian (1) satisfies

1
lim —Ey(N) = min e(h), 2
lim 2 Eo(N) = min (1) @

def
where e(h) = limNﬁw(ZNh)‘lEg;)r(Nh) and Eg;)r(Nh) is the en-
ergy of a periodic configuration on a ring of 2Nh sites con-
sisting of blocks of size h with alternating signs.

The function e(h) is explicitly computable, see Sec. IIL
The minimization of e(h) with respect to  can be performed
exactly, and, as expected, for p>2 and J larger than an ex-
plicit constant Jo=T(p)~' [gdaa’le=*(1-e %)%, the mini-
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mizer is h=+» (i.e., the ground state is ferromagnetic). For
1<p=<2andall /=0 or p>2 and 0<J<J, the minimum
of e(h) over the positive integers is attained at an integer
h*(J) which is a piecewise constant monotone increasing
function of J. Thus there is a unique integer minimizer of
e(h) for almost all values of J which jumps at a discrete set
of values of J. At those values of J the minimum is attained
at two consecutive integers 4"(J) and 2"(J)+1 and the corre-
sponding ground states, for suitable values of N, are the con-
figurations with all blocks of the same size, either 4"(J) or
K (J)+1.

Theorem 2. (Finite volume ground states.)

Let d=1 and p> 1. At the values of J such that the mini-
mum of e(h) is attained at a single integer h*(J), then in a
ring of length 2N, such that N is divisible by h*(J), the only
ground states are the periodic configurations consisting of
blocks of size h*(J). At the values of J such that the minimum
is attained at two consecutive integers h'(J) and h*(J)+1,
then in a ring of length 2N, such that N is divisible both by
h*(J) and h*(J)+1, the only ground states are the periodic
configurations consisting of blocks of the same size, either
h*(J) or h*(J)+1. In both cases there is a finite (independent
of N) gap between the energies of the ground states and of
any other state.

Remarks.

(1) Stability for 0<p=<1. The proofs of theorems 1 and 2
do not really require p>1 and, provided we change the defi-
nition of J,(j—1) as described after Eq. (1), they can be easily
adapted to cover the cases 0 <p= 1. In particular for any p
>0 the ground-state energy can be computed by minimizing
energy among the periodic states of blocks with alternating
signs and the computation shows that the ground-state en-
ergy is extensive (i.e., it scales proportionally to N as N
—m), even for 0<<p<1 (a case in which thermodynamic
stability is not a priori guaranteed).

(2) Infinite volume ground states. A corollary of theorem 2
is that the infinite volume periodic configurations g
e {+1}* with blocks all of the same size 4" (J) [or A" (J)+1, if
J is a value at which the minimum of e(%) is not unique] and
alternating sign are infinite volume ground state configura-
tions, in the sense that they are stable against bounded
perturbations;?! i.e., given a finite set XCZ, if Ry is the
operator flipping the spins in X, the (finite) energy difference
between Ryog; and g; is positive. This can be proven by
writing the energy difference between the infinite configura-
tions Ryg; and g; as the limit of the energy differences be-
tween the finite volume configurations on rings of length 2N
[N divisible by 4"(J)] obtained by restricting Ryg; and g to
the finite rings. By theorem 2, the differences between the
energies of the finite volume approximations of Ryg; and g
are positive. This implies that g is an infinite volume ground
state configuration.

A stronger result which follows from our analysis is that
for any J=0 we can choose a sequence of integers {N;};cx,
N; — o, such that the ground states on the rings of lengths

2N; are periodic configurations of blocks of size A"(J) and
the corresponding sequence of ground-state energies per site

eo(N;) is the sequence of “lowest possible specific energies,”
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ie, any other sequence {N/};cn, N/ —, has ey(N;)
i—0

=¢,(N;), eventually as i — o,

In dimension larger then one we do not find an exact
asymptotic expression for the ground-state energy. Still, for
large J, we find rigorous upper and lower bounds to the
ground-state energy. The result is the following.

Theorem 3. Let d=2. If p=d+1 and J is large enough,
there exist positive, J-independent, constants C,, C, such
that

S 1
eFM(") - Cle_‘]‘ﬁd_ll l < lim _Eo(N)
N | Ay

< epu(J/) - Cze_lls""‘_l, (3)

where ey (J) is the energy per site of the ferromagnetic con-
figuration (g);=+1 and |S,_,| is the volume of the d—1 di-
mensional unit sphere. If d<p<<d+1 and J is large enough,
then there exist positive, J-independent, constants K|, K,
such that

1
ep(J) — K700 < im ——E(N)
N—x AN

< epy(J) — Ko P dVd+1=p),
4)

Remark. (The case p<d). Contrary to the proofs of theo-
rems 1 and 2, the proof of theorem 3 crucially relies on the
summability of the potential, i.e., on the condition d<<p
<d+1. It would be of great interest to extend the proof to
the case d—1<p=d and to the case p=1 in dimension d
=2,3 (Coulomb case). A thorough discussion of the case d
—1=<p=d+1 in dimension d =2, including results related to
those of theorem 3, is provided by Spivak and Kivelson.'3
The special case p=1 with d=2 was treated in Ref. 16, and
in full generality in Ref. 31. The Coulomb case p=1 in d
=3 was considered in Ref. 17.

The upper bounds in Egs. (3) and (4) follow from a varia-
tional computation. The best known constants C,, K, are
obtained by minimizing over the periodic striped configura-
tions (Q’iﬁ)ipe =DM where i) is the first component of i
and [x] is the largest integer less than or equal to x. It is
remarkable that, for J— o, the minimum over the striped
configurations provides a variational energy that is lower
than the one obtained by minimizing over the periodic
checkerboard configurations; this was shown in Ref. 14 for
d=2 and p=3. A computation analogous to that in Ref. 14
allows us to prove a similar result in higher dimensions for
d<p=d+1. This result together with numerical studies sup-
port the conjecture that the ground state of Eq. (1) in d=2
and d<p<d+1 is in fact a periodic striped configuration (at
least asymptotically for large J). In this paper we prove the
lower bounds in Egs. (3) and (4), which show that for large J
the difference between the ground-state energy and the fer-
romagnetic energy scales exactly as predicted by the above
mentioned variational computation. The proof of the lower
bound is based on an energy argument which also gives es-
timates on the allowed shapes and sizes of Peierls’ contours
in the ground state.
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II. OUTLINE OF THE PROOFS

Before presenting the proofs of theorems 1, 2, and 3 in
detail, we give a short outline. The proofs of theorems 1 and
2 are based on reflection positivity. It is known?? that for J
=0 the Hamiltonian (1) is reflection positive in any dimen-
sion. In d=1 this means that, given any configuration
of spins on a ring of 2N  sites a
=(O_ps1s- > 0_1,00,01,04,...,0y) and a bond b=(i,i+1)
connecting site i with its neighbor i+ 1, the average energy of
the two configurations obtained by reflecting around b is
always lower than the original one; e.g., choosing b=(0,1)

the average of the energies of the two reflected
configurations  (-oy,...,—05,—0,,0,,03,...,0y)  and
(O_pjils oo O, 00, =00, =01, ...,—0_pn,1) i8S always lower

than the energy of the original configuration ¢. Using this
property and repeatedly reflecting around different bonds,
one can prove that for /=0 the ground state is the antiferro-
magnetic alternating state. Note that periodic boundary con-
ditions are necessary for repeated reflections around different
bonds.

Unfortunately, as soon as J >0, the Hamiltonian (1) is not
reflection positive anymore. Still, one can think of making
use of the reflection symmetry around bonds b=(i,i+1)
separating a spin o; from a spin o,,;=—0;: such reflection
does not change the exchange energy between o; and o,
and lowers the dipole energy. By repeatedly reflecting
around such sites one could expect to be able to reduce the
search for the ground states just to the class of periodic con-
figurations of blocks of the same size and alternating sign
and explicitly look for periodic configuration with minimal
energy (we recall that by block we mean a maximal sequence
of consecutive spins all of the same sign). However, there is
a difficulty: because of periodic boundary conditions, in or-
der not to increase the exchange energy in the reflection, one
should reflect around bonds b not only separating a + from a
— spin, but with the further property that the bond b’ at a
distance N from b also separates a + from a — spin: but in a
generic configuration ¢ there will be no bond b with such a
property.

A possible solution to this problem is to cut the ring into
two uneven parts both containing the same number of blocks
but not necessarily of the same length. The configurations
obtained by reflecting the two uneven parts will have a lower
energy but in general different lengths 2N’, 2N”. The idea is
to reflect repeatedly in this fashion, keeping track of the er-
rors due to the fact that the length of the ring is changing at
each reflection. A convenient way of doing this, exploited in
Sec. II1, is to rewrite the spin Hamiltonian (1) as an effective
Hamiltonian for new “atoms” of “charges” h;, corresponding
to the spin blocks of size h;. The new effective Hamiltonian
E(...,h_y,hg,h,h,,...) is again reflection symmetric (in a
slightly different sense, though) and its explicit form allows
for an easy control of the finite size errors one is left with
after repeated reflections. Some technical aspects of the
proofs of theorem 1 and 2 are given in the Appendixes.

The proof of theorem 3, in particular the lower bounds in
Egs. (3) and (4), is based on a Peierls’ contour estimate de-
scribed in Sec. IV. For large ferromagnetic coupling J, we
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shall describe the ground state configuration(s) in terms of
droplets of — spins surrounded by + spins and of contours
separating the + from the — phases. The requirement that
the energy of the ground-state configuration is minimal im-
poses bounds on the geometry and the energy of such drop-
lets, implying the lower bound in Eq. (4). Contrary to the
methods exploited in the proofs of theorems 1 and 2, the
proof of theorem 3 is robust under modifications both of the
boundary conditions and of the specific form of the interac-
tion potential.

III. ONE DIMENSION

In this section we want to prove theorems 1 and 2. Re-
stricting to d=1, we shall consider any configuration o
e {+1}™ on the ring of length 2N as a sequence of blocks of
alternating sign, where by definition a block is a maximal
sequence of adjacent spins of the same sign. We note that,
due to the periodic boundary condition, the number M of
blocks on the ring is either 1 (if the state is ferromagnetic) or
an even number. We shall denote by A;, i=1, ..., M, the sizes
of such blocks. A block will be called a + block (— block),
if its spins are all of sign +1 (—1).

We want to prove that the sizes h; of the blocks in the
ground state are all equal, at least for N large enough. The
strategy will be the following. Given any configuration gy in
the ring Ay with M =2 blocks of alternating signs of sizes

h_piiaets -« »hyp, we will rewrite the energy Hy(ay) as a

)
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function of M and the A;’s, i.e., Hy(on)=Ex(M,(h;, hg)),
where h;=(h_pn41s----ho) and hg=(hy, ... ,hy). Setting h
=(hy,hg), we will show that, for M and N fixed, the Hamil-
tonian Ey(M ,h) is reflection positive with respect to the re-
flection

o M
Ohi=h_j,,, 3

M
<i<=—, 5
s (S)
that is
1 A X~
EN(M’}_Z) = E{EN(M7 (}_lLa 0111)) + EN(M’(Q}JR’}_ZR))}7 (6)

where 6k, =(hy, ... . h_y.1) and Ohg=(hy, ... . h,), with of
course the signs of the spins in the reflected blocks being
opposite to what they were originally. Using repeatedly this
symmetry, we will get bounds from above and below for the
ground state energy, in terms of the energy of periodic con-
figurations.

A. The integral representation

In order to show reflection positivity of Ey(M,h), e.g.,
Eq. (6), we need to look more closely at the structure of the
Hamiltonian. A straightforward calculation in Appendix B
gives the energy Ey(M,h) of a configuration in Ay of M
blocks of sizes h_pni1s ... .My (recall that M is even and
periodic boundary conditions are assumed) as

—a

e

Ey(M,h)=-2J(N-M)+2N f

M2

x] X

i=—M/2+1

+ X

—MP2<i<j<MI/2

(= D771 = e ®i)(1 - =)

s TP (-1 —e2)

[hl(l _ e—a)(l _ e—2aN) _ (l _ e_ahi)(l _ 26‘"‘(2N_hi) + e—ZaN)]

IT e+ JI e ||. (7)
i<k<j —MP2<k<i
J<k=MP2

The expression in braces in the last two lines of Eq. (7) can be pictorially interpreted as the energy of a system of particles
on a ring of M sites with i;= 1 particles at site i. There is an on site energy as in the second line of (7) and a “many body”

energy as in the third line.

The energy in (7) has the remarkable property of being reflection positive with respect to the reflection (5). This can be
proven by rewriting the expression in braces in the last two lines of (7) as

o 2
f v(a) [HR(CYJ_ZR) + Hg(a, é}_lL) - 2 Fia,hg)Fa, 9}_1L):|da7 (8)
0 i=1
where
_ 1 . e ¢
M= rp) e ey
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M2

Hy(a,hg) == 2 (1= e Mi)(1 = 2¢70@N) 4 g=20N) 4
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> (=)=l —emt) [T e,

i=1 I<i<j<MP2 i<k<j
©)
M72
Filahg)= 2 (= 1)i(1—em) T e,
i=1 1<k<i
M2
Fylahp) =2 (D(1—e) [ e
i=1 i<k=M/2
Let us define H(a,h) as follows:
2
H(a,h) = Hg(a,hg) + Hp(a, é}_ll,) - E Fia,hp)F(a, af_lL) (10)

i=1

s0 that Ex(M ,h)=—2J(N—M)+2N [ 3% o' —— 4 [*dav(a)H(a, h).

0T(p) (1-e~%)

Using the fact that HR(a,l_zR)=HR(a,éf_zR) and that, by Schwarz inequality, Fi(a,}_lR)Fi(a,9/_1L)$%[F,~(a,i_zR)F,-(a,l_zR)

+Fa, éi_zL)Fl-(a, é}_lL)], we find

2

f dav(a)H(a,h) = f dav(@) [HR(a,f_zR> + Hyla, 0h;) = 2, Fa,hp)Fi(a, ém)] = % j dav(a){H(a,(hy,6h;))

+ H(a9 (éhR9hR))}’
so that (6) is proved.

i=1

Reflecting repeatedly with respect to different bonds we end up with

M2

fdav(a)H(aJ_z) = AL/I >

i=—(M/2)+1

and Ex(M, 1) =202 o EN(M (b, hi, .. By, ), which s
an example of the chess-board inequality, see theorem 4.1 in
Ref. 22.

B. Bounds for 1<p<2

We now temporarily restrict to the case 1 <p<2. A key
remark is that in this case there exists a p-dependent constant
K, explicitly computable as described in Appendix A, such
that the blocks in the ground state have sizes h; all satisfying
the following a priori bound:

{his 12¢’ if p=2,

13
h<K,J"*7P) if 1 <p<2. (13)

Equation (13) shows in particular that, if 1<p<2, the FM
state is not the ground state for any finite J when N is suffi-
ciently large; in particular in the ground state the number M
of blocks is M=2 (and necessarily even). Note also that
since all blocks satisfy 1 <h;<h,,,,, with h,, given by (13),
it must be M <2N=<h,,M, that is N and M are of the same
order as N — .

To compute the ground-state energy, let us introduce the
auxiliary partition function

(11)

dav(a)H[ a,(hy,h;, ... b k)], (12)
|

Qy =2, e PN, (14)

M.h

where the asterisk means that we are summing only over the
choices of M and h compatible with the constraint
MR h=2N and with the bounds (13). We can then ob-
tain the ground-state energy per site ey(N) by taking the limit
—limﬁwé In Qy=2Ney(N).

Using Eq. (12) we get

MR
Oy =< E H o~ PUMEN(M (hy.....h) (15)
M.h i==M/2+1

Using Eq. (7), we find that ﬁEN[M, (h,...,h)] can be written
explicitly as

LML (B, .. 1)) = = Jh+ A+ 2 J " da oo
— J(hy ... h)==Jh+Ah+2J]+ —
MmN o T(p) (1—e)?
ah 1 (1 —eh)?
X{ =2 tanh — + 2~ 2N=h)
{ an 2 (1—e?N) 4o (2e
+ e—ZaN_e—ah(M—l)) , (16)
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where the constant A in the right-hand side (RHS) is A
=[y F[i; :). Note that the absolute value of the term

in the last l1ne can be bounded above by KN77, for a suitable
constant K. Then, recalling the definition of E(h '(Nh) (see
theorem 1) and defining e(h) as

def

1 2J
h)=1lim —E"(Nh)=-J+A + —
e(h) iy per(NR) tA+—
2Jm da ., e canh ah (17)
- o ann —
o Tlp) ™ (1-e? 2

we find that the RHS of (15) and thus Qy can be bounded
above by

* M2
ov=2 I ePhetopkN?, (18)
M.k i=—M/2+1

Using the fact that the number of terms in the sum is less
than 22V, we can bound the RHS of (18) from above by
22N BK'IN'! =B2NE) \where &, =min,_z+e(h), so that we find
€0(N) = gO—K, /NP,

It follows from the explicit expression of e(h) given in
Eq. (17) that min,_s+e(h)=e[h"(J)], where the integer 4" (J)
is a piecewise constant monotone increasing function of J.
Thus there is a unique integer minimizer of e(f) for almost
all values of J which jumps at a discrete set of values of J. At
those values of J the minimum is attained at two consecutive
integers 1"(J) and A"(J)+1. As discussed below, the corre-
sponding ground states are, asymptotically for N large, the
configurations with all blocks of the same size, either /" (J)
or h*(J)+1. If h is not a minimizer, then e(h) is separated by
a gap from e,. These properties follow from the fact that
d,e(h)=0 has a unique solution for 4 € R* and the solution is
a local minimum.

Let us now turn to the problem of finding a lower bound
for Qy. If N is divisible by h*, then, of course,

Oy= e_BZNe(h*)_ﬁK,Mp (19)
so that we find
_ 1
eo(N) =ep+ (0] ﬁ . (20)

If N is not divisible by 4" the error in the RHS is replaced by
O(N'). This follows from the fact that we can bound Qy
from below by restricting the sum in Eq. (14) to a configu-
ration with all but one block of sizes i": the last block being
of size h"<h<2h". The energy of such configuration is
2Ne(h")+0(1). This concludes the proof of theorem 1 in the
case p<2.

C. The case p>2
Let us now discuss the case p>2. It is straightforward to
verify that in this case, if J=J,= ] ?Fd(;) ol ( e then the

minimizer of e(h) is h=+0o. Correspondrngly we can prove
that the ground state of Eq. (1) is the ferromagnetic state. In
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fact let us assume by contradiction that in the ground state
there is a block Bj, of finite size h. Then it must be true that
the energy AE(h) needed to reverse the sign of all the spins
in Bj, is nonnegative: AE(h)=0. On the other side AE(h)
<-4J+2E,(h), where E|(h) is the dipole energy between the
+ block B), and an external sea of + spins. It is straightfor-
ward to check that

“da
El(h)=2f0 F(p)ap 1(1

and this leads to a contradiction. This proves theorem 1 for
p>2and J=J,,.

If on the contrary J<<J,, a repetition of the proof in Ap-
pendix A leads to the bound h;<K}/(Jo—J)"?=? on the
sizes h; of the blocks in the ground state. Then we can repeat
the proof above to get the desired result (2) and this con-
cludes the proof of theorem 1.

—a

e

_a)z( e My <27, (21)

D. Uniqueness of the ground state

In this subsection we prove theorem 2. If p>2 and J
=J, the statement is a corollary of the proof above: in fact
the contradiction obtained after Eq. (21) shows that in this
case the ferromagnetic state is the unique ground state.

Let us then consider the cases 1<p=<2 or p>2 and J
<Jy, in which we have an a priori upper bound on the sizes
of the blocks. Let us first consider the case in which the
minimizer i” of e(h) is unique and let us choose 2N=Mh".
Let h° be a configuration in A, for which the set 7 ={i:h?
# h'} is non empty. Note that the number of blocks M° in A°
is not necessarily equal to M. Using again the chessboard
estimate (see theorem 4.1 of Ref. 22), the energy En(M°,1°)
of the configuration 4° can be bounded below as

M2
E\MO10) = —5 > Ex(MC,(h{, ... .h))
i=—MY2+1
M2 %
= > (h?e(h?)——p). (22)
i=—MY2+1 N

Using Eq. (20) we find that

Ey(M°,1h°) - 2Neo(N) = 2 hi[e(h)) - e(h")] + O ( N; 1)
iel
(23)

so that, since e(h?)—e(h*)ZAe, we have that for N big
enough the unique ground state for 2N=MHh" is the state with
M blocks all of sizes h". Similarly, if 2N is not divisible by
h*, any configuration with a sufficiently big number of
“wrong” blocks (i.e., of blocks with sizes # /"), will be sepa-
rated by a gap from the ground state.

Finally, let us consider the case in which there are two
minimizers h*,h"+1. The same proof as above goes on to
show that, if N is divisible either by 4" or by A"+ 1, then the
ground-state energy is given by Eq. (20) and the energy of
configurations with blocks of “wrong” sizes (i.e., different
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both from 4" and h"+1) is asymptotically larger than the
energy of the ground state. Similarly, if N is not divisible
either by 4" or by A"+ 1, the energy of configurations with a
sufficiently big number of blocks with wrong sizes will be
larger than the ground-state energy.

We are left with considering the case of a configuration
with blocks’ sizes all equal either to 2” or to h"+1. Let us
denote by o(h”) the 2h"-periodic configuration with all
blocks of size &” and by g(h"+1) the 2(h"+1)-periodic con-
figuration with all blocks of size 4". Can a configuration with
a finite fraction of blocks of sizes h" and i +1 be a ground
state?

Let us consider a configuration A° with h) e {h",h"+1}
and the total number of blocks equal to M in a volume 2N,
with N divisible by 4" or A"+1 and M divisible by 4 (this
condition on M is not restrictive: if M were not divisible by
4 we could consider the configuration obtained by doubling
the system). Let

def
To={i:h?=h’  =h"},
def
T={h) =, =h"+1}, (24)

def
To={i:h? # h?,},
where, of course, hY,,,=h",,.,. Note that |Zol +|Z,] /2
=M,, where M, is the number of blocks of size h, and
|Z,|+|Z,|/2=M,, where M, is the number of blocks of size
R +1.

Using again the chessboard inequality, we find that

En(M,h°)
L e
= 2 ENM R i B BB,
M iy
(25)

Now, except for an error of O(M~?=V), the RHS of Eq. (25)
can be rewritten as |Zo|h"Ey+|Z,|(h"+1)e,+|T|(h +3)e,
where & is the (infinite volume) specific energy of the (44"
+2)-periodic configuration obtained by repeating periodi-
cally the configuration (h*,h"+1,h"+1,h") over the volume.
The key remark is that e—ey= 6> 0: this is proven in Appen-
dix C. Then, using the fact that | Zy|+|Z,|/2=M, (with M, the
number of blocks of size ") and that |Z,|+|Z,|/2=M, (with
M, the number of blocks of size A" +1), we get

. 1
En(M,h%) = 2Neo(N) = |I,| (h + 5) (e-e) (26)
and the proof of theorem 2 is concluded.

IV. HIGHER DIMENSIONS

In this section we want to prove theorem 3. As already
remarked after theorem 3, for d=2 and p=3 the upper bound
was obtained in Ref. 14 by minimizing over the periodic
striped configurations (and checking that asymptotically for
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large J such an upper bound is better than the one obtained
by minimizing over the periodic checkerboard configura-
tions). The upper bound in dimension higher than 2 and for
d<p<d+1 can be again obtained by a variational compu-
tation, minimizing the energy over the periodic striped con-
figurations. We do not repeat the details here; the result is
provided by the upper bounds in Egs. (3) and (4).

We now focus on the lower bounds in Egs. (3) and (4).
We need to introduce some definitions; in particular via the
basic Peierls construction we introduce the definitions of
contours and droplets. Given any possible configuration g on
Ay, and in particular the ground-state configuration(s), we
define A to be the set of sites at which o;=—1, i.e., A={i
€ A:o;=—1}. We draw around each i € A the 2d sides of the
unit (d—1) dimensional cube centered at i and suppress the
faces which occur twice: we obtain in this way a closed
polyhedron I'(A) which can be thought as the boundary of A.
Each face of I'(A) separates a point i € A from a point j & A.
Along a (d—2)-dimensional edge of I'(A) there can be either
two or four faces meeting. In the case of four faces, we
deform slightly the polyhedron, “chopping off” the edge
from the cubes containing a—spin. When this is done I'(A)
splits into disconnected polyhedra v, ..., y, which we shall
call “contours.” Note that, because of the choice of periodic
boundary conditions, all contours are closed but can possibly
wind around the torus Ay. The definition of contours natu-
rally induces a notion of connectedness for the spins in A:
given i,j € A we shall say that i and j are connected if there
exists a sequence (i=iy,i;,...,i,=j) such that i,,i,,, m
=0,...,n—1, are nearest neighbors and none of the bonds
(i)y>ime1) crosses I'(A). The maximal connected components
6; of A will be called “droplets” and the set of droplets of A
will be denoted by D(A)={4,, ..., 5,}. Note that the bound-
aries I'(5;) of the droplets §; € D(A) are all distinct subsets of
I'(A) with the property: U, I'(5)=I"(A).

Given the definitions above, let us rewrite the energy in
Eq. (1) as

Hy(o) = [Aylepm() +20 2 (A= 2 Egp(9).
yel'(A) seD(A)

27)

where epy(J) is the energy per site of the ferromagnetic con-
def

figuration o;=+1 and Eg,(6) =23, 52, (i—)). Let us
arbitrarily choose a number /=1 (to be conveniently fixed
below) and let us correspondingly rewrite Eg;,(6) as

Eg(®=22 2 Wi-jl<DJ,i-))

ieﬁjEAf

+22 2 Wi—jl>Da =), (28)
ie 5j c A€

Denoting the last term by E7/(8), we note that = 5_p()E ()
can be bounded above by 2 min{|A[,[A°[}® (1) <[|A|D,(]),
where ®@,(1)=3,>|n|™ < const/""~). For large [ the con-
stant is smaller than 2d|S,|/(p—d), where |S,| is the volume
of the d-dimensional unit sphere. The first term in the RHS
of Eq. (28) can be rewritten as
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E(§)=22 J,m2 2 Wi-j=n)

[n|<t i€djeAc
1
<2 —2> 2 Wi-j=n), (29
\n\il |n| ieé‘jezd\[g

where in the last inequality we neglected an error term van-
ishing in the thermodynamic limit.

Now, the number of ways in which n=(n,,...,n,;) may
occur as the difference i—j or j—i with i e 5 and j & & is at
most =, (5=, |YiIn;|, where |y]; is the number of faces in
v orthogonal to the i-th coordinate direction. To prove this,
draw a path on the lattice of length |n,|+ - - +|n,| connecting
i and j. Such a path must cross a face of vy and if this face is
orthogonal to the i-th coordinate axis, can do so only in |n;|
ways and the claim follows.

The conclusion is that

1 2
Jnl?

S s

yel(®)  |n|<i |”|p.
(30)

Eo= X X

|7|i|ni| =
vel'(6) |n|<l n 1

The sum 3|, |ny|/|n[" can be bounded above by

J1=[xj=d°x]x1| /|x|P +const, where the constant is smaller than

2pd|S 2P~ (p—d) and |S, is the volume of the

d-dimensional unit sphere. Then Eq. (30) implies E</(6)

<2V, (1)+2pd|S,27~/ (p—d), where W ,(I)=[S;_[Inl if p

=d+1 and W ,(1)=[S,_,|(1**'P=1)/(d+1-p) if d<p<d+1.
Putting these bounds back into Eq. (27), we find

pd|S |27~
Eo(N) = [Aylepy + 2<J— L U] >
p—d yel'(8)
2dS,| [y
- —_—, 31
p—d I G

where A is the set of—sites in the (unknown) ground state
configuration. Choosing / in such a way that W, (l)=J
—pd|S427~41(p—d), we find the lower bounds in Egs. (3) and
(4). This concludes the proof of theorem 3.

As a side remark, let us note that a discussion similar to
the one above implies that if p>d+1 and J is large enough
no droplet can appear in the ground state, i.e., the ground
state is ferromagnetic. In fact, let us assume by contradiction
that the ground state is not o;=-1 and that there is at least
one droplet & in the ground state. Then the energy needed to
reverse all the spins in & must be positive: —2J2 (5| Y
+Eg;(6)=0. Proceeding as above in the proof of Eq. (30)
and using that p>d+1, we get Eg,(9) $276F(5)|y|2‘n‘>1%
Sconstﬁyer(5)|y|; hence for J big enough we get a contra-
diction and this proves that the ground state is ferromagnetic.

The contour method implemented in the proof of theorem
3 also allows one to get some informations about the geom-
etry of contours and droplets in the ground state for d<<p
<d+1. In fact if D(A) is the set of droplets in the ground
state and we consider a configuration ¢’ on {x1}* with A’
s.t. D(A")=D(A)\{6}, for some &, then it must be Hy(a")
—Ey(N)=0. With the definitions introduced above we have
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Hy(g") = E(N) <=2 2 |9+ Egp(9)
yel'(9)

-

pd|S 274

- + \pr(l)>

2d|S,| |8
p—d I

s2(—]+

X X |yl+

yel'(6)

(32)

Imposing that the RHS of (32) is positive and choosing

3 —d )
W, () + pdl;+|jp —J=-1, we find 2, p5|y| =< const| Sl el

if p=d+1 and =, r(g|y|=<const|§J-P-D1P) if d<p<d
+1. If 6 does not wind up Ay, using the isoperimetric in-
equality || < (2, cr(5|¥|/2d)? we also find that in the ground
state =,cp(g|yl =conste”Pa1l i p=d+1 or =, ]
= constJ P~ d+1=p) if d<p<d+1.

Finally we mention that exploiting the same energy argu-
ments above, one can prove that the ground state of Hamil-
tonian (1) with A an N%~! X w cylinder with periodic bound-
ary conditions is the ferromagnetic ground state, provided
w<KjePe1l if p=d+1, or w< K/ Jr- 1) if < p<d
+1, for a suitable constant KI’,. This result strongly suggests
that for d<p=<d+1 the droplets in the ground state are
quasi-(d—1)-dimensional structures of width 0(e’Pa-1ly or
O(JP=Dd+1-p)) " reminiscent of the conjectured stripes. If we
could prove that the droplets in the ground state must neces-
sarily be stripes, then we could exploit the methods in Sec.
IIT to prove that the ground state is indeed realized by a
periodic striped configuration.

V. CONCLUDING REMARKS
A. One dimension

Ground state. In 1D the characterization of the infinite
system ground state is complete: the ground state is periodic
and there is a sequence of transitions from an antiferromag-
netic state of period two to 2h-periodic states of blocks of
sizes h, h>1, with alternating sign, the size 4 changing (in-
creasing discontinuously) when the ferromagnetic interaction
strength J is increased.

Our proof is based on a reflection positivity argument
which relies heavily on the details of the model Hamiltonian,
e.g., on the fact that the long-range repulsion is reflection
positive. It is an interesting open problem to establish more
general conditions the long range repulsive interaction
should satisfy in order to guarantee existence of a periodic
modulated ground state. Note that the problem of determin-
ing the ground state of a spin system with positive and con-
vex potential was solved by Hubbard and by Pokrovsky and
Uimin (even in the presence of a magnetic field):>>?* this
means that for /=0 the assumption of convexity of the po-
tential is enough to determine the ground state of (1). The
proof in Refs. 23 and 24 was generalized to an “almost”
convex case by Jedrzejewski and Miekisz.?>?% However, this
proof requires a small ferromagnetic interaction 1 <J<1
+27P_ Tt is an open problem to generalize our analysis (in the
presence of a large ferromagnetic coupling) to the case of a
long-range convex interaction.
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It would also be interesting to establish what would be the
effect of adding a magnetic field to the model Hamiltonian. It
is expected that in the presence of a large short-range ferro-
magnetic coupling and of a positive magnetic field B of in-
creasing strength the ground state is still periodic with the +
blocks larger than the —’s, at least if |B| is not too large.'®
However, for large magnetic field it could be the case that
small variations of the magnetic field could induce an infinite
sequence of transitions between periodic states characterized
by different rational values of the magnetization (Devil’s
staircase): this is in fact what happens for /=0 as a function
of the magnetic field.?* According to Ref. 33 the antiferro-
magnetic state would remain the ground state for |B| < B, for
J=0. For larger values of B there is a sequence of transitions
from the antiferromagnetic state of period two to (compli-
cated) periodic states with all possible rational values of the
magnetization.

Positive temperature. Another interesting open problem in
one dimension consists in establishing properties of the infi-
nite volume Gibbs measures at positive temperatures. Note
that for a ferromagnetic long-range interaction with decay
1/, 1<p=2, it is known***3 that there is a phase transi-
tion for the inverse temperature 3 large enough. In the case
of model (1), on the contrary, it is natural to expect a unique
Gibbs measure for any finite B3, even for 1 <p<2. It is in
fact known that if J=0 in Eq. (1), then for d=1 and p>1
there is a unique limit Gibbs state at all values of the inverse
temperature 3.273%37 The proof in Ref. 27 does not extend to
the case J>0. It is known however that for />0 all Gibbs
states are translation invariant.’® Similarly, using the argu-
ment in Ref. 38, one can show that the Gibbs states obtained
as limits of finite volume Gibbs measures with boundary
conditions Tkgper[h*(./)], where c_rper[h*(J)] is a periodic
ground-state configuration with blocks of size 4"(J/) and 7 the
translation operator, are all equivalent among each other, for
any k=1,...,h"(J). If, on the contrary, 0<p<1 and, say,
J=0, it has been conjectured®® that model (1), modified as
explained after Eq. (1), admits at least two different Gibbs
states obtained as limits of finite volume Gibbs measures
with boundary conditions *-++—+—--+ and ---—+—+---
[which are presumably well defined because the Hamiltonian
is thermodynamically stable, see remark (1) after theorem 2].

B. Higher dimensions

Ground state. In two or more dimensions we have shown
that the specific ground state energy agrees asymptotically
for large J with the best variational ground state known so
far, which is a periodic striped configuration.'*

As already mentioned in the introduction, the ground
states are believed, on the basis of variational computations
and Monte Carlo simulations, to consist of a sequence of
“stripes” of size h (growing when the ferromagnetic interac-
tion strength J is increased) and alternating signs.

If J is sufficiently large, the addition of a magnetic field is
believed to lead to a thickening of the stripes with spins
parallel to the external field. At very large fields a transition
from a striped to a “bubble” phase is expected:'® the bubble
phase consisting of large “cylindrical” droplets of spins par-
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allel to the external field arranged in a periodic fashion and
surrounded by a “sea” of spins of opposite sign.

Positive temperature. The nontrivial structure of the set of
ground states is believed to have a counterpart at positive
temperature: in particular in the absence of magnetic field it
is believed that at low temperature there are different pure
Gibbs states describing striped states with two possible ori-
entations (horizontal and vertical). The striped states are ex-
pected to “melt” at a positive critical temperature® with the
“stripe melting” described in terms of an effective Landau-
Ginzburg free energy functional.”

It goes without saying that it would be of great interest to
substantiate these pictures by rigorous proofs. Since most
standard methods (cluster expansion, correlation inequali-
ties) seem to fail in giving any useful information for sys-
tems of spins with long-range antiferromagnetic interactions,
new ideas are needed to understand some of the aforemen-
tioned problems.
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APPENDIX A: A PRIORI BOUNDS ON THE SIZE OF THE
BLOCKS

In this appendix we prove Eq. (13). Given a block B), of
size h;, let us assume that h;=(2K+1)h, for two integers K
and h to be chosen conveniently (it will be clear from the
proof below that this assumption is not restrictive). To be
definite let us assume that the block By, of size h; we are
considering is a + block. Since i;=(2K+1)h, we can think
of B), as a sequence of three contiguous blocks of sizes Kh,
h, and Kh, respectively, to be called B,ll, Bﬁ, BZ. Let us now
compute the energy needed to flip the block B,21 and let us call
it AE'(h). If we are in the ground state, then of course
AE'(h)=0. Also, we have AE'(h)<4J-2E(h), where
E,(h) is the dipole interaction energy between a + block B,zl
of size h and a configuration of spins in Z\BZ such that the
spins in B}I, Bi are all + and the spins in Z\Bhi are all —.

E,(h) is readily computed as

E1<h>=22{+2 S ] 1

i=1 | j=h+1  j=h+Kh+1 (J - i)p

h [ h+kh w
_ _ da e
=22 - 2 e

i=1 |j=h+l  j=h+Kh+1 oI (p)

© d —a
_ zf o ap—l (1 _ee_a)z(l _ e—ah)(l _ ze—al(h)

(A1)
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so that, using the condition AE'(h)=0, we find that in the
ground state

“ da e
a’! (1= (1 =2k < .
fo L(p)~ (1-e?

(A2)

Using now the fact that ae”“’<1-¢ *<a for a=0, the
left-hand side of Eq. (A2) can be bounded below by

I (fda 1 ~a(] -
)ty a o’

e—a(Kh—l)) )

e M (1-2 (A3)

Now, if p=2 Eq. (3) can be computed to give In(h+1)/(1
+1/K)%. Then, choosing K=1 and plugging these bounds
back into Eq. (A2), we find that, if p=2, InA<J+2 In2 and
h;=3h<12¢’.

If 1<p<2,Eq. (A3) can be further bounded below as

F(p)f d_aL{ —ah(l —ah)Z_e—aKh(l _e—ah)}
W (Tda 1 w o
F(p)f — e U= )’ — aem*}

= (A’ Kli 1)h2-P (A4)

Choosing K in such a way that B'/KP~'<A’'/2 and plugging
the bounds into Eq. (A2), we find that A’h?>P<2J, so that
hi=K+1)h<(2K+1)(2J/A")"P),

APPENDIX B: THE INTEGRAL REPRESENTATION

In this appendix we want to give the details of the com-
putation leading to Eq. (7). First of all let us note that the first
two terms in the RHS of Eq. (7) come from the short-range
FM interaction. In order to show that the computation of the
dipole interaction energy leads to the remaining terms ap-
pearing in the RHS of Eq. (7), let us first note that the infinite
volume dipole interaction energy E |, between two blocks of
signs &1 and &,, e,==+1, of sizes h; and h, and separated by
a string of d spins, can be computed as follows:

hy hy

E,= 81822 E

i1 =1 (]—z+h1+d)”

da
— 8182f map 1 —a(}—t+h1+d)

“ da e
= slszf o’ —a)Z(l — ") em(] = gm0h2)

o F'p) (1-e
(B1)
Now, in order to compute the finite volume dipole interaction

energy of two different blocks /; and /;, j> i, we can simply
apply the definition and Eq. (B1) to find
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hi hj |
8,-8,-2 2 2

neZ I=1 m=1 |m_l+hi+

oo d —
o] Fo im0 =)

+hj_ + 2nN|P

o I'(p) (1
X[ H e—ahk]E e—2anN
i<k<j n=0
* da e
+ g8 o’ — (1 — ™)
JJo Lp)  (1-e°
X(l _ e—ahj)e—a(2N—hi—---—hj)E e—2anN’ (BQ,)
n=0

which leads to the term in the third line of Eq. (7) [we used
that g;e;=(-1)""" and M h;=2N]. Similarly, the finite vol-
ume dipole self-interaction of a block /; can be computed as

Eh, k+222 1

k=1 =1 ijo1 (G —i+2nN)?
fx da  , e* y
= o
o Tp) (1-e®?

e—2aN
1- e—2aN :

Summing Eq. (B3) over i=1,...,M, we get the last term in
the first line of Eq. (7) and the term in the second line.

{hi(l —e ) = (1 —e )

+2ei(1 — e hi)? (B3)

APPENDIX C: COMPUTATION OF THE 1D ENERGY
GAP

In this Appendix we want to compute the specific energy
¢ of the (4h"+2)-periodic configuration (h",h"+1,h"
+1,4",...) in the case in which &" and A" +1 are both mini-
mizers of e(h). In particular we will show that e—éy=6>0.
Using the general expression (7), after some algebra we find
that

_ 4J 2 *
e=—J+A+——-— dav(a)
205 +1 20+ 1),
2(1 _ e—ah*)(l _ e—a(h*+1))
1— e—a(4h*+2)

e—zah*(l _ e—a(h*+1))2 i e—za(h*+1)(1 _ e—ah*)Z

1— e—a(4h*+2)

(CD

where v(a)=[T'(p)] '’ e %(1-¢"%)2. We want to prove
that this expression is strictly larger than e,. Note that, since
both 4* and A"+ 1 are minimizers, we have
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J 1 (7 ah” J 1
— - | dav(a)tanh — = — i E—
hon 2 h+1 h+1
” R+l
XJ dav(a)tanh u
0 2
(C2)

implying that
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* . noo K +1
J:f dav(a)[(h' + Dtanh 2 1" tanh M}
. 2 2
(C3)
and
” h* K +1
&= 2] dav(a)(tanh O‘T — tanh %) (C4)
0

Using Egs. (C3) and (C4) we find

® n* Bl 2] - —ah” 1— —a(h™+1) + —2ah” 1— —a(h™+1) 2, —2a(h’+1) 1— —ah™\2
E—e~0=2f dav(a)|:tanha—+tanha( )— (- )-e J+e ( i S +e (=) .
2 1= —a(4h +2)
0 e
(Cs5)
A bit more of algebra shows that Eq. (C5) can be rewritten as
T-3y=2 f dav(a)(e " — @ WD) (] _ gmah’)(] _ pmalh’+1) (C6)
0

and this concludes the proof.
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