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In this paper the three-dimensional random-field Ising model is studied at both zero temperature and positive
temperature. Critical exponents are extracted at zero temperature by finite size scaling analysis of large dis-
continuities in the bond energy. The heat capacity exponent � is found to be near zero. The ground states are
determined for a range of external field and disorder strength near the zero temperature critical point and the
scaling of ground state tilings of the field-disorder plane is discussed. At positive temperature the specific heat
and the susceptibility are obtained using the Wang-Landau algorithm. It is found that sharp peaks are present
in these physical quantities for some realizations of systems sized 163 and larger. These sharp peaks result from
flipping large domains and correspond to large discontinuities in ground state bond energies. Finally, zero
temperature and positive temperature spin configurations near the critical line are found to be highly correlated
suggesting a strong version of the zero temperature fixed point hypothesis.
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I. INTRODUCTION

The random-field Ising model �RFIM� is among the sim-
plest nontrivial spin models with quenched disorder. It has
been intensively studied theoretically, experimentally, and in
computer simulations during the last thirty years but is still
not well understood. Following the seminal discussion of
Imry and Ma1 it has been proved that the RFIM has an or-
dered phase at low temperature and weak disorder when the
dimension is greater than two.2–4 It is generally believed that
the transition from the ordered phase to the disordered phase
of the RFIM is continuous and is controlled by a zero tem-
perature fixed point.5–7 Since random field fluctuations domi-
nate over thermal fluctuations at the transition, the hyperscal-
ing relation is modified as �d−���=2−�, where � is the
violation of the hyperscaling exponent.5,6

The phase diagram of the RFIM is sketched in Fig. 1.
Phase transitions can occur from the ferromagnetic phase �F�
to the paramagnetic phase �P� at either zero temperature as a
function of disorder strength � at �=�c, or as a function of
temperature T if disorder is fixed at �0��c. According to
the zero temperature fixed point hypothesis, the zero tem-
perature transition and the positive temperature transitions
belong to the same universality class. In this paper we use
numerical methods to study both kinds of transitions and
connections between them. One of our primary results is
that, for each realization of disorder, there is a strong corre-
lation between ground state configurations near �c and ther-
mal states near Tc for �0��c.

Currently, there is no controlled renormalization group
analysis of the RFIM phase transition and Monte Carlo simu-
lations of the RFIM at positive temperature9–12 are limited to
small systems because of very long equilibration times.5,6

According to the zero temperature fixed point hypothesis,
many properties of the RFIM phase transition, including the
values of critical exponents, can be determined by studying

the RFIM at zero temperature. The ground state of the RFIM
can be found in polynomial time13 by efficient combinatorial
algorithms so that zero temperature simulations are much
faster and allow for much larger system sizes than positive
temperature simulations. Critical exponents have been ob-
tained from zero temperature studies14–16 that are mostly
consistent with the scaling theories,5–7 series methods,17 and
real space renormalization group approaches.18–20

Much work has been done in determining the critical ex-
ponents, and the values of many exponents are well estab-
lished. However, the value of the heat capacity exponent � is
still controversial. A recent zero temperature study by Hart-
mann and Young14 found ��−0.6 for the three-dimensional
Gaussian RFIM. The modified hyperscaling relation, how-
ever, predicts that �=2− �d−����0, given the well-accepted
values ��1.5 and ��1.1–1.4. Therefore the quite negative

FIG. 1. Phase diagram of the RFIM. We study two types of
phase transitions going from the ferromagnetic phase �F� to the
paramagnetic phase �P�: The zero temperature transition �open ar-
row� occurs at T=0 and �=�c, and positive temperature transitions
�solid arrow� occur at a fix disorder �=�0��c and T�0.
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value found in Ref. 14 is inconsistent with the modified hy-
perscaling relation. Some older work at zero temperature21

and Monte Carlo simulations12 also found � quite negative.
On the other hand, Middleton and Fisher15 also studied the
three-dimensional Gaussian RFIM at T=0 and found ��
−0.1, in agreement with the modified hyperscaling relation.

Dukovski and Machta16 studied the ground states of the
RFIM in the presence of an external field H. They located a
“finite size critical point” for each realization of disorder,
identified as the point of degeneracy of three ground states in
the the H-� plane with the largest discontinuity in magneti-
zation. They extracted critical exponents via finite size scal-
ing of the discontinuities at that point. The reason to focus on
the finite size critical point was that this point can be re-
garded as the most singular point on the H-� plane, and
working at this point may reduce the influence of the regular
part of the physical quantities. The value of the heat capacity
exponent they found was ��0, however, their results were
less accurate than those of Refs. 14 and 15 because of the
large amount of computational work needed to locate the
finite size critical point.

The work reported in this paper combines both zero tem-
perature and positive temperature studies. The zero tempera-
ture studies extend the work of Ref. 16 in two directions.
First, for each realization of disorder we study points along
the H=0 line with large discontinuities in bond energy or
magnetization to determine the critical exponents. Finding
discontinuities along the H=0 line requires much less com-
putational work than finding the finite size critical point
while still adhering to the idea introduced in Ref. 16 of ex-
tracting critical exponents from the large discontinuities in
each realization of disorder. We also find ground state spin
configurations near these large discontinuities and compare
them to thermal states near positive temperature critical
points. Second, we study the full set of ground states of the
RFIM in the critical region of the H-� plane and discuss the
properties of the resulting ground state tilings of this plane.
The RFIM has been used to study avalanches,22–26 in which
sweeping over a range of external field H is essential. Al-
though studies of avalanches usually use some out-of-
equilibrium dynamics rather than ground states, it has been
observed that the nonequilibrium dynamics is closely related
to the equilibrium properties,23,24,26 and therefore the de-
scription of the full set of ground states in a region of the
H-� plane is also helpful to understand avalanches.

Since conventional Monte Carlo methods are not efficient
for the study of the RFIM, we apply the Wang-Landau
algorithm27,28 to the RFIM, which enables us to obtain the
specific heat and the susceptibility over a broad range of
temperature with a system size up to 323. We find that some
realizations display sharp peaks in the specific heat and sus-
ceptibility. Inspired by the zero temperature fixed point hy-
pothesis, we relate these sharp peaks to the large discontinui-
ties at zero temperature. We further study the thermal states
�average spin configurations� near the transition using the
Metropolis algorithm and compare them to the ground states
near the zero temperature transition. Some of this work has
been previously announced in Ref. 29.

In this paper we consider the three-dimensional RFIM
with Gaussian random fields described by the Hamiltonian,

H = − �
�i,j�

sisj − ��
i

hisi − H�
i

si, �1�

where H is the uniform external field, �i , j� indicates a sum
over all nearest-neighbor sites i and j on a simple cubic
lattice of linear size L with periodic boundary conditions.
The random fields hi are Gaussian random variables with a
mean zero and standard deviation of one and the strength of
disorder is �. The normalized fields �hi� define a realization
of disorder and, for a given realization of disorder we ex-
plore spin configurations and physical properties as a func-
tion of H, T, and �. Some of the physical quantities of in-
terest include the magnetization m, defined as follows:

m =
1

L3�
i

si, �2�

and the bond energy e,

e = −
1

L3 �
�i,j�

sisj . �3�

In the next section we discuss the scaling properties of
large discontinuities in the bond energy at zero temperature
and use numerical results for these discontinuities to extract
critical exponents and the critical disorder strength. In Sec.
III we obtain ground state portraits for the RFIM and discuss
their scaling properties. Section IV presents results of posi-
tive temperature simulations and, in Sec. V, we discuss cor-
relations between ground states and thermal states. The paper
closes with a summary and discussion.

II. CRITICAL EXPONENTS AT ZERO TEMPERATURE

At zero temperature, the problem of finding the ground
state of the RFIM can be mapped to the MAX-FLOW problem
in graph theory, which is solvable in polynomial time.13 We
use a modified version of the push-relabel algorithm39 to
calculate the ground states.30,31

In this section we let the external field H=0. From Fig. 1
one can see that the zero temperature phase transition is ob-
tained by varying �. The energy H at T=0 plays the role of
the free energy and thus H	
�−�c
2−�. The bond energy
has stronger singularity, which is e	
�−�c
1−�. For details
see Ref. 14. The specific heat at T=0 can thus be defined

C =
��e�
��

, �4�

where e is the bond energy defined in Eq. �3� and the square
brackets denote averaging over disorder realizations. At zero
temperature, for each realization of normalized random fields
the bond energy changes discontinuously as a function of the
strength of disorder �. An example of a single realization is
shown in Fig. 2 and illustrates the point that the sizes of the
discontinuities vary widely. In Refs. 14 and 15 all bond en-
ergy jumps are included in the calculation of the specific heat
exponent. However, small jumps are presumably part of the
analytic background rather than the singular behavior. The
smallest bond energy jump, for example, is four for all sys-
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tem sizes. We therefore analyze large jumps in the bond en-
ergy to focus on the critical singularity. From a sample of
N�L� disorder realizations of systems of size L, let ��e1� be
the average over the N�L� largest bond energy jumps and let
��1� be the average of the disorder strength at these jumps.
Each realization of disorder typically contributes one bond
energy jump and one disorder strength to these averages
though some realizations contribute nothing and some sev-
eral values. Table I for shows our data for ��e1�, ��1�, and
N�L�.

Figure 3 shows the specific heat decomposed into two
components, component �a� is due to the largest N�L� jumps
while component �b� arises from all other jumps. Although
for a single realization �e is a steplike function as �, ��e� is
a smooth function due to averaging over realizations. One
can see that the large jumps make a significant contribution
to the full specific heat and we will use this component to
extract critical exponents. The finite size scaling of the spe-
cific heat is expected to obey

C 	 L�/�C̃��� − �c�L1/�� . �5�

Though the two components of the specific heat shown in
Fig. 3 obviously behave differently from one another, our
primary assumption is that the finite-size scaling of the full

specific heat also applies to the component of the specific
heat from the largest bond energy jumps. Indeed we believe
that the large jumps provide better data to obtain critical
exponents from small systems than the full specific heat be-
cause this component is undiluted by the analytic back-
ground. We discuss more detailed scaling assumptions about
large jumps later in this section. Note that the peak height for
component �a� barely changes with the system size suggest-
ing that the specific heat exponent � is near zero.

Integrating Eq. �5� as applied to the component from the
largest discontinuities, we obtain a finite size scaling ansatz
for the large jumps,

��e1� 	 L�1−��/�, �6�

where � is the specific heat exponent and � is the correlation
length exponent. Table I gives the average size of the large
bond energy jumps as a function of system size L. A fit of the
form given in Eq. �6� yields �1−�� /�=0.842±0.003 with
goodness of fit parameter Q�0.7 �Q��d /2 ,	2 /2� with d
the number of degrees of freedom and � the incomplete
gamma function�.

The displacement of the average position of the large
jumps from the infinite volume limit and the standard devia-
tion of the positions of the large jumps are each measures of
the width of the critical region and, following Refs. 32–34,
we assume that they satisfy the finite size scaling relations,

��1� − �c 	 L−1/�, �7�

and

����1 − ��1��2� 	 L−1/�, �8�

where � is the correlation length exponent and �c is the
infinite size critical disorder strength. Table I gives the stan-
dard deviation of the position of the largest jump and a fit to
Eq. �8� yields 1/�=0.79±0.01 with Q�0.4. Finally, Table I
gives ��1� and, using the previously obtained value, 1 /�

FIG. 2. Bond energy as a function of disorder strength � for a
single realization of disorder �seed 1003�. Numbers 1 and 2 indicate
the two biggest jumps in the bond energy.

TABLE I. Data from ground state simulations for the average
largest jump, and the average and standard deviation of the disorder
strength at the largest jumps, over N�L� realizations, as a function of
system size L.

L N�L� ��e1� ���1− ��1��2�1/2 ��1�

32 13008 0.1208�4� 0.0904�5� 2.4915�10�
48 7549 0.0857�5� 0.0666�6� 2.4326�10�
64 5237 0.0675�5� 0.0524�5� 2.4017�10�
96 2115 0.0480�6� 0.0385�7� 2.3709�10�

FIG. 3. Two components of the specific heat. �a� The contribu-
tion to the specific heat from the largest N�L� bond energy jumps,
where N�L� is the number of disorder realizations for each system
size L. �b� The contribution from all other bond energy jumps.
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=0.79 a fit to Eq. �7� yields �c=2.280±0.003 with Q�0.2.
The second and third largest jumps also presumably re-

flect the critical singularity. We repeated the foregoing cal-
culations for the largest kN�L� jumps, where our data allow
us to go up to k=3. The results are listed in Table II. We
arrive at the following best estimates of the critical exponent
and the infinite volume critical disorder,

1 − �

�
= 0.842 ± 0.004, � = 1.25 ± 0.02,

�c = 2.282 ± 0.002, � = − 0.05 ± 0.02, �9�

where the error bars include statistical errors from all three k
values.

Our values of the �1−�� /� and �c are consistent with
some previous calculations and � is found to be near zero,
which is in agreement with Ref. 15. But the value of � we
have calculated is smaller than recent results quoted in Refs.
14 and 15. In Table III our calculated values of the exponents
are listed in comparison with some recent work. Our values
of �1−�� /� and 1/� gives �2−�� /��1.64. Applying the
modified hyperscaling relation and the inequality �
d /2
−� /� �Refs. 6 and 8�, one has � /�
0.14, which is incon-
sistent with other work. We believe that our value of �1
−�� /� is more reliable than our value of 1 /�. The fit for 1 /�
starts from size L=32 and would be quite poor if the L=16
data were included suggesting significant finite size correc-
tion. On the other hand, if the L=16 data were included, the
fit would still be good for �1−�� /� and there would be no
change in the resulting value.

Next we take a closer look at the finite size scaling prop-
erties of the distribution of discontinuities in the bond en-
ergy. Bond energy jumps result from flipping domains. Con-
sidering N�L� �N�1� realizations with system size L, we
assume that there is a renormalization group transformation
mapping them to N�L�� realizations with system size L�, and
the flipped domains are transformed such that the average
bond energy jump ��e� and the average disorder where
jumps occur ��� conform to the already known scaling rela-
tions, Eqs. �6� and �7�. In order to exclude small jump that do
not scale properly, we introduce a lower cutoff �emin for
bond energy jumps, which should scale the same way as
��e�,

�emin 	 L�1−��/�. �10�

The total number of bond energy jumps larger than the
scaled lower cutoff is independent of the system size, since
the jumps in systems with different sizes are connected by
the renormalization group transformation. Defining scaled
variables u=�eL−�1−��/� and v= ��−�c�L−1/�, the number of
jumps occurring in a small neighborhood of �u ,v� should
also be invariant for different system sizes. It then follows
that the probability P��e ,�� of having a bond energy jump
with size �e, �e��emin, and position � is proportional to a

given normalized probability distribution function P̃�u ,v�,

P��e,��  P̃„�eL�1−��/�,�� − �c�L1/�
… . �11�

The normalization of P��e ,�� then gives

P��e,�� = L�2−��/�P̃„�eL�1−��/�,�� − �c�L1/�
… . �12�

Letting a=�eminL
�1−��/� and integrating gives the scaling of

the specific heat due to big jumps Cb,

Cb = �
�emin

�eP��e,��d�e 	 L�/�C̃„�� − �c�L1/�,a… ,

�13�

where C̃�v ,a�=�auP̃�u ,v�du is some scaling function. By
integrating Eq. �12� over �e we derive the probability distri-
bution of the disorder strength where big bond energy jumps
occur,

TABLE II. Critical exponents extracted from the largest kN�L�
jumps, where N�L� is the number of realizations for system size L.
Errors are purely statistical.

k �1−�� /� 1/� �c

1 0.841�4� 0.79�1� 2.282�2�
2 0.842�4� 0.80�1� 2.282�2�
3 0.844�3� 0.81�1� 2.283�1�

TABLE III. A summary of recent estimates of �c, �, �1−�� /� and �, either calculated by ground state
�GS� or Monte Carlo �MC� simulations.

Reference �c � �1−�� /� � Method

This work 2.282�2� 1.25�2� 0.842�4� −0.05 �2� GS

16 2.29�2� 1.1�1� 0.80�3� 0.12 GS

14 2.28�1� 1.36�1� 1.20 −0.63 �7� GS

15 2.270�4� 1.37�9� 0.82�2�3a −0.12 �12� GS

33 2.26�1� 1.22�6� GS

34 2.29�4� 1.19�8� MC

21 2.37�5� 1.0�1� 1.55 −0.55 �20� MC

aThis value was calculated from scaling of the bond energy. They found �1−�� /�=0.74�2� by relating it to
the fractal dimension of the surface of spin clusters.
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Pb��� = L1/�Q̃„�� − �c�L1/�,a… , �14�

where Q̃�v ,a�=�aP̃�u ,v�du. We then recover the scaling of
the average disorder strength given in Eq. �7� The setup of a
scaled lower cutoff should be equivalent to picking the kN�L�
largest jumps for each size L, where k is some fixed number,
because the total number of jumps is invariant under the
renormalization group transformation. We test this hypoth-
esis by fixing the constant a=�eminL

�1−��/� and count how
many jumps larger than the lower cutoff there are for each
system size. The result is listed in Table IV. One can see that
if the scaled lower cutoff is not too small, the number of
bond energy jumps larger than the cutoff goes to a constant
independent of the system size L.

Figure 4 illustrates the data collapse of the specific heat
predicted by Eq. �13� for system sizes 323, 483, 643, and 963.

In a conventional data collapse the scaling function C̃�x�
behaves like x−� as x→�, but in Fig. 4 the tail of the curve
decays faster than a power law. The main plot in Fig. 4 has
the bond energy jump cutoff set as a=�eminL

�1−��/�=1. Table
IV shows that for a=1 only a few largest jumps per realiza-
tion contribute to Cb and, since these jumps are concentrated
near the critical point, we do not expect Cb	��−�c�−�.
However, the tail should approach x−�, if the number of

jumps included is increased, or equivalently, a is reduced.
The inset in Fig. 4 shows Cb with a smaller cutoff, a
=�eminL

�1−��/�=0.1. With this cutoff data is available for 163

and 323 systems only. The inset illustrates that, as the cutoff
is lowered, the tail of the scaling function expands and pre-
sumably approaches the asymptotic x−� shape.

III. GROUND STATES PICTURES AND SCALING
RELATIONS

The tiling of the H-� plane by ground states is the subject
of this section. To study this tiling, we find all ground states
within a certain range of disorder � and external field H in
the critical region. Since the Hamiltonian of the RFIM is
linear with respect to the external field H and the strength of
disorder �, each spin configuration is represented by a plane
in the H-�-H coordinate system. Ground states are spin con-
figurations that are locally lowest and the set of all ground
states form a convex surface in this coordinate system. Spin
configurations are ground states within regions of H and �
bounded by neighboring ground state planes so that a given
spin configuration is the ground state within a polygonal re-
gion. At boundaries of these polygons, and intersection
points of boundaries, ground states are degenerate. We are
particularly interested in the degenerate points that are com-
mon points of three ground states. We call these “triple
points.”

The structure of the ground state energy surface can be
visualized by projecting it onto the H-� plane where it be-
comes a tiling of the plane by polygons. The computational
method for finding this tiling is closely related to the method
developed in Ref. 16. In that work, the first order line, which
is a set of boundaries that separates the two ordered phases
with positive and negative magnetization, respectively, was
followed and the “finite-size critical point” was identified by
finding the triple point having the largest discontinuity in
magnetization. The finite-size critical point was regarded as
the most singular point, and critical exponents were extracted
via finite-size scaling of magnetization and bond energy dis-
continuities at the point. In this paper we use a method simi-
lar to the techniques used in Refs. 35 and 16 to map out all
the ground states for any given realizations within a certain
region on the H-� plane near the finite-size critical point.

Our algorithm performs a breadth-first search of ground
states. The starting point of the search is the finite-size criti-
cal point located by the algorithm of Ref. 16. For each point,
where more than two ground states are degenerate, we al-
ready have the ground states around the point and the coex-
istence lines separating them �one locates the point by find-
ing ground states around it�. We then follow the lines and
search for the next adjacent degenerate point using the fol-
lowing method. Starting from the given degenerate point p,
we extend the coexistence line separating ground states P1
and P2 with some preselected step size until we meet a point
q0 on which the ground state Q0 is different from both P1,
and P2. The actual adjacent degenerate point is typically
passed over, because of the fixed step size is too large. We
then locate the intersection point of P1, P2, and Q0 and name
it q1 on which the ground state is Q1. If q1=q0 then q0 is

TABLE IV. Number of bond energy jumps larger than the scaled
lower cutoff �emin. The cutoff satisfies that a=�eminL�1−��/� is a
constant.

L=16 L=32 L=48 L=64 L=96

a=0.05 69.3�1� 75.1�1�
a=0.1 29.03�6� 30.89�6�
a=0.6 3.16�1� 3.04�1� 3.01�1� 2.99�2� 3.00�3�
a=1 1.585�5� 1.533�7� 1.53�1� 1.52�1� 1.54�2�

FIG. 4. Data collapse of the specific heat. The cutoff is a
=�eminL�1−��/�=1.0. System sizes range from 163 to 963. The inset
shows data collapse of the specific heat for system size 163 and 323,
and the cutoff is �eminL�1−��/�=0.1.
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obviously the point we want. Otherwise we find the intersec-
tion point of P1, P2, and Q1 and name it q2. The process can
be repeated and the sequence �qn� will eventually converge
to the adjacent degenerate point due to the convexity of the
ground state surface. The process of finding adjacent degen-
erate points is iterated recursively until it reaches the outside
of the predefined region, or it finds a point that has already
been visited. By connecting degenerate points with straight
lines, all ground states within the region are identified.

Using the method described above, a ground state picture
on the H-� plane of a particular 323 realization �seed 1003�
was computed and is shown in Fig. 5�a�. Coexistence lines
are drawn with thickness reflecting the jump in magnetiza-
tion to visualize the size of discontinuity. Most of degenerate
points are intersection points of four ground states, as illus-
trated in Fig. 6�b�. The four ground states differ by the ori-

entation of two separate domains, which are typically small,
as is the discontinuity in physical quantities between them.
More interesting are triple points where three ground states
are degenerate. Here a single coexistence line bifurcates into
two lines in a Y shape, as illustrated in Fig. 6�b�. The state
on the top of the Y results from the breakup of a relatively
large domain while this domain flips as a whole across the
vertical line of the Y. A triple point has some characteristics
of a thermal first order transition where two ordered state
coexist with a disordered state.

There are several thousand lines in the ground state pic-
ture in Fig. 5�a�, but most of these lines have small jumps in
bond energy and magnetization. We believe that only rela-
tively large jumps contribute to the singularity and, to em-
phasize these jumps, we simplify the picture by removing the
lines representing small jumps. In Fig. 5�b� is the same pic-

FIG. 5. Ground states of a given realization �seed 1003� with
system size 323 in the H-� plane. �a� All the ground states of a
single realization with L=32. The lines are coexistence lines of two
ground states. The thickness of a line is proportional to the magne-
tization jump across the line. �b� The same realization as in �a�, but
only coexistence lines with bond energy jumps �e�0.03 are
shown. Numbers 1 and 2 correspond to the two largest jumps
shown in Fig. 2. The inset in �b� is a blow up of the region around
the triple point identified as the finite size critical point and also
showing the triple points immediately above and below it.

FIG. 6. �a� Three states are degenerate at a triple point. The “�”
and “�” sign are used to indicate the direction of spins in a domain.
The spins in the domain are all pointing up �denoted as “��”� or
all down �“��”� in the ground states below the triple point, while
the domain breaks up �“��”� in the ground state on top of the
triple point. �b� Four states separated by two intersecting straight
lines. The four states differ from each other in two separate
domains.
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ture as Fig. 5�a� but a large number of lines with small bond
energy jumps ��e�0.03� have been eliminated. This simpli-
fied picture reveals a treelike structure built from triple
points. The first order line separating the two ordered states
is the trunk of the tree, which bifurcates at the finite size
critical point �defined below� into two main branches located
at the center of the picture. Above the finite size critical point
the ground states are disordered. The points labeled 1 and 2
correspond to the large jumps with the same labels in Fig. 2.
The inset in Fig. 5�b� shows the details of the finite size
critical point and two other triple points immediately above
and below it. In this paper the finite size critical point is
identified as the degenerate point that maximizes the discon-
tinuity in the bond energy, measured by �e*= �
e+−e0
+ 
e−

−e0
� /2, where e+, e− are the bond energies of the two or-
dered states, and e0 is the bond energy of the disordered
state, respectively.

We propose that the critical region of the ground state
picture can be rescaled in such a way that pictures for vari-
ous system sizes are statistically indistinguishable from one
another. The required scaling involves the width of the pic-
tured region WH in the H direction, height W� in the � di-
rection, and lower cutoff �emin for coexistence lines retained
in the picture. The scaling of �emin should follow Eq. �10�.
The picture will include a scale invariant part of the critical
region if W� scales as �−�c,

W� 	 L−1/�. �15�

The scaling of WH is expected to be the same as the scaling
of the external field H, which has been given by Bray and
Moore in their scaling theory of the RFIM �Ref. 7�,

WH 	 L��+�−2�/�. �16�

In Fig. 9 the parameters of the pictures are scaled such
that �eminL

�1−��/�, W�L1/�, and WHL�2−�−��/� are all held con-
stant. Although different realizations have quite different
ground state patterns there is no apparent way to distinguish
between different system sizes.

In order to test the scaling of the ground state pictures
more quantitatively we measure �
dH /d�
�, the average of
the absolute value of the inverse slope of coexistence lines
near criticality �except for the first order line� as a function of
system size. The result is shown in Fig. 7. We measure the
inverse slope of coexistence lines rather than the slope itself,
because in some realizations the slope is very large, and thus
the average of d� /dH is not well behaved. The slope of the
best-fit line is −0.79±0.04. From Eqs. �15� and �16� we ex-
pect �
dH /d�
�	L��+�−1�/�. The measured value −0.79±0.04
is close to ��+�−1� /�, if �1−�� /��0.84 as we have cal-
culated in Sec. II and ��0 as generally accepted.

We then measure the strength of the external field at the
finite size critical point �
Hc
�, which should have the same
scaling as WH, and show the result in Fig. 8. The slope of the
best-fit line is −1.60±0.06, which is again consistent with the
expected value of ��+�−2� /�, if ��0, and our measured
values of exponents �1−�� /��0.84, and 1/��0.8 are used.

IV. POSITIVE TEMPERATURE RESULTS

We have studied the RFIM at fixed disorder strength of
�0��c and zero external field for all T�0 using the Wang-
Landau algorithm.28 The Wang-Landau algorithm is a flat
histogram Monte Carlo method that also automatically deter-
mines the density of states g�E�. Thermodynamic quantities
related to energy, such as the specific heat, can then be de-
rived from the density of states at all temperatures. In order
to get the magnetization or susceptibility, we collected joint
magnetization and energy statistics. The algorithm smooths
the energy landscape and improves on the performance of
the conventional Metropolis algorithm. Using the method we
can determine the specific heat and susceptibility over a
broad temperature range for systems up to size 323. After we
obtain the density of states, we use the Metropolis algorithm
to obtain average spin configurations for selected tempera-
tures.

FIG. 7. Scaling of the average inverse slope of coexistence lines
near the finite size critical point �except for the first-order line�. The
slope of the best-fit line is −0.79±0.04, which is in agreement with
the predicted value ��+�−1� /�.

FIG. 8. Scaling of the average strength of the extenal field at the
finite size critical point. The slope of the best-fit line is −1.60±0.06,
which is in agreement with the predicted value ��+�−2� /�.
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Our first observation is that for some large enough sys-
tems �
163� and strong enough disorder, the specific heat
and the susceptibility display one or more sharp peaks, as
illustrated in Fig. 10. For a given realization, the sharp peaks
in the specific heat and the susceptibility occur at the same
temperatures. The sharp-peaked transitions have some first-
order-like properties. For example, the energy probability
density p�E�=e−E/Tg�E� /Z displays double peaks, and the
Binder cumulant B�T�=1− �m4� /3�m2� is negative at the
temperature of the sharp peaks. The angular bracket stands
for a thermal average. The double peaked energy distribution
and negative Binder cumulant are shown for a 163 system
�seed 1013� in Fig. 11. These first-order-like features result
from the coexistence of two states that differ by flipping a
large domain as we will see more clearly later. Preliminary
statistics from a small sample of realizations suggest that the
fraction of realizations showing sharp peaks increases with
the system size and the strength of disorder, as shown in
Table V. The number of realizations simulated for 323 sys-
tems was limited by available computer resources. Here we
call a transition “sharp” if the sampling probability has two
peaks at the transition temperature.

The sharp peaks occur at different temperatures with dif-
ferent height for different realizations, and they are smoothed
out by an average over realizations. We show in Fig. 12 the
average specific heat for all of the 163 systems we have
simulated at �0=2.0. Though there are 21 sharp-peaked re-
alizations out of a total of 96 simulated �see Table V�, the

average specific heat is a smooth curve. The difference be-
tween the average specific heat and that of individual real-
izations shows that there is no self-averaging close to the
critical point at positive temperature, similar to what we have
already seen at zero temperature. The lack of self-averaging
near the transition has also been observed in the bimodal
distribution RFIM �Ref. 36�.

V. RELATION BETWEEN GROUND STATES
AND THERMAL STATES

The zero temperature fixed point picture of the RFIM
phase transition predicts that the behavior in the critical re-

FIG. 9. Ground state pictures for different system sizes plotted
with scaled coordinates and lower bound for bond energy jumps.
Each figure shows the scaled ground state picture for a single
realization.

FIG. 10. The specific heat C and the susceptibility 	 of four
realizations of the RFIM. The sharp peaks in the specific heat and
the susceptibility of a given realization occur at the same
temperatures.
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gion at positive temperature is determined by the competi-
tion between couplings and random fields with thermal fluc-
tuations serving only to renormalize the strength of these
quantities. The results presented in this section suggest that a
strong version of the zero temperature scenario holds for
individual realizations of normalized random fields. We will
show that the sharp peaks in the thermodynamic quantities
can be matched one to one with the large jumps at zero
temperature. Furthermore, the spin configurations on either
side of the sharp peaks can be mapped onto the ground states
on either side of the corresponding large jumps. Similar cor-
relations between ground states and thermal states were
found in one dimension.37,38

We illustrate the above statement for one 323 realization �
�0=2.0, seed 1003� whose specific heat and susceptibility
are shown in Figs. 10�g� and 10�h�, respectively. There are

two major peaks in the specific heat and the susceptibility,
and each of them are related to the two major jumps in the
bond energy and the magnetization at zero temperature, as
shown in Figs. 2 and 5�b� �labeled as 1 and 2�.

The connection between the zero temperature transitions
and positive temperature transitions is confirmed by the cor-
relation between the average spin configurations near the
positive temperature transition and the ground states near the
zero temperature transition. For a single realization of ran-
dom fields, we obtain the thermally averaged spin configu-
ration at a given temperature near the peaks using the fol-
lowing method. We use the ground state as the initial spin
configuration. The spin configuration is then updated using
the Wang-Landau algorithm, in which the already obtained
density of states is used without modification. This way we
can quickly get close to the average energy at the given
temperature. We use a configuration with the correct energy,
as the initial condition for a Metropolis run to collect statis-
tics for spin configurations.

Figures 13�d�–13�f� show one plane through the system
with �0=2.0 and at temperatures just before peak 1 �T
=2.2�, just after peak 1 �T=2.5�, and just after peak 2 �T
=2.8�, respectively. The difference between the states shows
that the sharp peak corresponds to flipping a relatively large
domain. It is evident that these three states are strongly cor-
related with the ground state spin configuration before the
jump 1 ��=2.36�, just after jump 1 ��=2.41�, and just after
jump 2 ��=2.54�, as shown in Figs. 13�a�–13�c�, respec-
tively. �The labels of jumps and peaks are given in Figs. 2,
5�b�, and 10�g��.

Some correlation between ground states and thermal
states persists to much smaller values of �0 in a regime
where the thermodynamic properties no longer display sharp
peaks. Figures 13�g�–13�i� show the same realization of dis-
order and the same plane through the system but with �0
=0.5. Here the specific heat has a rounded peak at T
=4.375. Figures 13�g�–13�i� correspond to temperatures 4.0,
4.3, and 4.45, respectively. Although there is considerable
thermal “blurring” in these pictures, evidence of the ground
states is unmistakable.

FIG. 11. The first-order-like properties of sharp peaks. �a� shows
the double-peaked sampling probability p�E� at the sharp peak for
the system in Fig. 10�a�. �b� shows the Binder cumulant B as a
function of temperature for the same system, which becomes nega-
tive at the sharp-peaked transition.

TABLE V. Number of realizations that have a double-peaked
energy probability densities at their specific heat peaks �Ndp�, and
total number of realizations simulated �Ntot� as a function of disor-
der strength �0 and system size L.

L �0 Ndp Ntot Ndp /Ntot

8 1.5 0 256 0%

8 2.0 0 64 0%

16 1.5 6 96 6.25%

16 2.0 21 96 21.8%

32 1.5 3 9 33.3%

32 2.0 6 9 66.6%

FIG. 12. The average specific heat of 96 realizations of size 163

and disorder �0=2.0. Although some of these realizations have
sharp peaks, the averaged specific heat is smooth.
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A quantitative characterization of the correlation between
ground states and thermal states can be obtained from the
correlation measure,

q��� =
1

L3�
i

�sgn��si
�,0��si
�0,T*��� , �17�

where the square brackets are an average over realizations of
disorder and �si 
� ,T� is the thermal average of the spin at
the ith site at disorder � and temperature T or, if T=0, it is
the ground state spin value. For each realization, the tem-
perature T*=Tmax+0.1 where Tmax is the temperature of the
maximum of the specific heat. Thus, for each realization, we
pick a thermal state just above the transition temperature.
Figure 14 shows q vs � for sizes 163 and 323 and �0=1.5,
with 96 realizations for size 163 and 9 for size 323. A peak in
the correlation occurs at ��2.65 where q�0.75. The value,
��2.65, is about 0.15 larger than the average � at the larg-
est discontinuity in the bond energy for system size 323. The
inset in Fig. 14 shows the average correlation between ther-
mal states of one realization and ground states of another for
size 163, which is nearly zero as expected. A second mea-
sure, q* is obtained by choosing the value �* in Eq. �17� for
each ground state realization to give the largest correlation to

the thermal state at T* and then averaging over realizations.
We find that for size 323, q*=0.80±0.06 for �0=1.5 and q*

=0.85±0.05 for �0=2.0. Together, these results provide a
quantitative confirmation that the thermal states at tempera-
tures slightly above the thermal critical point are strongly
correlated with the ground states at disorder strength slightly
higher than the zero temperature critical point.

The correlation between thermal states and ground states
near the transition is consistent with, but not predicted by the
zero temperature fixed point hypothesis.40 This hypothesis
predicts that the renormalization group flow is to a zero tem-
perature fixed point so that the zero temperature and positive
temperature transitions are in the same universality class.
However, it does not predict anything about the spin configu-
rations along the critical line for individual realizations of
disorder. If the correlation of spin configurations along the
critical line that we observe for small systems persists to
large systems, it will support the following strong version of
the zero temperature fixed point scenario: for a given real-
ization of normalized random fields, the sequence of states
near the zero temperature critical point obtained by varying
� for T=0 can be mapped onto the sequence of thermal
states near the critical point obtained by varying T for fixed
values of �0, �0��c.

VI. SUMMARY

In this paper we have numerically studied the RFIM at
zero temperature and positive temperature. At zero tempera-
ture we have extracted critical exponents from the finite-size
scaling of the several largest jumps in the bond energy. Our
measured value of exponents �except �� are mostly consis-
tent with previous values but have better accuracy. We have
found that the heat capacity exponent � is near zero. We

FIG. 13. Spin configurations near the critical points at zero tem-
perature and finite temperatures for a single realization of normal-
ized random fields. Each panel is the same plane of a 323 realization
with black representing spin down; white, spin up; and shades of
gray, the thermally averaged spin state. From left to right in the top
two rows, panels are at � �T� before, between, and after jumps
�peaks� 1 and 2 in Fig. 5�b� �Fig. 10�g��. Specifically, panels �a�, �b�,
and �c� are ground states at �=2.36, 2.41, and 2.54, respectively.
Panels �d�, �e�, and �f� are at �=2.0 and T=2.2, 2.5, and 2.8, re-
spectively. Panels �g�, �h�, and �i� are at �=0.5 and temperatures
4.0, 4.3, and 4.45, near the peak in the specific heat at T=4.375.

FIG. 14. Disorder averaged correlation q of a thermal state just
above the transition temperature at �0=1.5 to ground states at dis-
order strength � for the same realization of random fields. Solid
squares for size 163 and open circles for size 323. Only a few error
bars are drawn to make the figure easier to read. The inset shows
the correlation of thermal states with ground states of a different
random field realization.
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have also portrayed all ground states within a small critical
region on the H-� plane for up to 323 systems. The ground
state pictures shows a treelike structure if small jumps are
removed. Although the ground state pictures are not self-
averaging, they satisfy statistical scaling relations. That is,
within a scaled region in the H-� plane, with the scaled
lower limit of bond energy jumps chosen, the ground state
pictures of different system sizes are statistically similar.

We have used the Wang-Landau algorithm to study the
RFIM at positive temperature. This algorithm enabled us to
obtain the density of states and to derive the specific heat and
susceptibility over a broad range of temperatures for systems
up to size 323. We have observed that for some disorder
realizations the transition is characterized by sharp peaks in
the specific heat and the susceptibility. The sharp-peaked
transition has some first-order-like features and the fraction
of realizations that have sharp peaks increases as the system

size or the strength of disorder increases. The sharp peaks in
the thermodynamic functions result from flipping a large do-
main and are related to large jumps in bond energy and mag-
netization at zero temperature. More specifically, the thermal
average spin configurations near the finite temperature tran-
sition are correlated to the ground states near some corre-
sponding large jump at zero temperature. This phenomenon
suggests a strong version of the zero temperature fixed point
scenario. It remains to be seen whether the correlation be-
tween critical ground states and thermal states persists to
large systems.
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