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We present a model of homoionic, equal-spin s1 dimer single molecule magnets exhibiting D2h, C2v, or S2

molecular group symmetry, focusing upon the simplest D2h case. The spins within each dimer interact via the
Heisenberg and the most general set of four quadratic anisotropic spin interactions with respective strengths J
and �Jj�, and with the magnetic induction B. We solve the model exactly for s1=1/2, and analytically for B
along the crystal directions and numerically for other B directions for s1=1 and 5/2, and present M�B� curves
at low T for these cases with antiferromagnetic Heisenberg couplings �J�0�. Low-T CV�B� curves for s1

=1/2 and electron paramagnetic susceptibility ��B ,�� for s1=1 are also provided. For weakly anisotropic
dimers, the Hartree approximation, or strong exchange limit, yields rather simple analytic formulas for M�B�
and CV�B� at arbitrary s1 that accurately fit the exact solutions at sufficiently low T or large B. Low-T, large-
B formulas for the inelastic neutron-scattering cross section S�B ,q ,�� and ��B ,�� with arbitrary s1 and B in
the Hartree approximation are also given. For antiferromagnetic Heisenberg couplings �J�0� and weak an-
isotropy interactions ��Jj /J � �1�, we provide analytic formulas for the 2s1 level-crossing magnetic inductions
Bs,s1

lc �� ,��, at which the low-T magnetization M�B� exhibits steps and the low-T specific heat CV�B� exhibits
zeroes, surrounded by double peaks of uniform height. Strong anisotropy interactions drastically alter these
behaviors, however. Our results are discussed with regard to existing experiments on s1=5/2 Fe2, s1

=3/2 Cr2, and s1=1 Ni2 dimers, suggesting the presence of single-ion anisotropy in three of them, but appar-
ently without any sizeable anisotropic exchange interactions. Further experiments on single crystals of these
and higher-spin dimers are therefore warranted, and we particularly urge further electron paramagnetic reso-
nance and inelastic neutron-scattering experiments to be performed.

DOI: 10.1103/PhysRevB.74.064408 PACS number�s�: 75.10.Jm, 75.75.�a

I. INTRODUCTION

Single molecule magnets �SMM’s� have been under in-
tense study recently, due to their potential uses in magnetic
storage and quantum computing.1–3 The materials consist of
insulating crystalline arrays of identical SMM’s 1–3 nm in
size, each containing two or more magnetic ions. Since the
magnetic ions in each SMM are surrounded by nonmagnetic
ligands, the intermolecular magnetic interactions are usually
negligible. Although the most commonly studied SMM’s are
the high-spin Mn12 and Fe8,1–5 such SMM’s contain a variety
of ferromagnetic �FM� and antiferromagnetic �AFM� in-
tramolecular interactions, rendering unique fits to a variety of
experiments difficult.6

In addition, there have been many studies of AFM Fen
ring compounds, where n=6,8 ,10,12, etc., and of the ring
compound Cr8.7–16 In these studies, analyses of inelastic
neutron-scattering �INS� and electron paramagnetic reso-
nance �EPR� data, and the magnetic induction B dependence
of the low-temperature T specific-heat CV and magnetization
M steps were made, using the isotropic Heisenberg near-
neighbor exchange interaction, the Zeeman interaction, and
various near-neighbor exchange and axial single-ion aniso-
tropy interactions.7–18 However, the rings were so compli-
cated that analyses of the data using those simple models
were inaccessible to present day computers.8,9 Thus some of
those authors used either numerical evaluations, simulations,
or phenomenological fits to a first-order perturbation expan-
sion with different spin anisotropy values for each total ring
spin value.8–10,17,18 None of those authors studied the effects
of azimuthal single-ion anisotropy.

Here we focus on the much simpler cases of equal spin
s1=s2 magnetic dimers exhibiting D2h molecular group sym-
metry, for which some of the spin anisotropy effects can be
evaluated analytically, and many other effects can be inves-
tigated in detail numerically, and compared with experiment.
Extensions to the lower C2v and S2 symmetries are straight-
forward, and some of our results also apply to those cases.
AFM dimers with s1=1/2, 1, 3/2,19–26 various forms of Fe2
with s1=5/2,13,27–32 and both FM and weakly coupled AFM
Gd2 dimers with s1=7/2 have been studied recently.33–35

Several Fe2 dimers and effective s1=9/2 dimers of the type
�Mn4�2 �Refs. 36–38� have magnetic interactions weak
enough that their effects can be probed at T�1 K with pres-
ently available B. Recent measurements showed that in some
of those systems, the total spin anisotropy of the Mn4 mono-
mers in the ground state s1=9/2 manifold was found to be
much stronger than the intermonomer Heisenberg
interaction.38 However, the zero-field splittings of the triplet
states observed in INS studies of the Ni spin chains,
Ni�C5D14N2�2-N3�PF6� and Ni�C9H24N4��NO2�ClO4, have
provided direct measurements of both the axial and azi-
muthal single-ion anisotropy interactions in those
materials.39–43 A comparison of our results with M�B� step
data on a Fe2 and both M�B� step data and INS data on a Ni2
dimer strongly suggests a substantial presence of axial and/or
azimuthal single-ion spin anisotropy, without appreciable an-
isotropic exchange interactions.23,29

The paper is organized as follows. In Sec. II, we present
the model in the crystal representation and give exact formu-
las for the matrix elements. The general thermodynamics are
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presented in Sec. III, along with the universal M�B� and
CV�B� behavior associated with the energy-level crossing. In
Sec. IV, we present our induction representation results for
the eigenstates to first order in the anisotropy energies. We
also give the level-crossing inductions Bs,s1

lc �� ,�� to second
order in the anisotropy interactions. In Sec. V, we solve the
model exactly for s1=1/2, and give plots and analytic ex-
pressions for M, the specific heat CV, and B1,1/2

lc �� ,�� for
B � �x̂ , ŷ , ẑ, along a crystal axis direction. In Sec. VI, we dis-
cuss the exact solution for s1=1 for those B directions, and
give examples of the low-T M�B� and Bs,1

lc �� ,�� curves. We
also present examples of the low-T s1=5/2 M�B� and
Bs,5/2

lc �� ,�� curves for s=1,2 ,3. In Sec. VII, we present the
asymptotic Hartree �or strong exchange limit� expressions
for the thermodynamic quantities M and CV, and for the INS
cross section S�B ,q ,�� and the EPR susceptibility ��B ,��
for arbitrary s1, that are accurate at sufficiently
low T and/or large B. In Sec. VIII, we discuss examples
of strong anisotropy interactions for s1=1/2, 5 /2. Finally,
in Sec. IX, we summarize our results and discuss
them with regard to existing experiments on
the dimers, Na2Ni2�C2O4�3�H2O�2,23 Cs3Cr2Br2,24

�-oxalatotetrakis�acetylacetonato� Fe2,28 and �Fe�salen�Cl�2,
where salen is N ,N�-ethylenebis�salicylideneiminato�.29

II. MODEL IN THE CRYSTAL REPRESENTATION

We represent the s1=s2 dimer quantum states, ��s
m	 in

terms of the total �or global� spin and magnetic quantum
numbers s and m, where S=S1+S2 and Sz=S · ẑ satisfy
S2 ��s

m	=s�s+1� ��s
m	 and Sz ��s

m	=m ��s
m	, where s

=0,1 , . . . ,2s1, m=−s , . . . ,s, and we set 	=1. We also have
S± ��s

m	=As
±m ��s

m±1	,where S±=Sx± iSy and

As
m = 
�s − m��s + m + 1� . �1�

For an arbitrary B, we assume the Hamiltonian has the form
H=H0+Ha+Hc+He+H f, where

H0 = − JS2/2 − 
S · B �2�

contains the Heisenberg exchange and Zeeman interactions,
the gyromagnetic ratio 
=g�B, g�2 and �B is the Bohr
magneton.

An homoionic dimer with symmetric ligands consisting of
equal spins exhibiting molecular group g=D2h �Fig. 1�, C2v,
or S2 �also Fig. 1� symmetry has either a center of inversion
or sufficient mirror planes,44,45 so that Dzyaloshinskii-
Moriya �DM� interactions do not arise.46,47 For simplicity,
we focus upon the D2h case.

For g=D2h, the single-ion axial and azimuthal anisotropy
terms, which may be written in terms of the molecular coor-
dinates �x̂ , ŷ , ẑ�,

Ha = − Ja�
i=1

2

Siz
2 �3�

and

He = − Je�
i=1

2

�Six
2 − Siy

2 � , �4�

respectively, arise from spin-orbit interactions of the local
crystal field with the individual spins. We take the laboratory

z axis parallel to the dimer axis d̂ for all symmetries, as
pictured in Fig. 1. For g=C2v ,S2, the principal axes ẑ1=−ẑ2,
etc., are rotated with respect to the dimer axis. Ha has the
same form as Eq. �3� with respect to the �rotated� axial prin-
cipal axis, but He is slightly different from Eq. �4�, as dis-
cussed in Appendix A. The azimuthal anisotropy term has
usually been neglected in the SMM literature. However, the
axial anisotropy term has been studied with regard to com-
plexes containing a single magnetic ion, such as Ni+2,48 in
one example of an unequal-spin dimer,49 in which the ex-
pected DM interactions were also omitted, and in clusters
and chains of larger numbers of identical magnetic
ions.23–25,39–41,48,50,51 Azimuthal single-ion anisotropy was di-
rectly observed in two Ni chain compounds and anticipated
in Cs3Cr2Br2.24,40,41

For g=D2h, the local axially and azimuthally anisotropic
spin-spin interactions are

H f = − JfS1zS2z, �5�

Hc = − Jc�S1xS2x − S1yS2y� . �6�

It is common to combine the effects of the single-ion and
anisotropic exchange interactions into the effective total spin
axial and azimuthal anisotropy terms,

FIG. 1. Left: Sketch of an Fe2 dimer with D2h molecular group
symmetry containing a di-� oxo bridge, with two bridging O−2 ions
�O�. The arrows represent spins. Right: Fe2 dimer with S2 molecular
group symmetry. Ligands �not pictured� are attached to the Fe+3

ions �Fe�, leading to the easy axis along ẑ1=−ẑ2 �arrows�, which is
at an angle � from the dimer axis d.
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Hb = − JbSz
2 �7�

and

Hd = − Jd�Sx
2 − Sy

2� , �8�

respectively, which only depend upon the components of the
total spin S. Equations �7� and �8� constitute an effective
anisotropy Hamiltonian that operates within a fixed s group
of substates, and these and their generalizations to quartic
order have been very successful in providing fits to experi-
mental data.5,36,46 They arise when the tensor total spin inter-
action with a fixed spin quantum number s has the form

S ·�J ·S, resulting in the principal axes x, y, and z,46,48 as
pictured for D2h symmetry in the left panel of Fig. 1. Then
J=−��xx+�yy� /2, Jb=−�zz+ ��xx+�yy� /2, and Jd= ��yy

−�xx� /2. Taking �Jd /J � �1 and �Jb /J � �1 still leaves Jd /Jb

unrestricted.
However, fits to different experiments on the same sample

often require different parametrization sets �Jb,s̃ ,Jd,s̃ , . . . � for
each experimentally attainable set of sets labeled by s̃.52

Since the nominal total spin quantum number s is not always
a good quantum number in many experiments, s̃ does not
always have a one-to-one correspondence to s, so that the
combined number of parameters required to fit all possible
data on a single material often can be very large. Here we
study the simplest SMM systems, in which a small set of
parameters is capable of describing all of the possible experi-
ments on a given material.

For dimers with D2h symmetry, these effective Hamil-
tonian terms satisfy

2H f/Jf = Hb/Jb − Ha/Ja, �9�

2Hc/Jc = Hd/Jd − He/Je, �10�

so we need only include either Ha or H f and He or Hc,
respectively.48,49 For g=C2v, H f and Hc have the same forms
as in Eqs. �5� and �6�, but S2 symmetry leads to a different
axial principle axis for H f, and a slightly different Hc form
from Eq. �6�, as discussed in Appendix A. Since Ha and He
describe the axial and azimuthal anisotropy each single ion
attains from its surrounding environment, and Hc and H f
arise from dipole-dipole and anisotropic exchange interac-
tions, they are the physically relevant local anisotropy inter-
actions. We therefore choose H=H0+Ha+Hc+He+H f. We
denote H f and Hc the axial and azimuthal anisotropic ex-
change interactions, even though they sometimes contain
larger dipole-dipole contributions. Here we focus upon the
simplest D2h symmetry, for which the principle axes of the
single-ion and anisotropic exchange interactions coincide,
but many of our results can be generalized to the lower C2v
and S2 symmetries.

Practically, we may make use of the simpler H̃=H0

+H̃a+H̃b+H̃d+H̃e by letting Ja→Ja−Jf /2, Jb→Jf /2, Jd

→Jc /2, and Je→Je−Jc /2 in H̃a, H̃b, H̃d, and H̃e, respec-
tively. We note that Hb, H f, and Ha are symmetric under
x̂↔ ŷ, whereas Hd, Hc, and He are antisymmetric under
x̂↔ ŷ, independent of s1.

For the case of the many Fe2 SMM’s containing a di-�
oxo bridge,27 some of which are constituents of the high-spin
SMM Fe8 and the AFM Fen rings,4,8,9 the exchange between
the Fe+3 s1=5/2 spins occurs via two oxygen ions, and these
four ions essentially lie in the same �xz� plane.13,27 For g
=D2h, we set the z axis parallel to the dimer axis, as pictured
in the left panel of Fig. 1. The azimuthal axes are perpen-
dicular to the easy axis, satisfying x̂� ŷ= ẑ. In �Fe�salen�Cl�2,
the Cl− ions are positioned off the dimer axis,29 as pictured in
the right panel of Fig. 1, so the molecule exhibits S2 symme-
try. This leads to complications arising from the different
single-ion and anisotropic exchange principle axes, as dis-
cussed in Appendix A.

We generally expect each of the Jj for j=a ,c ,e , f to sat-
isfy �Ji /J � �1, but there are not generally any other restric-
tions upon the various magnitudes of the Jj. Since most
dimers studied to date have predominantly AFM couplings
�J�0�, and also because their magnetizations and specific
heats are particularly interesting, we shall only consider
AFM dimers. For simplicity, we only treat homoionic, equal-
spin s1=s2 dimers with equivalent ligand groups exhibiting
molecular group symmetry S2 ,C2v, or D2h, so that DM inter-
actions do not occur.46–48 Hence our Hamiltonian H is the
most general quadratic anisotropic spin Hamiltonian of an
equal-spin dimer with S2 or higher molecular group symme-
try. Nonhomoionic, unequal-spin dimers were discussed
elsewhere.46,49,53

For B=B�sin � cos � , sin � sin � , cos ��, we have

H0��s
m	 = Es

m��s
m	 + E �

�=±1
e−i��As

�m��s
m+�	 , �11�

H̃b��s
m	 = −

Jf

2
m2��s

m	 , �12�

and

H̃d��s
m	 =

− Jc

4 �
�=±1

Fs
�m��s

m+2�	 , �13�

where

Es
m = − Js�s + 1�/2 − mb cos � , �14�

E = −
1

2
b sin � , �15�

b = 
B , �16�

and

Fs
�m = As

�mAs
1+�m. �17�

Ha and Hc contain the individual spin operators Siz and Si±
for i=1,2. A compact form for the single-ion operations for
arbitrary �s1 ,s ,m� is

Si±��s
m	 =

1

2
As

±m��s
m±1	 �

1

2
�− 1�i�Cs,s1

±m ��s−1
m±1	 − Cs+1,s1

−1�m��s+1
m±1	� ,

�18�
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Siz��s
m	 =

m

2
��s

m	 −
1

2
�− 1�i�Ds,s1

m ��s−1
m 	 + Ds+1,s1

m ��s+1
m 	� ,

�19�

where

Cs,s1

m = �s,s1

�s − m��s − m − 1� , �20�

Ds,s1

m = �s,s1

�s2 − m2� , �21�

and

�s,s1
= 
��2s1 + 1�2 − s2�/�4s2 − 1� . �22�

Single-spin matrix elements derived from these equations
contain the second-order projection coefficients,49 in this
case �s,s1

, which were presented by Bencini and Gatteschi
and later by Boča,46,53 who showed their analogy to the off-
diagonal Landé magnetization. However, to our knowledge,
no plots of the separate effects of single-ion or anisotropic
exchange interactions have been published.53 The important
point is that many of the extremely simple results obtained in
the following from these simple, compact equations for the
equal-spin dimer with s1�1/2 lead to previously unknown,
interesting single-ion anisotropy effects, some of which have
been observed experimentally, but their significance has not
been appreciated or understood. In addition, these simple
results can be readily generalized to at least four arbitrary
spins. Boča presented most of the analogous coefficients for
three and four spins.53 Using the Schwinger boson technique,
we have independently derived these simple second-order
projection coefficients and their generalizations to the analo-
gous, although increasingly complex, analytic forms for two,
three, and four arbitrary spins.54 This has already been done
for tetramers with Td, D2d, S4, and C4v symmetries,55 and is
currently in progress for C3v or lower-symmetry tetramers,54

which might provide a better fit to �Ni4Mo12�,50 CrNi3,56 and
the low-symmetry Mn4 compounds.57

For s=0, we require m=0, for which C0,s1

0 =D0,s1

0 =0. We
then find

H̃a��s
m	 =

Jf − 2Ja

4 �Gs,s1

m ��s
m	 + �

��=±1

Hs,s1

m,����s+2��
m 	 ,

�23�

H̃e��s
m	 =

Jc − 2Je

8 �
�=±1

�Ls,s1

�m ��s
m+2�	 + �

��=±1

Ks,s1

�m,����s+2��
m+2� 	 ,

�24�

Gs,s1

m = m2 + �Ds,s1

m �2 + �Ds+1,s1

m �2 = s�s + 1� − 1

+ �2m2 + 1 − 2s�s + 1���s,s1
, �25�

Hs,s1

m,�� = Ds+���+1�/2,s1

m Ds+�3��+1�/2,s1

m , �26�

Ks,s1

x,�� = Cs+���+1�/2,s1

−��x−�1+���/2
Cs+�3��+1�/2,s1

−��x−�3��+1�/2, �27�

Ls,s1

x = 2Fs
x�s,s1

, �28�

and

�s,s1
=

3s�s + 1� − 4s1�s1 + 1� − 3

�2s − 1��2s + 3�
. �29�

We note that 2�s,s1
=1−�s,s1

2 −�s+1,s1

2 and that Eq. �29� holds
for s�0. Equations �18� and �19� allow for an exact expres-
sion of the most general Hamiltonian matrix of arbitrary or-
der in the individual spin operators, and for s1=1/2, an exact
solution of the resulting eigenvalues.

In the crystal representation, the operations of H0, H̃b,

and H̃d satisfy the selection rules �s=0, �m=0, ±1, ±2. The

local anisotropy interactions H̃a and H̃e allow transitions sat-
isfying �s=0, ±2, �m=0, and �s=0, ±2, �m= ±2, respec-

tively, so in the presence of H̃a and/or H̃e, s is no longer a
good quantum number, unless s1=1/2.

III. GENERAL THERMODYNAMICS

In order to obtain the thermodynamic properties, we first
calculate the canonical partition function, Z=Tr exp�−�H�.
Since H is not diagonal in the �s ,m� representation, we must
construct the wave function from all possible spin states. We
then write

Z = Tr��s1
�e−�H��s1

	 , �30�

where ��s1
	 is constructed from the ���s

m	� basis as

��s1
� = ���2s1

2s1�,��2s1

2s1−1�, . . . ,��1
0�,��1

−1�,��0
0�� , �31�

where �=1/ �kBT� and kB is Boltzmann’s constant. To evalu-
ate the trace, it is useful to diagonalize the ��s1

�H ��s1
	

matrix. To do so, we let ��s1
	=U ��s1

	, where

��s1
� = ���ns1

�,��ns1
−1�, . . . ,��1�� , �32�

is constructed from the new orthonormal basis ���n	�, and U
is a unitary matrix of rank ns1

= �2s1+1�2. Choosing U to

diagonalize H, UHU†=H̃, we generally obtain H̃ ��n	
=�n ��n	 and the partition function for a SMM dimer,

Z = �
n=1

ns1

exp�− ��n� . �33�

The specific heat CV=kB�2�2ln Z /��2 is then easily found at
all T ,B,

CV =
kB�2

Z2 �Z�
n=1

ns1

�n
2e−��n − ��

n=1

ns1

�ne−��n2� . �34�

The magnetization

M = −
1

Z
�
n=1

ns1

�B��n�exp�− ��n� �35�

requires �B��n� for each B. As T→0, at most two eigenstates
are relevant. For most B values, only one �n is important. But
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near the reduced sth level-crossing induction bs
*

=
Bs,s1

lc �� ,�� at which �s=�s−1, two eigenstates are relevant.
We then obtain for these two energies

CV�b�/kB �
����s/2�2

cosh2����s/2�
, �36�

M�b� �
1

2
�Ms + Ms−1� +

1

2
�Ms − Ms−1�tanh����s/2� ,

�37�

where

��s = �s�b� − �s−1�b� , �38�

and Ms=
�b�s�b� is the magnetization of the sth eigenstate
only. We then expand in powers of b−bs

*,

�s�b� = �s�bs
*� + �b − bs

*�a1,s +
1

2
�b − bs

*�2a2,s + ¯ , �39�

and we find

CV�bs
*� →

T→0
0, �40�

CV�bs
* ±

2c

��a1,s − a1,s−1� →
kBT��J�

CV
peak �41�

CV
peak/kB = � c

cosh c
2

�0.439 229, �42�

and

M�bs
*�/
 →

T→0

1

2
�a1,s + a1,s−1�

=s − 1/2 + O�Jj/J�2, �43�

� dM


2db
�

bs
*
→

T→0

�

4
�a1,s − a1,s−1�2

=
�

4
�1 + O�Jj/J�2� , �44�

where s=1, . . . ,2s1 and c�1.199 678 64 is the solution to
tanh c=1/c. The coefficients a1,s=s+O�Jj /J�2 and a2,s

=O�Jj /J�2. The easiest way to see this is to first rotate the
crystal so the quantization axis is along B, as discussed in
Appendix B. An expression for a1,s to second order in the
Jj /J is given in Appendix B. We note that bs

*=
Bs,s1

lc �� ,��
depends upon s ,s1, and the direction of B when anisotropic
interactions are present.

The CV�B� double peaks are double Schottky anomalies at
the reduced induction values bs

*± 2c
� +O�Jj /J�2. Hence to

O�Jj /J�, the heights and midpoint slopes of the 2s1 low-T
M�B� steps are uniform and the same as for the isotropic

case, but the step positions and hence their plateaus are not.
Correspondingly, the heights and relative positions of the 2s1
CV�B� double peaks are uniform and the same as for the
isotropic case, but the positions of the zeroes as T→0 are
not. Hence the nonuniversal level-crossing inductions
Bs,s1

lc �� ,�� fully determine the low-T thermodynamics of
weakly anisotropic AFM dimers. This conclusion was ob-
tained previously for Fe6, Fe10, and Cr8 rings.12,14 We remark
that this conclusion only holds when level crossing is
present, such as when the eigenstates �s and �s−1 have oppo-
site symmetries. In the following, we show that AFM s1=1
dimers with Ja /J=0.1 can exhibit level repulsion, which has
been observed experimentally in a Ni2 dimer with Ja /J
=0.27,23 although in neither case did the level repulsion oc-
cur between the two lowest energy states. Note that for Ja /J
sufficiently large, the s=0 and lowest s=2 energies repel one
another. This lack of level crossing was also noted previously
in Mn9.58,49

In the next three sections, we consider the special cases of
s1=1/2, 1, and 5/2. Then, in Sec. IV and Appendix B, we
present our general expression for Bs,s1

lc �� ,�� accurate to sec-
ond order in each of the Jj. We remark that a double peak in
the low-T CV�B� curve has been seen experimentally in a
much more complicated Fe6 ring compound, and was attrib-
uted to level crossing.8

IV. ANALYTIC RESULTS FOR WEAKLY ANISOTROPIC
DIMERS OF ARBITRARY SPIN

A. Induction representation eigenstates first order in the
anisotropies

Since the diagonalization of the Hamiltonian matrix is
difficult for an arbitrary B combined with an arbitrary com-
bination of spin anisotropy interactions, and must be done
separately for each value of s1, it is useful to consider a
perturbation in the relative strengths Jj /J of the anisotropy
interactions. We nominally assume �Jj /J � �1 for j
=a ,c ,e , f . However, to compare with low-T M�B� and
CV�B ,T� experiments at various B, one cannot take B to be
small. In order to incorporate B accurately, we therefore ro-
tate the crystal axes �x̂ , ŷ , ẑ� to �x̂� , ŷ� , ẑ��, so that B=Bẑ�.
The rotation matrix, a brief discussion of its ramifications,

and the transformed H̃� are given in Appendix B.
In these rotated coordinates, the Zeeman interaction

−bSz�, where b=
B, is diagonal. This representation is de-
noted the induction representation, and has been used in
many physical situations, such as in the de Haas–van Alphen
effect and in extreme type-II superconductors.59,60 In the in-
duction representation, we choose the quantum states to be
��s

m	. In the absence of the four anisotropy interactions Jj,
H�=H0� is diagonal,

H0���s
m	 = Es

m,�0���s
m	 , �45�

where

Es
m,�0� = − Js�s + 1�/2 − mb . �46�

The operations of the remaining terms in H� on the eigen-
states ��s

m	 are given in Appendix B. The first-order correc-

SPIN ANISOTROPY EFFECTS IN DIMER SINGLE¼ PHYSICAL REVIEW B 74, 064408 �2006�

064408-5



tion to the energy in the induction representation, Es,s1

m,�1�

= ��s
m �H� ��s

m	, is found to be

Es,s1

m,�1� = −
Jf + 2Ja

4
�s�s + 1�� +

Ja

2
+

J̃f ,a
s,s1

2
�m2 + s�s + 1� − 1�

+
1

2
�s�s + 1� − 3m2��J̃f ,a

s,s1cos2 � + J̃c,e
s,s1sin2 � cos�2��� ,

�47�

where

J̃f ,a
s,s1 = �1 − �s,s1

�
Jf

2
+ �s,s1

Ja, �48�

J̃c,e
s,s1 = �1 − �s,s1

�
Jc

2
+ �s,s1

Je, �49�

and �s,s1
is given by Eq. �29�.

Since the � ,� dependence of Es,s1

m,�1� arises from the term

proportional to J̃f ,a
s,s1cos2 �+ J̃c,e

s,s1sin2 � cos�2��, it is tempting

to think that the thermodynamics with J̃c,e
s,s1 =0 and B � �ẑ are

equivalent to those with J̃f ,a
s,s1 =0 and B � �x̂. However, as

shown explicitly in the following, the � ,�-independent parts
of Eq. �47� strongly break this apparent equivalence, causing
the Bs,s1

lc �� ,�� for those two cases to differ. This implies that
Jf and Jc are experimentally inequivalent, as are Ja and Je,
even to first order in the anisotropy strengths.

B. Level crossings to second order in the anisotropy energies

In Appendix B, we give the details of the evaluation of the
second-order energies Es,s1

m,�2�. We note that the Es,s1

m,�2� contain
divergences at 
B / �J � =0, 2s−1, 2s+3, s−1/2, and s+3/2,
so that near to those values, one would need to modify the
perturbation expansion to take proper account of the degen-
eracies. Hence the expressions for Es,s1

m,�2� cannot be used in
the asymptotic expressions for the thermodynamics. How-
ever, as the sth AFM level crossing occurs approximately at

B / �J � =s, which is far from any divergences, we can safely
use this second-order expansion to obtain an expression for
the level crossings to second order in the anisotropy interac-
tion energies. We therefore find an accurate expression for
the sth AFM level crossing at the induction Bs,s1

lc to second
order in the anisotropy interactions for a general s1 spin
dimer by equating Es

s,�0�+Es,s1

s,�1�+Es,s1

s,�2� to Es−1
s−1,�0�+Es−1,s1

s−1,�1�

+Es−1,s1

s−1,�2�, yielding


Bs,s1

lc = − Js −
Jf

4
−

cs,s1

2
�2Ja − Jf� −

1

4
�4s − 3 + 6cs,s1

�

��Jfcos2 � + Jcsin2 � cos�2��� + 3cs,s1
�Jacos2 �

+ Jesin2 � cos�2��� + J�
n=1

7

an�s,s1�fn��,�� + O��Jj��3,

�50�

where the first-order coefficients

cs,s1
=

�3 + 3s − 5s2 − 4s3 + 4s1�s1 + 1��
2�2s + 1��2s + 3�

, �51�

and the second-order coefficients an�s ,s1� and angular func-
tions fn�� ,�� are given in Appendix B. As we shall see, the
first-order cs,s1

determines the most interesting behavior of
the level-crossing inductions. We note that 
Bs,s1

lc contains the
� ,�-independent terms, −Js−Jf /4−cs,s1

�Ja−Jf /2�, which
distinguish Jf from Jc and Ja from Je.

In particular, we note that the single-ion anisotropy inter-
actions generally behave very differently with increasing
step number than do the anisotropic exchange interactions.
As shown in detail in the following, for s1=1/2, c1,1/2=0, so
that the single-ion anisotropy terms are irrelevant. For s1=1,
c1,1= 1

6 and c2,1=− 1
2 have different signs, and for s1=5/2, the

first three cs,5/2 coefficients are 16
15 , − 4

35, and − 53
63, respectively,

the second being an order of magnitude smaller than the
other two, and opposite in sign from the first. This much
smaller magnitude of c2,5/2 from the other cs,5/2 plays a cru-
cial role in identifying the likely presence of significant
single-ion anisotropy in �Fe�salen�Cl�2.

The effects of cs,s1
on the anisotropic exchange interac-

tions is rather different, since both cs,s1
/2 and the additional

coefficient �4s−3+6cs,s1
� /4 appear. The latter increases

rather monotonically with s. These qualitative differences are
verifiable experimentally in careful low-T experiments at
high magnetic fields applied at various directions on single
crystals of sufficiently large-s1 dimers for which �J� is suffi-
ciently small.

V. EXACTLY SOLUBLE SPIN-1/2 DIMER

Plots of CV /kB and M /
 vs 
B / �J� for the isotropic spin-
1/2 dimer were given previously.26 For s1=1/2 with an arbi-
trary B and Jj for j=a ,c ,e , f , the rank-4 Hamiltonian matrix
is block diagonal, since s=0,1 is a good quantum number.
The eigenvalues are given by

�1 = −
Ja

2
+

Jf

4
, �52�

�n = −
Ja

2
+

Jf

4
− J + �n, n = 2,3,4, �53�

where

0 = 4�n
3 + 4�n

2Jf − �n�Jc
2 − Jf

2 + 4b2�

− 2b2sin2 ��Jf − Jccos�2��� . �54�

The cubic equation is easily solved exactly, and the eigen-
values for arbitrary B are given in Appendix A. It is then
elementary to write the thermodynamic functions for arbi-
trary B, but the formulas are complicated, so we only present
some special cases, for which they simplify greatly.

For the special cases B � �î for i=x ,y ,z, the �n
i satisfy

�n
z = 0, −

Jf

2
± Fz, �55�
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�n
x,y = − 2Jy,x, − Jx,y ± Fx,y , �56�

where

Fi = 
b2 + Ji
2, �57�

Jx,y,z =
Jf ± Jc

4
,

Jc

2
, �58�

respectively, and where Jx �Jy� corresponds to the upper
�lower� sign.

The magnetization for B � �î is given by

Mi =

b sinh��Fi�

FiDi
, �59�

Di = cosh��Fi� + �i/2, �60�

�x = exp�− �Jx��exp�− �J� + exp�2�Jy�� , �61�

�y = exp�− �Jy��exp�− �J� + exp�2�Jx�� , �62�

�z = exp�− �Jf/2��exp�− �J� + 1� , �63�

respectively. We note that Ja only renormalizes the ground-
state energy, and Je does not appear at all. Hence neither Ja
nor Je affect any measurable quantities for s1=1/2. We note

that My�Jc�=Mx�−Jc� for each B, as expected from H̃d=
−Jc�Sx

2−Sy
2� /2.

From Eqs. �52�, �53�, �55�, and �56�, the single level

crossing induction �s=1� for an s1=1/2 dimer with B � �î oc-
curs precisely at


B1,1/2
lc = �
J2 + J�Jf ± Jc�/2, B��x̂, ŷ


�J + Jf/2�2 − Jc
2/4, B��ẑ

, �64�

provided that J+Jx,y �0 and J+Jf /2�0, respectively. From
our second-order expansion, Eq. �50�, B1,1/2

lc �� ,�� is found to
second order in the Jj to be


B1,1/2
lc � − J −

Jf

2
+

�2J + Jf�sin2 �

8J
�Jf − Jc cos�2���

+
1

32J
�4Jc

2 − 3 sin4 ��Jf − Jccos�2���2� , �65�

where we used a1�1, 1
2

�= 1
2 , a4�1, 1

2
�= 1

8 , and the other
an�1, 1

2
�=0. Plot of examples of B1,1/2

lc �� ,�� are given in Fig.
2.

We note that for B � �ẑ, Jf appears to renormalize J to J�
=J+Jf /2. But, for ��0, one would require different renor-
malizations. For instance, our exact Eq. �64� for B � �x̂ , ŷ in-
dicates clearly that one would require J�=J+Jx,y, respec-
tively. Unless special structural circumstances occur that
might lead one to suppose a change in the bond lengths
in strong magnetic fields,50 the isotropic Heisenberg
interaction J �or J�� cannot otherwise depend upon the direc-
tion of B, especially for 
B� �J�. However, in fits to experi-
ment on s1=1/2 dimers, one could treat the effective Heisen-
berg interaction J� as the weighted midpoint of the level

crossing induction, J�=−
�B1,1/2
lc �� ,��	, where �¯	

=�0
�
¯sin �d��0

2�d� /4�. This leads to J�=J+ 1
3Jf −

1
30J �2Jc

2

+Jf
2�+O��Jj��3. However, from Eq. �50�, it evident that for

higher spin dimers, J�→Js,s1
� =−
�Bs,s1

lc �� ,��	 /s depends
upon both s and s1, complicating the analysis. For simplicity,
we choose not to make any such J renormalizations.

As an example of the effect of anisotropic exchange in-
teractions upon the magnetization of s1=1/2 dimers, in Fig.
3, we plotted the low-T M /
 vs 
B / �J� with Jc=0.2J, Jf =0
for B � �ẑ �solid� and B � �x̂ �dashed�, along with the isotropic
case Jc=Jf =0 �dotted�. Although for B � �ẑ, B at the step is
slightly reduced from its isotropic interaction value, for B � �x̂,
the magnetization step occurs at a larger B. These results are
consistent with Eq. �64�. The midpoint slopes are universal,
in accordance with Eq. �44�. In addition, the shape of the
step appears also to be universal.

The specific heat of an s1=1/2 dimer with B � �î is

CVi =
kB�2Ni

Di
2 , �66�

where the Di are given by Eq. �60�, and the Ni are given in
Appendix A. Plots at low T of CV /kB vs 
B / �J� for s1=1/2

FIG. 2. Plots of 
B1,1/2
lc �� ,0� / �J� for the AFM spin-1/2 dimer

with Jc /J=0.2, Jf =0 �dashed� and Jf =0.2J ,Jc=0 �dotted�, and of
B1,1/2

lc �� /2 ,�� /
 �J� for Jc /J=0.2, Jf =0 �solid�.

FIG. 3. Plots of M /
 vs 
B / �J� at kBT / �J � =0.03 for the AFM
spin-1/2 dimer with Jc=0.2J, Jf =0, with B � �ẑ �solid�, B � �x̂
�dashed�, along with the isotropic case Jc=Jf =0 �dotted�.
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dimers with the corresponding axial anisotropic exchange
energy Jf =0.2J with Jc=0 are shown in Fig. 4. We note the
universal curve shapes, but nonuniversal level crossing posi-
tions, in quantitative agreement with Eqs. �40�–�42�. In Fig.
4, the position of the central minimum in CV tracks that of
the midpoint of the magnetization step with the same param-
eters.

VI. ANALYTIC AND NUMERICAL RESULTS FOR s1=1
AND 5/2

A. Spinor dimer

For dimers with s1=1, the allowed s values are s=0,1 ,2.
Since the even and odd dimer s states cannot mix, the three
s=1 states are decoupled from the six remaining s=0,2
states. They satisfy a cubic equation given in Appendix A.

For B � �î with i=x ,y ,z, this cubic equation simplifies to a
linear and a quadratic equation, as for the s=1 eigenstates of
s1=1/2 dimers.

The remaining six eigenstates corresponding nominally to
s=0,2 are in general all mixed. The matrix leading to the
hexatic equation from which the six eigenvalues can be ob-
tained is given in Appendix A. That is sufficient to evaluate
the eigenvalues for s1=1 using symbolic manipulation soft-
ware. When combined with the three s=1 eigenvalues, one
can then use Eqs. �34� and �35� to obtain the resulting exact
magnetization and specific heat at an arbitrary B. The com-
bined nine eigenvalues depend upon all four anisotropy pa-
rameters Jj for j=a ,c ,e , f .

To the extent that the eigenvalues can be obtained from
the solutions to either linear or quadratic equations, the ex-
pressions for the Bs,1

lc along a crystal axis direction are
simple, and are given in Appendix A. In the anisotropic ex-
change case Ja=Je=0, the first level crossing induction B1,1

lc

with B � �î is identical to B1,1/2
lc , the level crossing with s1

=1/2 given by Eq. �64�. The two level crossing inductions
for s1=1 can be found to first order in the anisotropy ener-
gies by evaluating Eq. �50� for s1=1 and s=1,2.

The first-order coefficients in Bs,1
lc are c1,1= 1

6 and c2,1=
− 1

2 . From these simple first-order results, it is possible to
understand the qualitatively different behavior obtained with
local, single-ion, anisotropy from that obtained with aniso-
tropic exchange. In the isotropic case Jj =0" j, the first and
second level crossings occur at −J and −2J, respectively. For
each induction direction, the signs of the contributions of the
anisotropic exchange interactions Jc and Jf to B2,1

lc�1�+2J and
B1,1

lc�1�+J are the same, whereas the signs of the contributions
of the single-ion interaction energies Ja and Je to B2,1

lc�1�+2J
and B1,1

lc�1�+J are the opposite.
To illustrate this point, in Fig. 5 we plotted the low-T

M�B� for the axial single-ion anisotropy Ja /J=0.1. We note
that for B � �x̂, the first level crossing occurs at an induction
higher than with Ja=0, but the second level crossing appears
at a lesser induction than for the isotropic case.

The second-order coefficients in Bs,1
lc are easily found to

be a1�1,1�= 1
2 , a2�1,1�=−1=a3�1,1�, a4�1,1�= 1

8 , a5�1,1�=
− 1

4 , a6�1,1�=− 11
40, a7�1,1�=− 2

27, a1�2,1�= 17
4 , a2�2,1�= 7

2 ,
a3�2,1�= 1

4 , a4�2,1�=a6�2,1�= 5
16, a5�2,1�= 3

8 ,and a7�2,1�
=0. Using these values, we can generate plots of Bs,1

lc �� ,��
accurate to second order in all of the anisotropy parameters.

To illustrate the different effects of the four anisotropy
interactions, in Fig. 6, we plotted 
Bs,1

lc �� ,0� / �J� for both s1

=1 level crossings s=1,2 for the four cases in which one of
the Jj /J=0.1 and the other Jj =0. As can be seen from Fig. 6,
the s=2 step exhibits remarkable symmetry. The two aniso-
tropic exchange interactions Jc and Jf have opposite
�-dependent deviations from their joint value approximately
at �=90�. The two single-ion interactions Ja and Je have that
value as their average, and also display opposite � dependen-
cies. However, the s=1 step is somewhat different. The Ja
and Je curves also have opposite �-dependent deviations
from their average value, but the signs of the deviations are
opposite to those in the s=2 curves, and the magnitudes of
their � variations are considerably smaller. However, the
signs of the � variations of the Jc and Jf s=1 curves are the
same as for the s=2 curves. Hence if one of the four aniso-
tropy interactions is dominant, by measuring Bs,1

lc �� ,�� for

FIG. 4. Plot of CV /kB vs 
B / �J� for the AFM spin-1/2 dimer
with Jf =0.2J, Jc=0 at kBT / �J � =0.03 with the same curve notation
as in Fig. 2.

FIG. 5. Plot at kBT / �J � =0.03 and Ja /J=0.1 of M /
 vs 
B / �J�
for the AFM spin-1 dimer. The curve notation is the same as in Fig.
2, except that the isotropic case �dotted� curve is for Ja=0.
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s=1,2, one can fully determine the dominant anisotropy pa-
rameter.

In Fig. 7, we plotted the azimuthal dependence of the
level-crossing inductions, 
Bs,1

lc �� /2 ,�� / �J� for the two cases
Jc /J=0.1 and Je /J=0.1, with the other anisotropy parameters
absent. Note that the axial anisotropy parameters Ja and Jf by
themselves do not lead to any � dependencies. As seen in
Fig. 7, both Jc curves decrease with increasing �, whereas
the Je curve increases for s=1, but decreases for s=2, and
the effect at s=2 is larger than for the Jc curve. Thus a
measurement of the � dependence of Bs,1

lc can distinguish the
presence of Jc from Je anisotropy. Thus the two independent
measurements of Bs,1

lc �� ,0� and Bs,1
lc �� /2 ,�� are probably

sufficient to completely determine the values of the four an-
isotropy parameters, even if all four are present and of simi-
lar magnitude.

In short, the case s1=1 is sufficient to exhibit the very
different behaviors obtained from the single-ion, local spin
anisotropy interactions from those obtained from the aniso-
tropic exchange interactions. As s1 increases beyond 1, the
situation becomes not only more complicated, but also more
interesting, as shown in the following.

B. Spin-5/2 dimer

For s1=5/2, one of the cases of greatest experimental

interest, when H̃a and H̃e are present, none of the allowed

s ,m values is a true quantum number. That is, H̃a and H̃e
cause all of the states with nominally odd or even s to mix

with one another. For B � �î for i=x ,y ,z, this simplifies in the
crystal representation, as for s1=1, since only states with odd
or even m values in the appropriately chosen representation
can mix. By using symbolic manipulation software, it is pos-
sible to solve for the exact eigenvalues of the s1=5/2 dimer.
However, because the analytic expressions for the eigenval-
ues are much more complicated than those for s1=1 pre-
sented in Appendix A, we shall not attempt to present them,
but will instead focus upon their numerical evaluation for
specific cases.

In Figs. 8 and 9, we plot M /
 vs 
B / �J� for the two low-
T cases of AFM s1=5/2 dimers, Ja=0.1J, and Jc=0.1J, re-
spectively, with the other Jj =0, taking kBT / �J � =0.03. Each
of these curves exhibits the universal step behavior predicted
in Eqs. �43� and �44�. Corresponding CV /kB vs 
B / �J� curves
also exhibit the universal double peak behaviors predicted in
Eqs. �40�–�42�, and are shown elsewhere.61

In Fig. 8 for Ja /J=0.1, we note that the s=2 step is nearly
isotropic, as there is much less angular variation than for any

FIG. 6. Plots of the level crossing inductions 
Bs,1
lc �� ,0� / �J� for

s1=1 AFM dimers, with Ja /J=0.1 �solid�, Jc /J=0.1 �dashed�,
Je /J=0.1 �dash-dotted�, and Jf /J=0.1 �dotted�. The curves are cor-
respondingly labeled a, c, e, f .

FIG. 7. Plot of the s=1,2 level crossing inductions

Bs,1

lc �� /2 ,�� / �J� for s1=1 AFM dimers, with Je /J=0.1 �solid�,
Jc /J=0.1 �dashed�. The curves are correspondingly labeled e, c.

FIG. 8. Plot at kBT / �J � =0.03 and Ja /J=0.1 of M /
 vs 
B / �J�
for the AFM spin-5/2 dimer. The curve notation is the same as in
Fig. 3.

FIG. 9. Plot at kBT / �J � =0.03 and Jc /J=0.1 of M /
 vs 
B / �J�
for the AFM spin-5/2 dimer. The curve notation is the same as in
Fig. 3.
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of the other steps. This is because the change in sign in the
deviations of the level crossing inductions from −sJ occurs
very close to the s=2 step, as predicted by the first-order
coefficient cs,5/2. We reiterate that c1,5/2= 16

15 , c2,5/2=− 4
35, and

c3,5/2=− 53
63, so that the sign change occurs just before the s

=2 step, making �c2,5/2 � �1, accounting quantitatively for
this effect.

In Fig. 9 for Jc /J=0.1, the step behavior is very different
than for Ja /J=0.1 pictured in Fig. 8. There are no changes in
sign in the deviations of the level crossing inductions from
−sJ. For B � �ẑ, there is little difference from the isotropic
case. However, for B � �x̂, all five level crossings occur at
inductions higher than for the isotropic case, but their devia-
tion from −sJ is nonmonotonic, with a minimum deviation
�and hence the minimum anisotropy of the level crossing
inductions� occurring at the third crossing.

In Figs. 10 and 11, 
Bs,5/2
lc �� ,0� / �J� and


Bs,5/2
lc �� /2 ,�� / �J� corresponding to Figs. 6 and 7 are plot-

ted. For clarity, we only show the lowest three level crossing
inductions. Figure 10 shows that the sign change in the be-
haviors of the single ion Ja and Je occurs closer to the second

level crossing than for s1=1. Note that the Ja curve for
B2,5/2

lc �� ,0� is nearly symmetric about �=45�, suggesting a
near vanishing of the first-order contribution, and the slight
bulge centered at that midpoint is due to the second-order
contributions. As in Fig. 7, there are no sign changes for the
anisotropic exchange interactions Jc and Jf. Furthermore, it is
evident from this figure that B2,5/2

lc �� ,0� is nearly constant for
the two single-ion interactions Ja and Je, consistent with Fig.
8.

Further support for this notion is seen in Fig. 11, in which

Bs,5/2

lc �� /2 ,�� / �J� is plotted for Jc /J=0.1 and Je /J=0.1.
Clearly, for s=2, the main � dependence of the Je curve
arises from the second-order effects proportional to
cos2�2��. By contrast, the first-order term �cos�2�� leads to
a pronounced B1,5/2

lc �� /2 ,�� variation for Je /J=0.1. Note
also that the sign of the � variation in the third level crossing
for Je /J=0.1 is opposite to that of the first crossing, and is
nearly absent in the second crossing, so that the sign change
of both the � and � deviations from the isotropic level cross-
ing behavior is a first-order effect for Je. By contrast, Jc
shows no sign changes in either the � or the � dependencies
in these figures.

We remark that this greatly reduced anisotropy of the sec-
ond level crossing for the two single-ion interactions is
strong evidence for the presence of one or both of them in
�Fe�salen�Cl�2, as discussed in more detail in Sec. IX.

Our results for Bs,7/2
lc �� ,0� and Bs,7/2

lc �� /2 ,�� with s1

=7/2 are not shown for brevity. We only remark that the
second-order effects are stronger than for s1=5/2, and that
for Je /J=0.1, B1,7/2

lc �� /2 ,�� has such a strong � dependence
that the first and second level crossings are approximately
equal at �=90�, making the first two level crossings difficult
to distinguish.

VII. HARTREE APPROXIMATION

A. First-order thermodynamics

In the self-consistent Hartree approximation, originally
developed in the early days of atomic physics, the exchange
interactions are neglected, and the direct �in this case, aniso-
tropy� interactions are treated self-consistently to first
order.62 In magnetism, this later sometimes came to be
known as the strong exchange limit.17,18,30,46,53 In this ap-
proximation, s and m are still good quantum numbers, so the
partition function

Z�1� = �
s=0

2s1

�
m=−s

s

e−�Es,s1

m
, �67�

where Es,s1

m =Es
m,�0�+Es,s1

m,�1�. Although it is difficult to perform
the summation over the m values analytically, it is, neverthe-
less, elementary to evaluate Z numerically for an arbitrary B,
�, �, and T from the eigenstate energies. The magnetization
in the Hartree approximation is

M�1��B,�,�� =



Z�1��
s=0

2s1

�
m=−s

s

me−�Es,s1

m
. �68�

Similarly, the specific heat in the Hartree approximation is

FIG. 10. Plot of the lowest s=1,2 ,3 level crossing inductions

Bs,5/2

lc �� ,0� / �J� vs � at �=0 for s1=5/2 AFM dimers, with Ja /J
=0.1 �solid�, Jc /J=0.1 �dashed�, Je /J=0.1 �dash-dotted�, and Jf /J
=0.1 �dotted�. The curves are correspondingly labeled a, c, e, f .

FIG. 11. Plot of the lowest s=1,2 ,3 level crossing inductions

Bs,5/2

lc �� /2 ,�� / �J� vs � at �=� /2 for s1=5/2 AFM dimers, with
Je /J=0.1 �solid�, Jc /J=0.1 �dashed�. The curves are correspond-
ingly labeled e, c.
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CV
�1��B,�,�� �

kB�2

�Z�1��2�Z�1��
s=0

2s1

�
m=−s

s

�Es,s1

m �2e−�Es,s1

m

− ��
s=0

2s1

�
m=−s

s

Es,s1

m e−�Es,s1

m 2� . �69�

As a test of the accuracy of this Hartree calculation, we
have compared the Hartree and exact M�B� obtained for the
s1=5/2 dimer with Jc=0.2J and B � �ẑ at various T values in
Fig. 12. The corresponding comparison between the Hartree
and exact CV�B� is shown in Fig. 13. We see that the curves
evaluated using the Hartree and the exact expressions for M
and CV with s1=5/2 are indistinguishable at kBT / �J � =0.03.
The CV curves are noticeably different at kBT / �J � =0.1 for

B / �J � �0.4, and at kBT / �J � =0.3 they are noticeably differ-

ent for 
B / �J � �2.6. Corresponding noticeable differences in
the M curves at the same B values appear at T values roughly
three times as high as in the CV curves.

At very low T, kBT / �J � �1, the most important states in
this perturbative scheme are the minima for each s value,
Es,s1

s , which determine the level crossings in the Hartree ap-
proximation. As T→0, we can ignore all of the m�s states
in Eqs. �67�–�69�. This two-level approximation is the basis
for the universal behavior given by Eqs. �40�–�44�, which fits
all of the exact curves we presented reasonably well.

B. First-order response functions

1. Inelastic neutron-scattering cross section

Two response functions relevant for the study of SMM’s
are the INS cross section S�B ,q ,�� and the EPR susceptibil-
ity ��B ,�� in strong magnetic inductions B. We first con-
sider the low-T inelastic neutron cross section S�B ,q ,�� tak-

ing d̂= ẑ as pictured in Fig. 1. It is customary to write the
operators in the crystal representation.26,59 With INS, one can
also probe the dimer with a strong magnetic field at various
directions with respect to both the dimer axis and the scat-
tering plane. To the extent that the eigenstates ���n	� and
their energies �n can be evaluated exactly,

S�B,q,�� = �
�,�=1

3

��,� − q̂�q̂�� �
n,n�=1

ns1

e−��n�� + �n − �n��

���n�S̃��q,0���n�	��n��S̃�
†�q,0���n	 , �70�

where S̃��q ,0�=US��q ,0�U†, S��q ,0�=S1,�eiq·d+S2,�e−iq·d,
and U is the unitary operator that diagonalizes H.20,26 When
exact expressions for S�B ,q ,�� are tedious to obtain, it is
straightforward to obtain it in the Hartree approximation,
S�1��B ,q ,��. But to do so, it is easiest to define the axes in
the induction representation, for which ���n	�= ���̃s

m	� and the
ê�= x̂� , ŷ� , ẑ� for �=1, 2, 3, respectively. In the Hartree ap-
proximation obtained by setting the ��̃s

m	= ��s
m	, the bare

wave functions, S�1��B ,q ,�� for an arbitrary B ,� ,� is then

S1
�1� = �

s=0

2s1

�
m=−s

s

e−�Es,s1

m �cos2�q · d�sin2 �b,qF1,s1

m,s�0���,�,��

+ sin2�q · d�sin2 �b,qF2,s1

m,s�0���,�,����
+ cos2�q · d�

2 − sin2 �b,q

4
F3,s1

m,s�0���,�,��

+ sin2�q · d�
2 − sin2 �b,q

4
F4,s1

m,s�0���,�,�� , �71�

where q ·d=qd cos �q is invariant under the rotation, 2d is
the vector separating the dimer spins, �b,q is the angle be-
tween q and B, and

F1,s1

m,s�0� = m2��� , �72�

FIG. 12. Comparison of M /
 vs 
B / �J� obtained using the Har-
tree asymptotic form �dotted� with the exact calculation �solid�, for
the s1=5/2 AFM dimer with Jc=0.2J, Ja=Je=Jf =0, at kBT / �J �
=0.03, 0.1, 0.3, 0.8, as indicated. Inset: expanded view of the region
0�
B / �J � �1.5.

FIG. 13. Comparison of CV /kB vs 
B / �J� obtained using the
Hartree asymptotic form �dotted� with the exact calculation �solid�,
for the s1=5/2 AFM dimer with Jc=0.2J, Ja=Je=Jf =0, at
kBT / �J � =0.03, 0.1, 0.3, as indicated.
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F2,s1

m,s�0� = �
��=±1

�� + Es,s1

m − Es+��,s1

m ��Ds+���+1�/2,s1

m �2,

�73�

F3,s1

m,s�0� = �
�=±1

�� + Es,s1

m − Es,s1

m+���As
�m�2, �74�

F4,s1

m,s�0� = �
�,��=±1

�� + Es,s1

m − Es+��,s1

m+� ��Cs+���+1�/2,s1

−���+1�/2−���m�2,

�75�

where the coefficients are given, respectively, by Eqs. �21�,
�1�, and �20�, and we have suppressed the � ,� ,� arguments
of the Fn,s1

m,s�i� functions for simplicity of presentation. In Eq.
�71�, the only dependencies upon the anisotropy energies is
in the first-order eigenstate energies Es,s1

m =Es
m,�0�+Es,s1

m,�1�

given by Eqs. �46� and �47�, respectively. The B=0 limit is
easily obtained by setting B=�=0 and �b,q=�q.

Corrections to the wave functions first order in the aniso-
tropy interactions lead to additional transitions with strengths
first and second order in the anisotropy energies.63 Studying
the weak transitions �s ,m�→ �s� ,m�� with s�=s, m±1, ±2,
±3 and s�=s±1, m�=m±2 can provide further direct mea-
surements of the anisotropic exchange interactions Jc and Jf.

2. Electron paramagnetic resonance susceptibility

In an EPR experiment, one applies a strong magnetic
field, plus a weak oscillatory transverse field, leading to the
overall induction B=Bẑ�+B��x̂�cos��t�−�ŷ�sin��t��, where
we assume the oscillatory induction precesses clockwise
�counterclockwise� for �= ±1.59,64–66 For a weak transverse
induction B�, one measures the resulting linear response
�−�,��B ,��, which is written in terms of the total spin raising
and lowering operators S± defined in the induction
representation,59,64 the transformed Hamiltonian of which is
described in Appendix B. In principle, an exact expression
for �−�,��B ,�� can be obtained by starting in the induction
representation with the basis ���s

m	�, diagonalizing H with

the unitary operatorV, VHV†= H̃�, and the new basis ���̃n	� is

obtained from ��̃n	=V ��s
m	, leading to H̃� � �̃n	= �̃n � �̃n	. One

then has

�−�,��B,�� =

2

�Z
�

n,n�=1

ns1

e−��̃n��̃n�S̃−��0���̃n�	��̃n��S̃��0���̃n	

� � 1

� + �̃n − �̃n� + i�
−

1

� − �̃n + �̃n� + i�
 ,

�76�

where S̃��0�=VS��0�V†. It is then elementary to obtain
�−�,�� ��� in the Hartree approximation valid to first order in
the anisotropy parameters, which is well-behaved for all in-
duction values. The imaginary part of �−�,� is then

�−�,�
�1�� �B,�� =


2

Z�1��
s=0

2s1

�
m=−s

s

e−�Es,s1

m
�s�s + 1� − m2 − �m�

� ��Es,s1

m − Es,s1

m+� + �� − �Es,s1

m+� − Es,s1

m + ��� ,

�77�

where Es,s1

m =Es
m,�0�+Es,s1

m,�1� is given by Eqs. �46� and �47� and
Z�1� is given by Eq. �67�. The arguments of the  function
give rise to the resonant frequencies first order in the aniso-
tropy energies, or to the first-order resonant magnetic induc-
tions,


Bres
�1� = ± � +

�2m + ��
2

gs,s1
��,�� , �78�

gs,s1
��,�� = J̃f ,a

s,s1�1 − 3 cos2 �� − 3J̃c,e
s,s1sin2 � cos�2�� ,

�79�

where J̃f ,a
s,s1 and J̃c,e

s,s1 are given by Eqs. �48� and �49�, respec-
tively, and we have ignored the processes that give rise to
finite transition widths.67 By varying the direction and mag-
nitude of B, it is possible to obtain sufficient information to
fit all of the parameters in the model. At low T the m=s
states dominate, so that only �=−1 is allowed. By increasing
B past the sth level crossing, one can probe the effective sth
state of the AFM dimer using EPR.

We have extended these results to include the corrections
to the wave functions first order in the anisotropy
interactions.63 With these corrections, additional EPR transi-
tions are present, which can provide additional information
useful in experimental identification of the anisotropy inter-
actions. It is shown that there are ten additional resonant
magnetic induction strengths of the forms


Bres
�1� = ± an� + bngs,s1

��,�� + cnhs,s1
��,�� , �80�

hs,s1
��,�� = − �J + Jf/2 + Ja� + J̃f ,a

s,s1�1 + cos2 ��

+ J̃c,e
s,s1sin2 � cos�2�� , �81�

where the an, bn, and cn are listed in Appendix B. We note
that these additional resonant inductions are first order in the
anisotropy interactions, but have amplitudes that are second
order in the anisotropy interactions, so that in most cases,
they may be difficult to detect, but their detection in certain
materials would provide a clear signal of the presence of
significantly strong anisotropy interactions. In addition, reso-
nant inductions with cn�0 are generally very large.

To illustrate one example of an effect of local spin aniso-
tropy upon the EPR transitions, we consider the simple case
of an s1=1 AFM dimer with the only nonvanishing aniso-
tropy energy Ja /J=0.1 and �=� /4. The energy levels for
this system are pictured in Fig. 14. In Fig. 15, the EPR tran-
sition energies vs 
B / �J� for the s1=1 AFM dimer with
Ja /J=0.1 and �=� /4 are shown. The widths of the lines are
proportional to the strengths of the EPR matrix elements.
Note that the ground state at B=0 is approximately ��0

0	, but
its energy is slightly negative due to an admixture of this
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state with the nominal ��2
m	 states with even m, as shown in

Appendix A. The EPR matrix elements are very small at
these B values, as the transitions only exist due to the admix-
ture of the wave functions. At higher B strengths, the ground
state goes through two level crossings, with the first level
crossing being to the lowest energy s=1 state, which is
nominally ��1

1	, with some mixture of the other ��1
m	 states.

The leading transition is to the nominal ��1
0	 state. Then, the

second level crossing causes the ground state to be the nomi-
nal ��2

2	 state, which is of course modified by the mixing with
the nominal ��0

0	 and the other nominal ��2
m	 for m=0,−2.

Note that near to 
B / �J � =3, there is a level repulsion. The
leading EPR transition is to the nominal ��2

1	 state, and be-
cause of the strong matrix elements, the splitting of the en-
ergies due to the level repulsion should be observable in EPR
experiments. We note that recent EPR experiments on the
Ni2 dimer, Na2Ni2�C2O4�3�H2O�2, appear consistent with
these predictions, with the experimental anisotropy Ja /J
=0.27.23

VIII. AFM DIMERS WITH STRONG ANISOTROPY
INTERACTIONS

Finally, we consider some cases of strong anisotropy in-
teractions, in which one or more of the Jj is comparable to J
in magnitude. The cases of interest are those for which the

anisotropy interactions can remove the level crossing effects
in AFM dimers that give rise to the 2s1+1 M�B� steps and
CV�B� double peaks. These cases generally occur for strong
FM anisotropy interactions, but there are some examples in
which they can occur with strong AFM anisotropy interac-
tions. We first consider the case of s1=1/2 dimers, for which

the situation can be analyzed analytically, at least for B � �î.
Then, we consider the s1=5/2 case numerically.

A. Analytic and numerical results for s1=1/2 dimers

For the s1=1/2 dimer, the energies for B � �î are given by
Eqs. �52�–�58�. We are interested in examining the cases in
which the anisotropy is strong enough to cause the level
crossing to disappear. Strong anisotropy with Jc and Jf hav-
ing the same sign as J do not differ significantly from the
weak-coupling cases, as they do not remove the level cross-
ing, and do not affect significantly the heights of the magne-
tization step and the number and shapes of the CV�B� double
peaks, but just shift their positions, as for weak anisotropy.
There are then three AFM �J�0� cases of interest. These are
�i� Jc=Jf = �J�, �ii� Jf =2 �J�, and �iii� Jc=2 �J�. The M�B� and
CV�B� curves for these cases with B � �ẑ at the very low-T
value kBT / �J � =0.01 are shown as the solid, dotted, and
dashed curves in Figs. 16 and 17, respectively.

For case �i�, Jc=Jf = �J�, the same four eigenvalues are
obtained for B � �ẑ and B � �x̂. Assuming J�0, these are ranked
from highest to lowest as

�4,1 = − J/2 ± 
b2 + J2/4, �82�

�3 = − J , �83�

�2 = 0. �84�

Note that �1=�2 only at b=0 �where �3=�4�, �1 decreases
with increasing b, and �4 increases with increasing b, so the
levels get further apart with increasing b. In this case, M�B�
shown as the dotted curve in Fig. 16 is broad, even at the

FIG. 14. Plot of the exact eigenvalues �n / �J� vs 
B / �J� for s1

=1 AFM dimers with Ja /J=0.1 and �=� /4. The arrows represent
the strongest EPR transitions at their corresponding field strengths.

FIG. 15. Plot of the EPR transition energies ��n−�1� / �J� vs

B / �J� from the ground state for the s1=1 AFM dimer with Ja /J
=0.1 and �=� /4. The widths of the lines are proportional to the
strengths of the matrix elements for the transitions.

FIG. 16. Plots of M /
 vs 
B / �J� at kBT / �J � =0.01 with Jf

=2 �J� �solid� for both B � �x̂ , ẑ, Jc=Jf = �J� �dotted�, and Jc=2 �J� with
B � �ẑ �dashed� for the s1=1/2 AFM dimer.
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very low T value plotted. In addition, CV�B�, shown as the
dotted curve in Fig. 17, exhibits a single Schottky-like
anomaly, but with a different shape than that of the standard
Schottky case, which arises from a splitting of the two lowest
energies linear in b at b=0. In this case, the peak value of
CV /kB is 0.439 229, the same as the uniform double peak
value, but the peak position is at b=
2c �J � /�, where c
=1.199 678 64.

Next, we examine case �ii�, Jf =2 �J�, Jc=0. In this case the
energies are different for the two field directions. For B � �ẑ,

�4 = − J , �85�

�3,1 = ± b , �86�

�2 = 0. �87�

At b=0, these energies comprise a triply degenerate �or
spin-1� ground state at 0 and an excited +�J� state. With in-
creasing b, �1 decreases linearly, and �4 increases linearly,
crossing �4 at b= �J�, which does not affect the low-T ther-
modynamics. In this case, M�B� is a sharp step at B=0,
shown as a solid curve in Fig. 16, and CV�B� is a conven-
tional spin-1 Schottky anomaly at low b, as shown by the left
solid curve in Fig. 17. From Eqs. �86� and �87�, CV /kb has a
maximum value at 0.637 203 at b=1.880 677 5/�. Note that
the larger maximum value than in the other CV�B� cases
arises from the higher degeneracy as b→0.

For B � �x̂, the energies for case �ii� are

�4,1 = − J/2 ± 
b2 + J2/4, �88�

�2,3 = 0. �89�

At b=0, the ground state is again triply degenerate with en-
ergy 0, and the excited state has energy �J�. With increasing
b, �1 separates from �2 and �3, curving below them, and �4
increases quadratically. For this induction direction there is
no level crossing, but there is some b anisotropy at finite T,
because of the quadratic vs linear b dependencies. CV /kB has

the maximum value 0.761 802 at b=
2c1 �J � /�, where c1
=2.654 658, which is noticeably different from the case with
B � �ẑ. The M�B� and CV�B�curves are the right solid curves in
Figs. 16 and 17, respectively.

Now we consider case �iii�, Jc=−2J, Jf =0. Again, there
are slight differences for B � �ẑ and B � �x̂. For B � �ẑ, the eigen-
state energies are

�4,1 = − J ± 
b2 + J2, �90�

�3 = − J , �91�

�2 = 0. �92�

At b=0, the ground state is doubly degenerate at energy 0.
The other two states have energies �J� and 2 �J�, respectively.
As b increases, �1 decreases below �2, and �4 increases
monotonically. Hence there is no level crossing, but at low T,
two levels are relevant, in a fashion slightly different from a
standard Schottky specific heat anomaly. The low-T M�B�
and CV�B� curves for this induction direction are shown as
the dashed curves in Figs. 16 and 17, respectively. We note
that they are rather similar from those of case �i�, but have
the broadest M�B� increase and CV�B� peak of the three cases
considered. CV /kB has the peak value 0.439 229 which is the
same as the uniform double-peak value, but its position is at
b=2
c �J � /�, where c=0.199 678 64.

For B � �x̂, we have

�4 = − 2J , �93�

�3,1 = − J/2 ± 
b2 + J2/4, �94�

�2 = 0. �95�

At b=0, the eigenstates are the same as for the field in the z
direction, with a doubly degenerate ground state at 0, and
excited states at �J� and 2 �J�. However, the field dependence
is a bit different than for the z direction. Again the ground
state decreases with increasing b, but the energy scale of the
curvature is �J � /2 instead of �J�. In addition, �3 can cross �4
at b=
2 �J�. This level crossing is irrelevant to the low-T
behavior, however, but modifies the M�B� curve somewhat at
finite T.

B. AFM s1=5/2 dimers with strong anisotropy interactions

We now consider some cases of strong anisotropy inter-
actions in the s1=5/2 dimer. In Fig. 18, we present low-T
plots of M�B� with Jc=Jf =c �J�, where c=0.2, 0.4, 0.6, 0.8,
0.9, and 1, as indicated. For the weak-coupling case c=0.2,
the steps have uniform height. With increasing c, the curves
shift monotonically to lower b values. Slight deviations in
the uniformity of the step height are detectable in the first
two steps for c=0.4, but the nonuniformity in the step height
is progressively more pronounced for c=0.6 and 0.8, respec-
tively. However, for c=0.9, the individual steps have com-
pletely disappeared, and are replaced by what appears to be a
single, broad step centered at b /J�0.5. At c=1, M�B� rises
to its maximum value with a very steep slope at b=0, not

FIG. 17. Plots of CV /kB vs 
B / �J� at kBT / �J � =0.01 with Jf

=2 �J� �solid� for both B � �x̂ , ẑ, Jc=Jf = �J� �dotted�, and Jc=2 �J� with
B � �ẑ �dashed� for the s1=1/2 AFM dimer.
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showing any evidence for any level crossings.
Next, we investigated the effects of large Ja. In Fig. 19 we

plotted M /
 vs 
B / �J� for Ja=c �J�, with c=0.1 �solid�, 0.2
�dashed�, 0.3 �dotted�, 0.4 �dot-dashed�, 0.5 �short dashed�,
and 0.6 �short dotted�. We see the effects of strong Ja are
very different from those of strong Jc and Jf shown in Fig.
18. Instead of the step positions decreasing monotonically
with increasing Jc=Jf, as Ja increases, the highest three step
positions decrease with increasing Ja, but the lowest two step
positions increase with increasing Ja.

We now consider the case of large Jc. In Fig. 20, we
plotted M /
 vs b / �J� at kBT / �J � =0.01 for the s1=5/2 AFM
dimer with Jc=c �J�, where c=0.1, 0.2, 0.3, 0.4, and 0.5.
These results are shown respectively as the solid, dashed,
dotted, dot-dashed, and short dotted curves. Unlike the
strong anisotropic exchange case pictured in Fig. 18 and the
strong axial single-ion anisotropy case pictured in Fig. 19,

these curves do not shift significantly to lower b values with
increasing Jc / �J�, but the step shapes are greatly altered. With
c=0.4, the first two steps are hard to discern, but rounded
remnants of the three last steps are evident. At c=0.5, the
third step is hard to detect, and the remnants of the last two
steps are reduced in magnitude. We remark that the curve
with c=−0.3 is indistinguishable from the dotted curve for
c=0.3, so that in this case, strong Jc /J of either sign can
grossly alter the M�B� step behavior.

In Fig. 21, we show CV /kB vs b / �J� low-T curves for some
of the AFM s1=5/2 cases pictured in Figs. 18–20. The solid
and dot-dashed curves on the left-hand side of the figure
correspond to Jc=Jf =c �J� with c=0.9 and 1, respectively, the
solid and dot-dashed curves in the central portion of the fig-
ure correspond to Ja / �J � =0.4 and 0.5, respectively, and the
dashed curve running throughout the domain pictured corre-
sponds to Jc=0.5 �J�. We note that for the combined ex-
change anisotropy case shown, strong anisotropy pushes the

FIG. 18. Plots of M /
 vs 
B / �J� at kBT / �J � =0.01 with Jc=Jf

=c �J� for the AFM s1=5/2 dimer. The cases c=0.2 �solid�, c=0.4
�dashed�, c=0.6 �dotted�, c=0.8 �dot-dashed�, c=0.9 �short dashed�,
and c=1 �short dotted� are shown.

FIG. 19. Plots of M /
 vs 
B / �J� at kBT / �J � =0.01 with Ja

=c �J� for the AFM s1=5/2 dimer. The cases c=0.1 �solid�, c=0.2
�dashed�, c=0.3 �dotted�, c=0.4 �dot-dashed�, c=0.5 �short dashed�,
and c=0.6 �short dotted� are shown.

FIG. 20. Plots of M /
 vs 
B / �J� at kBT / �J � =0.01 with Jc

=c �J� for the AFM s1=5/2 dimer. The cases c=0.1 �solid�, c=0.2
�dashed�, c=0.3 �dotted�, c=0.4 �dot-dashed�, and c=0.5 �short dot-
ted� are shown.

FIG. 21. Plots of CV /kB vs 
B / �J� at kBT / �J � =0.01 for the AFM
s1=5/2 dimer. The cases Jc=Jf =c �J� for c=0.9 �solid� and c=1
�dot-dashed�, Ja=c �J� for c=0.4 �solid� and 0.5 �short-dashed� and
Jc=0.5 �J� �thick dashed� are shown.
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CV�B� peaks to lower b, and squeezes them together, so that
they tend to overlap. At the limiting case Jc=Jf = �J�, the in-
dividual level crossings have been eliminated, and all ten of
the peaks are combined into a single Schottky anomaly. For
the local axial anisotropy interaction, strong FM anisotropic
interactions squeeze the CV�B� together in the middle of the
domain, with the limiting case of a single peak at Ja / �J �
=0.6. For the strong azimuthal anisotropic exchange interac-
tion case, however, strong FM anisotropy shifts the double
peak positions only slightly, and broadens the double peaks,
so that only the highest set is clearly discernable, even at the
very low-T value plotted. In each case, the deviation of the
peak height from the two-level prediction, Eq. �41�, is sub-
stantial, indicating more than two levels are important at low
T, as for the three-level system with s1=1/2 and Jf =2 �J�.
Thus the different types of strong spin anisotropy lead to
clearly different low-T CV�B� behaviors for s1�1/2 dimers.

IX. SUMMARY AND CONCLUSIONS

In summary, we solved for the low-temperature magneti-
zation and specific heat of equal spin s1 antiferromagnetic
dimer single molecule magnets with S2, C2h, or C2v molecu-
lar group symmetry, including the most general set of aniso-
tropic spin exchange and single-ion anisotropy interactions
quadratic in the spin operators. The magnetization and spe-
cific heat exhibit steps and zeroes, respectively, at the non-
universal level crossing induction values Bs,s1

lc �� ,��, but the
magnetization steps and their midpoint slopes, plus the two
peaks surrounding the specific heat zeroes all exhibit univer-
sal behavior at sufficiently low temperatures to first order in
the anisotropy interaction strengths. For weak anisotropy, we
showed that the essential s ,s1 dependencies of Bs,s1

lc �� ,�� are
given by the single first-order function cs,s1

in Eq. �51�. The
most direct measurement of the level crossing Bs,s1

lc �� ,�� is
obtained by the low-T steps in the magnetization of single
crystals. Strong anisotropy interactions generally lead to
highly nonuniversal behavior in antiferromagnetic dimers.
Single-ion anisotropy interactions lead to much richer varia-
tions of Bs,s1

lc �� ,�� than do those obtained from anisotropic
exchange interactions, provided that s1�1/2. These differ-
ences are especially prominent for s1=5/2.

For the most general quadratic anisotropic spin interac-
tions at an arbitrary B, we derived simple, asymptotic ana-
lytic expressions for the low-temperature magnetization, spe-
cific heat, inelastic neutron-scattering cross section, and
electron paramagnetic response susceptibility, which are ac-
curate for weak anisotropy. We also derived an accurate ex-
pression for the level crossing induction Bs,s1

lc �� ,��, enabling
fast and accurate fits to experimental data.

There were two low-T M�B� studies of Fe2 dimers.28,29

For �-oxalatotetrakis�acetylacetonato� Fe2, all five peaks in
dM /dH were measured in pulsed magnetic fields H. These
evenly spaced peaks were entirely consistent with just the
isotropic Heisenberg interaction, and indicated little, if any,
spin anisotropy and biquadratic effects.28

On the other hand, studies of the first two to three dM /dH
peaks in powdered samples of �Fe�salen�Cl�2, where salen is

N ,N�-ethylenebis�salicylideneiminato�, were much more
interesting.29 These data showed a broad first peak at B
=17−20 T that was only partially resolvable into two sepa-
rate peaks, followed by a sharp second peak at B=36 T.
These data are consistent with axial and/or azimuthal single-
ion anisotropy of strength ��Ja+Je� /J��0.1, as obtained from
the derivatives of the curves shown in Fig. 8, and a powder
sampling of Eq. �50� and the data shown in Figs. 10 and 11.
These figures also apply for the S2 symmetry by letting ẑ
→ ẑ1, etc., as described in detail in Appendix A. Usually,
�Je /Ja � �1, but to determine the precise values of each, one
would require single-crystal data in various B directions.

However, the existing data on �Fe�salen�Cl�2 appear to be
inconsistent with a predominant anisotropic exchange inter-
actions of either Jc or Jf types. It is also inconsistent with an
isotropic, biquadratic Heisenberg interaction of the form
−J*�S1 ·S2�2, which would add −J*s3 to Bs,s1

lc �� ,�� in Eq.
�50�. A biquadratic exchange changes the spacings between
the level crossings, but does not change either the angular
dependencies of the level crossings in single crystals or the
widths of the powder-sampled level crossings, inconsistent
with the experiments.29 In comparing the two materials cited
above, it appears that the interaction of a Cl− ion neighboring
each Fe3+ ion leads to strong single-ion anisotropy effects. In
order to verify this hypothesis and to elucidate the details of
the interactions, further experiments using single crystals in
different field orientations on this and related Fe2 dimers
with one to three similarly bonded Cl− ions are urged.31,32

We note also that strong evidence for very strong �Ja /J
=0.27� axial single-ion anisotropy was presented in the Ni2
dimer, Na2Ni2�C2O4�3�H2O�2,23 but it appears that azimuthal
single-ion anisotropy was not included in the analysis. On
the other hand, from the two zero-field splittings of the low-
lying triplet states observed in INS studies of the two spin-1
Ni chain compounds, Ni�C5D14N2�2-N3�PF6� �NDMAP� and
Ni�C9H24N4��NO2�ClO4 �NTENP�, it appears that both Ja

and a smaller Je were present.40,41 From Eq. �A14� in Appen-
dix A, those gaps could also contain contributions from Jf
and Jc, respectively. However, in INS studies, the detailed
form factors were employed to rule out such anisotropic ex-
change interactions.40,41 The measured zero-field gaps of the
triplet state relative to the singlet ground state were 0.42,
0.52, and 1.89 meV in NDMAP with J=−2.8 meV,42 and
1.06�1�, 1.15�1�, and 1.96�1� meV in NTENP, respectively,
and J=−4.67 meV.41 In their model, they assumed only an
axial single-ion anisotropy, which they found to be Ja /J
=0.25. Assuming the zero-field gaps correspond to �J �
+2 �Ja�, �J � + �Ja � + �Je�, and �J � + �Ja �−�Je�, relative to the
ground state, as for s1=1 dimers in Appendix A, we obtain
for NTENP, Ja=−0.85 meV, and �Je � =0.04 meV, so that
Ja /J=0.18, a bit less than in the Ni2 dimer above,23 but we
also have �Je /J � =0.01. For NDMAP, we obtain Ja=
−1.42 meV, and �Je � =0.05 meV, corresponding to Ja /J
=0.51 and Je /J=0.02. We note that a model with only axial
single-ion anisotropy fit the specific-heat data with Ja /J
=0.3, where they used J=−2.58 meV,43 but the zero-field
INS gap splittings are much more direct measurements of
Ja ,Je. Hence Ni2, which has very strong single-ion aniso-
tropy, has axial single-ion anisotropy intermediate between
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that in the two AFM Ni chain compounds, NDMAP and
NTENP. We suggest that Ni2 may also have a weak azi-
muthal single-ion anisotropy, as directly observed in ND-
MAP and NTENP.40,41

In addition, three well-defined steps in the Cr2 AFM
dimer, Cs3Cr2Cl9, were found,25 but such steps were smeared
in the AFM Cr2 s1=3/2 dimer studied by INS, Cs3Cr2Br9,
due to field-induced magnetic ordering.24 In addition, the
zero-field splitting was fit to a weak axial single-ion aniso-
tropy with Ja=−0.01 meV, and with J=−1.03 meV, Ja /J
=0.01. An important question for the future is whether any
azimuthal single-ion interaction Je might also be present in
that compound.24,68 This is because Cs3Cr2Br9 is thought to
have an AFM spin-flop state, for which a small Je would
break the axial symmetry responsible for the Goldstone
mode, opening a gap in the spin fluctuation spectrum, as
possibly observed in INS studies.24,68 Hence it is crucial to
have as many possibilities for identifying any such possible
presence of even a small amount of Je. In order to aid in the
analysis of future data on this and other systems, we will
publish separately additional details relevant for further INS
and EPR studies to elucidate this question.63

We also urge single-crystal data on the high-spin s1
=7/2 Gd2 AFM dimer, �Gd�AmPh��2 ·2CHCl3, where AmPh
is �tris(�2-hydroxybenzyl�amino)ethyl�amine.33,34 From pre-
liminary fits to experiment, J=−0.0056 meV,33 which is suf-
ficiently small that all seven level crossings ought to be ob-
servable at sufficiently low T. We note that for s1=7/2, the
lowest three first-order coefficients are cs,7/2=2, 2

7 , − 13
21 , re-

spectively, so the � ,� dependencies of the single-ion contri-
butions to the first level crossing are very large, and the sign
change occurs slightly above the second level crossing.
Second-order effects will also be large. We would also like to
see single-crystal magnetization studies of s1=1/2 dimers
lacking in predicted single-ion anisotropy effects, to deter-
mine the relative strength of any anisotropic exchange inter-
actions Jc and/or Jf.

19,21,22,26 To aid in the fits, we derived
simple, useful formulas for the magnetization and specific
heat at low temperature and sufficiently large magnetic in-
duction. More important, we derived accurate analytic for-
mulas for the electron paramagnetic resonance susceptibility
��B ,�� and the inelastic neutron scattering S�B ,q ,��, which
allow for a precise determination of the various microscopic
anisotropy energies.

With either single-ion anisotropy or anisotropic exchange
interactions, the total spin s is not a good quantum number,
unless s1=1/2, potentially modifying our understanding of
quantum tunneling processes in single molecule magnets.
Extensions of this work to SMM’s with higher numbers of
magnetic ions might also be possible to fit a variety of ex-
perimental results using a smaller, consistent set of model
parameters than has generally been employed.6,55 We empha-
size that the study of antiferromagnetic equal-spin dimer
single molecule magnets, for which the most general set of
quadratic single-ion anisotropy and anisotropic exchange in-
teractions are so simple that they can be studied analytically,
may be an important, and perhaps even the best, tool for
attaining a more fundamental understanding of the underly-
ing physics of more general single molecule magnets.

ACKNOWLEDGMENTS

We thank the Max-Planck-Institut für Physik komplexer
Systeme, Dresden, Germany, the University of North Da-
kota, Grand Forks, ND, USA, and Talat S. Rahman for their
kind hospitality and support. We also thank N. S. Dalal, B.
Grenier, and S. Stolbov for useful discussions. This work
was supported by the Netherlands Foundation for the Funda-
mental Research of Matter and by the NSF under Contract
No. NER-0304665.

APPENDIX A

1. General dimer Hamiltonians

In general, the single-ion and exchange Hamiltonians for
a dimer may be written as46,53

H = �
i=1

2

Si · DJi,i · Si + S1 · DJ1,2 · S2. �A1�

Here we only treat symmetric matrices Di,i�. For g=D2h,
each of these matrices are diagonal in the same basis, which
we take to be the molecular �x̂ , ŷ , ẑ� coordinate basis. For
lower symmetries, however, the principle axes of each of the
three matrices are generally different. As discussed in
textbooks,69 each symmetric matrix can be diagonalized us-
ing three rotations, by �i,i� about the z axis, followed by a
rotation by �i,i� about the rotated x axis, and then by �i,i�
about the rotated z̃ axis. This leads to the principle axes x̂̃i,i�,

ŷ̃i,i�, and ẑ̃i,i�. After these three diagonalizations, the Hamil-
tonian may be written as H=Hex+Hsi, where

Hex = − JS1 · S2 − Jf�S1 · ẑ̃12��S2 · ẑ̃12� − Jc��S1 · x̂̃12��S2 · x̂̃12�

− �S1 · ŷ̃12��S2 · ŷ̃12�� , �A2�

Hsi = − �
i=1

2

�JiSi
2 + Ja,i�Si · ẑ̃i�2 + Je,i��Si · x̂̃i�2 − �Si · ŷ̃i�2�� ,

�A3�

where we have set the single-ion local axis vectors x̂̃i� x̂̃i,i,
etc., and the constants are given by linear combinations of

the diagonalized matrix elements D̃
J

i,i�.
46 For equal-spin

dimers with S2, C2v, or D2h symmetry, Ja,1=Ja,2=Ja and
Je,1=Je,2=Je.

Now, for D2h symmetry, this reduces exactly to the
Heisenberg interaction, Ha+He+H f +Hc, given in Eqs.
�3�–�6�, plus a constant. For C2v symmetry, the anisotropic
exchange parts are also given by Eqs. �5� and �6�. However,
for g=C2v, since D11,yz=−D22,yz�0, the single-ion matrices
are not diagonal in the same representation as is the aniso-
tropic exchange matrix. For g=S2, all of the elements of

DJnn�0. In these cases, we rotate the coordinates to the di-

rection of ẑ�= ẑ̃1. This overall rotation is first a rotation about
the z axis by �1,1 followed by a rotation about the rotated x
axis by �1,1. It leaves only the transformation angle �=�1,1
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to describe the rotated azimuthal vectors x̂� and ŷ�. For the
S2 symmetry, a similar rotation is required for the anisotropic
exchange interactions, which is analogously parametrized by
�̃=�1,2. We then have

Hsi
g = − �

i=1

2

�JaSi,z�

2 + Jecos�2���Si,x�

2 − Si,y�

2 � + ci
gJesin�2��

��Si,x�
,Si,y�

�� , �A4�

Hae
S2 = − JfS1,z�̃

S2,z�̃
− Jccos�2�̃��S1,x�̃

S2,x�̃
− S1,y�̃

S2,y�̃
�

− Jcsin�2�̃��S1,x�̃
S2,y�̃

+ S1,y�̃
S2,x�̃

� , �A5�

where ci
S2 =1 and ci

C2v= �−1�i+1.
Now, we first transform back to the molecular representa-

tion, and then transform to the induction representation. As a
result of the overall process, S2 symmetry can be incorpo-
rated into the Je term of the eigenstate energies by letting �
→�−�1,1 and �→�−�1,1−�1,1−� /2, and the Jc term can
similarly be incorporated into the eigenstates by letting �
→�−�1,2−�1,2−� /2. For the C2v symmetry, the induction
representation can be obtained for the Je term by letting �
→�+ �−1�i�, where i is the site number. That is, spins 1 and
2 have different effects. For the S2 symmetry, all results aris-
ing from single-ion anisotropy can be obtained from the D2h
results by shifting �→�−�1,1 and�→�−�1,1−�1,1−� /2,
and all results for the anisotropic exchange interactions can
be obtained from the D2h results by replacing �→�−�1,2 and
�→�−�1,2−�1,2−� /2. For the C2v symmetry, the aniso-
tropic exchange results are identical to those of D2h symme-
try, but the single-ion results are modified in two ways, both
by setting �→�−�1,1 and �→�−�1,1−�1,1−� /2, but also
by renormalizing Je. To first order in Je, Je→Jecos�2�1,1�.

2. Exact eigenvalues for s1=1/2

For s1=1/2, we let

x =
Jc

2

4
+

Jf
2

12
+ b2, �A6�

y =
Jf

12
�Jc

2 −
Jf

2

9
 +

b2

2
�Jf�2

3
− sin2 � + Jcsin2 � cos�2��� ,

�A7�

A = �−
y

2
+ i
−

y2

4
+

x3

27
�1/3

, �A8�

where the argument of the square root is positive definite.
Then, the exact real eigenvalues �n are given by

�n = 2 Re�A�, − Re�A� ± 
3 Im�A� �A9�

for n=2,3 ,4.

3. Specific-heat details for s1=1/2

We first present the numerators of the exact expressions

for the specific heat with s1=1/2 and B � �î for i=x ,y ,z. We
have

Nx,y = Fx,y
2 +

1

4
�J + 2Jy,x�2e��2�Jy,x−Jx,y�−J�

+ Fx,ysinh��Fx,y�e−�Jx,y��J + Jx,y�e−�J + �Jx,y

− 2Jy,x�e2�Jy,x�+
1

2
e−�Jx,ycosh��Fx,y����J + Jx,y�2

+ Fx,y
2 �e−�J + ��2Jy,x − Jx,y�2 + Fx,y

2 �e2�Jy,x, �A10�

Nz = Fz
2cosh�2�Fz� +

J2

4
e−��J+Jf� +

1

2
cosh��Fz�

���z� Jf
2

4
+ Fz

2 + e−��J+Jf/2�J�J + Jf��
+ Fzsinh��Fz�� Jf

2
�z + Je−��J+Jf/2� . �A11�

4. Eigenvalues for s1=1 in the crystal representation

In the remainder of this appendix, we provide some de-
tails of our exact results for s1=1. The cubic equation for the
three s=1 eigenvalues is given by

�n = − J − Ja + �n, for n = 2,3,4, �A12�

0 = − �n
3 − �Ja − Jf��n

2 + �n�b2 + �Jc − Je�2� + �Ja − Jf�

��b2cos2 � + �Jc − Je�2�− �Jc − Je��b2sin2 � cos�2�� .

�A13�

An exact solution for these triplet states are an arbitrary B
may be found as for the s1=1/2 dimer in Eqs. �A6�–�A9�.
For simplicity, we only list some special cases. For B=0, we
have

�n
0 = − Ja + Jf, ± �Je − Jc� , �A14�

For B � �ẑ,

�n = Jf − Ja, ± 
b2 + �Jc − Je�2. �A15�

For B � �x̂ , ŷ, we have

�n = ± �Je − Jc�,− Jy,x ± 
b2 + J̄x,y
2 , �A16�

J̄x,y =
1

2
�Ja − Jf � �Jc − Je�� , �A17�

where for the first eigenvalue, +�−� corresponds to x̂, �ŷ�, and

J̄x �J̄y� corresponds to the upper �lower� sign.
The six eigenvalues for the mixed s=0,2 states satisfy

�n = − 3J −
4

3
Ja −

1

3
Jf + �n. �A18�

We first define

a = −

2

3
�2Ja − Jf� , �A19�
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b� = − b sin �e−i�, �A20�

b3 =
3

2
b�, �A21�

d = −
2

3
�Jc + Je� , �A22�

d3 =
3

2
d , �A23�

e = −
1

3

�2Je − Jc� , �A24�

J̃ = J −
1

9
�2Ja − Jf� , �A25�

and

Qn
p =

n

3
�Jf + Ja� + pb cos � . �A26�

Then the �n are the eigenvalues of the Hermitian matrix MJ

given by

MJ =�
Q−2

−2 b� d 0 0 e

b�
* Q1

−1 b3 d3 0 0

d b3
* Q2

0 b3 d a

0 d3 b3
* Q1

1 b� 0

0 0 d b�
* Q−2

2 e

e 0 a 0 e Q2
0 + 3J̃

� .

�A27�

The resulting sixth order polynomial for the �n is given

elsewhere.61 We note that for B � �î, MJ is block diagonal,
breaking up into matrices of ranks 2 and 4. These cases are
discussed in detail elsewhere.61 Here we only present the
simplest data for which the eigenvalues are determined either
by linear or by quadratic equations.

5. Simple special s1=1 cases

When only one of the Jj�0, the eigenvalues for B � �ẑ
simplify considerably. For Jf �0, we have

�n
z = 3J + Jf,Jf,Jf/2 ± b,− Jf ± 2b . �A28�

For Jc�0, we find

�n
z = 0,3J, ± 
b2 + 9Jc

2/4, ± 
4b2 + 3Jc
2. �A29�

For Ja−Jf /2�0, the eigenvalues can also be found analyti-
cally,

�n
z = −

2Ja − Jf

3
± 2b,

2Ja − Jf

6
± b,

2Ja − Jf

6

+
3J

2
±

1

2

9J2 + �2Ja − Jf�2 − 2J�2Ja − Jf� .

�A30�

We note that the ground state energy in this case is

E1 = −
�3J − Jf�

2
− Ja −

1

2

9J2 + �2Ja − Jf�2 − 2J�2Ja − Jf� ,

�A31�

which explicitly involves mixing of the s=m=0 and the s
=2,m=0 states.

At the first level crossing with B � �ẑ, we have for Ja
−Jf /2�0 and the other Jj =0,


B1,1
lc,z =

1

2
�J + �9J2 + �2Ja − Jf�2 − 2J�2Ja − Jf��1/2� .

�A32�

We note that the first level crossing for Jc, Jf �0 for B � î
is equivalent to that of s1=1/2, given by Eq. �64�. At the
second level crossing, simple formulas are only obtained for
B � ẑ with one Jj�0. For B � ẑ and Ja�0, Jf �0, and Jc�0,
respectively, we have


B2,1
lc,z = �

− 2J − Ja,

− 2J − 3Jf/2,

1

3
�20J2 − 15Jc

2/2 + 8�4J4 − 3J2Jc
2/2�1/2�1/2.

�A33�

APPENDIX B

1. Rotation to the induction representation

The rotation from the crystal representation to the induc-
tion representation is obtained from

�x̂

ŷ

ẑ
� = �cos � cos � − sin � sin � cos �

cos � sin � cos � sin � sin �

− sin � 0 cos �
� �x̂�

ŷ�

ẑ�
� ,

�B1�

leading to B=Bẑ�.70 This operation is equivalent to a rotation
by −� /2 about the uniaxial anisotropy z axis, a rotation by �
about the transformed x axis, and then a rotation by � /2
−� about the transformed z axis.69 In effect, in using the
above rotation matrix, we made the arbitrary choice that the
rotated z axis lies in the x�z� plane. After the above rotation,
it is still possible to rotate the crystal by an arbitrary angle �
about the z� axis, keeping B � ẑ�. Hence there are in effect an
infinite number of equivalent rotations leading to B=Bẑ�.
The resulting Hamiltonian matrix will then have off-diagonal
elements that depend upon �. However, all such rotations
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necessarily lead to the identical, �-independent, set of eigen-
values of the resulting diagonalized Hamiltonian matrix. We
have explicitly checked that the above rotation gives the ex-
act cubic expression, Eq. �54�, for the s1=1/2 eigenvalues,
and also leads to the correct eigenstate energies second order
in each of the Jj for s1=1. We also showed explicitly that �
does not enter the eigenstate energies second order in Jf for
arbitrary s ,s1 ,m.

2. Second-order induction representation Hamiltonian

In this section, we evaluate the corrections to the eigen-
state energies second order in the four anisotropy interaction
energies Jj for j=a ,c ,e , f . The operations of the induction

representation Hamiltonian H̃� upon the eigenstates ��s
m	

may be written as

H̃���s
m	 = �Es

m,�0� + Es,s1

m,�1����s
m	 + �

��=±1

Ws,s1

m,����s+2��
m 	

+ �
�=±1

�Us,s1

m,���s
m+�	 + Vs,s1

m,���s
m+2�	�

+ �
�,��=±1

�Xs,s1

m,�,����s+2��
m+� 	 + Ys,s1

m,�,����s+2��
m+2� 	� ,

�B2�

where Es,s1

m,�0� and Es,s1

m,�1� are given by Eqs. �46� and �47�, re-
spectively, and

Us,s1

m,���,�� =
1

4
�2m + ��As

�m�sin�2���J̃f ,a
s,s1 − J̃c,e

s,s1cos�2���

− 2i�J̃c,e
s,s1sin �sin�2��� , �B3�

Vs,s1

m,���,�� = −
1

4
Fs

�m�J̃f ,a
s,s1sin2 � + J̃c,e

s,s1�1 + cos2 ��cos�2��

+ 2i�J̃c,e
s,s1cos �sin�2��� , �B4�

Ws,s1

m,����,�� = −
1

4
Hs,s1

m,����2Ja − Jf�cos2 � + �2Je

− Jc�sin2 �cos�2���

+
1

16
Ns,s1

m,��sin2 ��2Ja − Jf − �2Je − Jc�cos�2��� , �B5�

Xs,s1

m,�,����,�� = −
���

16
Rs,s1

m,�,���sin�2���2Ja − Jf − �2Je

− Jc�cos�2��� − i��2Je − Jc�sin �sin�2��� ,

�B6�

and

Ys,s1

m,�,����,�� = −
1

16
Ks,s1

�m,����2Ja − Jf�sin2 �

+ �2Je − Jc���1 + cos2 ��cos�2��

+ 2i� cos � sin�2���� , �B7�

where

Ns,s1

m,�� = �
�=±1

Cs+���+1�/2,s1

−���m−���+1�/2
Cs+�3��+1�/2,s1

���m+���−1�/2, �B8�

Rs,s1

m,�,�� = Cs+���+1�/2,s1

−m���−���+1�/2
Ds+�3��+1�/2,s1

m+�

+ Cs+�3��+1�/2,s1

−m���−���+1�/2
Ds+���+1�/2,s1

m , �B9�

and �s,s1
, Gs,s1

m , Hs,s1

m,��, Ks,s1

x,��, and Ls,s1

x are given by Eqs. �22�
and �25�–�28�, respectively. We note that for ��= ±1, Ns,s1

m,��

=2Hs,s1

m,��.

3. Second-order eigenstate energies

From Eq. �B2�, the second-order eigenstate energies may
be written as

Es,s1

m,�2� =
1


B
�

�=±1
���Us,s1

m,��2 +
1

2
�Vs,s1

m,��2
+ �

��=±1

�Ws,s1

m,���2

J�2 + �2s + 1����

+ �
�,��±1

� �Xs,s1

m,�,���2

J�2 + �2s + 1���� + �
B

+
�Ys,s1

m,�,���2

J�2 + �2s + 1���� + 2�
B
 . �B10�

For simplicity, we rewrite this as

Es,s1

m,�2� = Es,s1

m,�2�U + Es,s1

m,�2�V + Es,s1

m,�2�W + Es,s1

m,�2�X + Es,s1

m,�2�Y,

�B11�

Es,s1

m,�2�U =
msin2 �

2
B
�4s�s + 1� − 8m2 − 1�

��cos2 ��J̃f ,a
s,s1 − cos�2��J̃c,e

s,s1�2 + sin2�2���J̃c,e
s,s1�2� ,

�B12�

Es,s1

m,�2�V = −
m

8
B
�2s�s + 1� − 2m2 − 1����sin2 �J̃f ,a

s,s1 + �1

+ cos2 ��cos�2��J̃c,e
s,s1�2 + 4cos2 �sin2�2���J̃c,e

s,s1�2� ,

�B13�
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Es,s1

m,�2�W =
ds,s1

m

32J
��2Ja − Jf��1 − 3 cos2 �� − 3�2Je

− Jc�sin2 �cos�2���2, �B14�

Es,s1

m,�2�X =
fs,s1

m �
B/J�sin2 �

4J
���2Ja − Jf − �2Je

− Jc�cos�2���2cos2 � + sin2�2���2Je − Jc�2� ,

�B15�

Es,s1

m,�2�Y =
gs,s1

m �
B/J�

128J
���2Ja − Jf�sin2 � + �2Je − Jc��1

+ cos2 ��cos�2���2 + 4cos2 �sin2�2���2Je − Jc�2� ,

�B16�

where

ds,s1

m = −
�s2 − m2���s − 1�2 − m2��s,s1

2 �s−1,s1

2

�2s − 1�

+ �s+2,s1

2 �s+1,s1

2 ��s + 1�2 − m2���s + 2�2 − m2�
�2s + 3�

,

�B17�

fs,s1

m �x� = −
�s,s1

2 �s−1,s1

2 �s2 − m2�

�2s − 1�2 − x2 ��2s − 1���s − 1��s − 2� + m2�

− m�2s − 3�x�+
�s+2,s1

2 �s+1,s1

2 ��s + 1�2 − m2�

�2s + 3�2 − x2 ��2s + 3�

���s + 2��s + 3� + m2� − m�2s + 5�x� , �B18�

gs,s1

m �x� = −
2�s,s1

2 �s−1,s1

2

�2s − 1�2 − 4x2 ��2s − 1��m4 + m2�6s2 − 18s + 11�

+ s�s − 1��s − 2��s − 3�� − 4mx�2s − 3��s2 − 3s + 1

+ m2��+
2�s+2,s1

2 �s+1,s1

2

�2s + 3�2 − 4x2 ��2s + 3��m4 + m2�6s2 + 30s

+ 35� + �s + 1��s + 2��s + 3��s + 4�� − 4mx�2s + 5�

��s2 + 5s + 5 + m2�� . �B19�

There is a remarkable amount of symmetry in the angular
dependence of the eigenstate energies. We note that
Es,s1

m,�2�X�� ,�� and Es,s1

m,�2�U�� ,�� have the same forms, differing

in the replacements of the interactions J̃f ,a
s,s1 and J̃c,e

s,s1 with
2Ja−Jf and 2Je−Jc, respectively, and with different overall
constant functions. The same comparison can also be made
with Es,s1

m,�2�Y�� ,�� and Es,s1

m,�2�V�� ,��. In addition, we note that
there is a remarkable similarity in the � ,� dependence of
Es,s1

m,�2�W with that of the local spin anisotropy part of Bs,s1

lc�1�

��� ,��given by Eq. �50�.

4. Second-order level crossing angular functions

The angular functions fn
�2��� ,�� in Eq. �50� are

f1
�2���,�� =

sin2 �

4J2 ��Jf − cos�2��Jc�2cos2 � + Jc
2sin2�2��� ,

�B20�

f2
�2���,�� =

sin2 �

4J2 �cos2 ��Jf − Jccos�2����2Ja − Jf − �2Je

− Jc�cos�2��� + �Jc�2Je − Jc�sin2�2���� , �B21�

f3
�2���,�� =

sin2 �

4J2 ��2Ja − Jf − cos�2���2Je − Jc��2cos2 �

+ �2Je − Jc�2sin2�2��� , �B22�

f4
�2���,�� =

1

4J2 �Jfsin2 � + Jc�1 + cos2 ��cos�2���2

+
Jc

2

J2 cos2 �sin2�2�� , �B23�

f5
�2���,�� =

1

4J2 �Jfsin2 � + Jc�1 + cos2 ��cos�2������2Ja

− Jf�sin2 � + �2Je − Jc��1 + cos2 ��cos�2���

+
Jc�2Je − Jc�

J2 cos2 �sin2�2�� , �B24�

f6
�2���,�� =

1

4J2 ��2Ja − Jf�sin2 � + �2Je − Jc��1

+ cos2 ��cos�2���2+
�2Je − Jc�2

J2 cos2 �sin2�2�� ,

�B25�

f7
�2���,�� =

1

4J2 ��2Ja − Jf��1 − 3cos2 �� − 3�2Je

− Jc�sin2 �cos�2���2. �B26�

5. Second-order level crossing coefficients

The coefficients an�s ,s1� in Eq. �50� are

a1�s,s1� =
�9 − 20s + 12s2�

2s
, �B27�

a2�s,s1� =
�a2,0�s� + 4s1�s1 + 1�a2,1�s��

s�2s + 1��2s + 3�
, �B28�

a2,0�s� = 3�9 + s − 23s2 + 4s3 + 12s4� , �B29�

a2,1�s� = 9 − 8s − 4s2, �B30�
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a3�s,s1� = a3
U�s,s1� + a3

X�s,s1� , �B31�

a3
U�s,s1� =

�3 − 3s − 3s2 + 4s1�s1 + 1��2

2�2s + 3�2

−
�s − 1��3 + 3s − 3s2 + 4s1�s1 + 1��2

2s�2s + 1�2 ,

�B32�

a3
X�s,s1� =

�s�s + 2� − 4s1�s1 + 1��
2�s + 1��s + 3��2s + 1�2�2s + 3�2

��a3,0
X �s� + 4s1�s1 + 1�a3,1

X �s�
�2s + 5��3s + 1�

 , �B33�

a3,0
X �s� = �s + 1��s + 3��51 + 114s + 209s2 + 302s3 + 164s4

+ 24s5� , �B34�

a3,1
X �s� = 129 + 318s + 395s2 + 442s3 + 300s4 + 72s5,

�B35�

a4�s,s1� =
�4s − 3�

8s
, �B36�

a5�s,s1� = −
3�a5,0�s� + 4s1�s1 + 1��

4s�2s + 1��2s + 3�
, �B37�

a5,0�s� = 3 + 3s − 5s2 − 4s3, �B38�

a6�s,s1� = a6
V�s,s1� + a6

Y�s,s1� , �B39�

a6
V�s,s1� =

�3 − 3s − 3s2 + 4s1�s1 + 1��2

8�2s − 1��2s + 3�2

−
�s − 1��3 + 3s − 3s2 + 4s1�s1 + 1��2

8s�2s − 3��2s + 1�2 ,

�B40�

a6
Y�s,s1� =

1

4�2s − 3��2s − 1��2s + 1�2�2s + 3�2

���n=0

2
a6,n

Y �s��4s1�s1 + 1��n

�2s + 5��4s + 1��4s + 3�
 , �B41�

a6,0
Y �s� = s�− 216 + 837s + 5052s2 + 3521s3 − 12414s4

− 21876s5 − 7464s6 + 6720s7 + 5376s8 + 1024s9� ,

�B42�

a6,1
Y �s� = 3�81 + 102s + 10s2 + 196s3 + 296s4 + 80s5� ,

�B43�

a6,2
Y �s� = 189 + 258s − 100s2 + 152s3 + 640s4 + 256s5,

�B44�

a7�s,s1� =
�s�s + 2� − 4s1�s1 + 1��

4�2s + 1�3�2s + 3�3�2s + 5�
�4s1�s1 + 1��− 1 + 38s

+ 60s2 + 24s3� + �s + 1��3 + 67s + 94s2 + 44s3

+ 8s4�� . �B45�

By expanding the solutions in the crystal representation to
second order in the Jj, we have explicitly checked these ex-
pressions for s1=1/2 ,s=1, and for s1=1, s=1,2. We note
that for s1=1/2, only a1 and a4 are nonvanishing.

6. Two-level thermodynamic coefficients a1,s

Here we present the expression for a1,s to O�Jj /J�2 ap-
pearing in Eqs. �39� and �41�–�44� in the text. We have

a1,s = s + �
n=1

6

bn�s,s1�fn
�2���,�� + O�Jj/J�3, �B46�

where the fn�� ,�� are given by Eqs. �B20�–�B25�, and

b1�s,s1� =
�2s − 1�2

2s
��s − 1� , �B47�

b2�s,s1� =
�2s − 1�2

s
�s,s1

��s − 1� , �B48�

b3�s,s1� =
�2s − 1�2

2s
�s,s1

2 ��s − 1� + b3
X�s,s1� , �B49�

b3
X�s,s1� = −

s�27 + 44s + 27s2 + 6s3�
6�s + 1�2�s + 3�2�2s + 3�2�2s + 5�

���4s1�s1 + 1� − s�s + 2��

��4s1�s1 + 1� − �s + 1��s + 3��� , �B50�

b4�s,s1� =
�2s − 1�

8s
��s − 1� , �B51�

b5�s,s1� =
�2s − 1�

4s
�s,s1

��s − 1� , �B52�

b6�s,s1� =
�2s − 1�

8s
�s,s1

2 ��s − 1� + b6
Y�s,s1� , �B53�

DMITRI V. EFREMOV AND RICHARD A. KLEMM PHYSICAL REVIEW B 74, 064408 �2006�

064408-22



b6
Y�s,s1� =

s�s − 1�
8�4s2 − 1�

�s2 − 1 − 4s1�s1 + 1��

��s�s − 2� − 4s1�s1 + 1��

−
sb6,1�s��s�s + 2� − 4s1�s1 + 1��

72�2s + 1��2s + 3�2�2s + 5��4s + 3�2

���s + 1��s + 3� − 4s1�s1 + 1�� , �B54�

b6,1�s� = 369 + 1011s + 1420s2 + 1076s3 + 416s4 + 64s5,

�B55�

where ��x�=1 for x�0, ��x�=0 for x�0 is the Heaviside
step function.

7. Higher-order EPR coefficients

Here we list the coefficients of the ten additional EPR
resonances In Eq. �80�. The first resonance has a1=1/2, b1
=2�m+��, and c1=0. The second resonance has a2=1, b2

= �2m−�� /2, and c2=0. The next two resonances have a3

=1, b3±=��2±��2s+1��, and c3=−�2m+�� /2. The fifth and
sixth resonances have a4=2, b4±=2��2±��2s+1��, and c4

=4�m+��. Resonances 7–10 can be written using �� ,��
= ±�, and have a5,��=1/ �1+2����, b5,��,��= �2+���2s
+1�� / ��+2���, and c5,��=m+��+� /2.
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